張圣平,顧興芳
·導(dǎo)讀·
黃瓜重要農(nóng)藝性狀的分子生物學(xué)
張圣平,顧興芳
(中國(guó)農(nóng)業(yè)科學(xué)院蔬菜花卉研究所/農(nóng)業(yè)農(nóng)村部園藝作物生物學(xué)與種質(zhì)創(chuàng)制重點(diǎn)實(shí)驗(yàn)室,北京 100081)
黃瓜是我國(guó)的重要蔬菜作物,尤其在設(shè)施生產(chǎn)中占有舉足輕重的地位,2017年收獲面積為123.52萬(wàn)hm2,產(chǎn)量達(dá)到6 482.46萬(wàn)t[1]。豐產(chǎn)優(yōu)質(zhì)多抗新品種是黃瓜綠色高效生產(chǎn)的重要保障,而優(yōu)良新品種的選育離不開準(zhǔn)確高效的育種技術(shù)。重要農(nóng)藝性狀分子生物學(xué)研究,如遺傳圖譜構(gòu)建、分子標(biāo)記開發(fā)、優(yōu)異基因挖掘、功能基因組研究等,是高通量高效率分子設(shè)計(jì)育種技術(shù)研發(fā)的基礎(chǔ)。由于黃瓜遺傳背景狹窄,在全基因組序列信息破譯之前,相關(guān)分子生物學(xué)研究進(jìn)展緩慢。
2009年,黃瓜全基因組測(cè)序完成,數(shù)據(jù)量達(dá)到17.2 G,測(cè)序深度72.2×,注釋了26 682個(gè)基因[2],使黃瓜成為第一個(gè)以二代測(cè)序技術(shù)為主完成測(cè)序的植物,也是世界上第一個(gè)完成測(cè)序的蔬菜作物,開啟了黃瓜分子生物學(xué)和遺傳育種快速發(fā)展的新時(shí)期。10年來(lái),基于黃瓜基因組測(cè)序的帶動(dòng)和功能基因組學(xué)的迅速發(fā)展,在黃瓜研究上凝聚了一批研究人員、謀劃了一批科研項(xiàng)目、取得了一批研究成果,特別是在高密度遺傳圖譜構(gòu)建、高質(zhì)量分子標(biāo)記開發(fā)、重要農(nóng)藝性狀基因挖掘、基因調(diào)控網(wǎng)絡(luò)解析等方面取得了較大進(jìn)展,發(fā)表了影響因子大于6的SCI論文25篇,其中影響因子大于8的高水平論文12篇,申請(qǐng)國(guó)內(nèi)外專利超過(guò)200件,創(chuàng)建了高效的分子標(biāo)記聚合育種技術(shù),實(shí)現(xiàn)了育種技術(shù)的更新?lián)Q代,國(guó)內(nèi)2項(xiàng)成果“黃瓜基因組和重要農(nóng)藝性狀基因研究”和“黃瓜優(yōu)質(zhì)多抗種質(zhì)資源創(chuàng)制與新品種選育”榮獲國(guó)家級(jí)獎(jiǎng)勵(lì)。
在我國(guó)完成華北密刺型黃瓜9930的全基因組測(cè)序之后,美國(guó)完成了加工型黃瓜GY14的全基因組測(cè)序[3]。最近中國(guó)農(nóng)業(yè)科學(xué)院蔬菜花卉研究所的科研人員進(jìn)一步組裝完成了9930黃瓜V3.0參考基因組,利用10×genomics技術(shù)平臺(tái)和Hi-C測(cè)序數(shù)據(jù),組裝獲得了總長(zhǎng)度226.2 Mb,共包含174 contigs的參考基因組,包含1 374個(gè)全長(zhǎng)末端逆轉(zhuǎn)錄轉(zhuǎn)座子和1 078個(gè)新基因,可以更好的服務(wù)于黃瓜遺傳研究[4]。以9930基因組為參考,通過(guò)對(duì)115份黃瓜核心種質(zhì)進(jìn)行深度重測(cè)序,構(gòu)建了包含360多萬(wàn)個(gè)位點(diǎn)的全基因組遺傳變異圖譜,為全面了解黃瓜進(jìn)化及多樣性提供了新思路,并為全基因組設(shè)計(jì)育種奠定了良好基礎(chǔ)[5]。
黃瓜高密度遺傳圖譜構(gòu)建方面,第一張整合的高密度遺傳圖譜于2012年完成,使得定位在圖譜上的標(biāo)記位點(diǎn)達(dá)到1 369個(gè)[6]。隨后利用永久群體重組自交系(RILs)結(jié)合基因組測(cè)序,構(gòu)建了包含1 681個(gè)標(biāo)記的分子連鎖圖譜[7]。為重要農(nóng)藝性狀基因定位提供了有力的工具。
黃瓜抗病性狀分子生物學(xué)研究方面,將抗黑星病基因精細(xì)定位在Chr.2上0.29 cM的區(qū)域內(nèi),獲得6個(gè)候選基因[8];將抗西葫蘆黃化花葉病毒基因精細(xì)定位于Chr.6上50 kb的區(qū)段內(nèi)[9];將枯萎病抗病主效QTL定位在Chr.2上2.4 cM內(nèi)[10];檢測(cè)到PI197088黃瓜的11個(gè)與霜霉病抗性相關(guān)的QTL,4個(gè)與白粉病抗性相關(guān)的QTL[11];檢測(cè)到TH118FLM黃瓜5個(gè)與霜霉病抗性相關(guān)的QTL[12];檢測(cè)到PI183967黃瓜5個(gè)與莖部蔓枯病抗性相關(guān)的QTL[13];在Chr.5上檢測(cè)到抗角斑病QTL位點(diǎn)psl5.1和psl5.2[14]。圖位克隆了GY14黃瓜抗炭疽病候選基因,該基因?qū)儆诩易宓闹参锟共』騕15]。黃瓜的感病丟失突變帶來(lái)了永久廣譜抗病性,為黃瓜抗病育種起到了重要作用,支撐了美國(guó)黃瓜產(chǎn)業(yè)的發(fā)展[16]。
黃瓜果實(shí)品質(zhì)性狀分子生物學(xué)研究方面,圖位克隆了短果基因[17]、小葉基因[18]、圓形葉片基因[19]、軟刺基因[20]、果瘤基因[21]、超高密度果刺新位點(diǎn)[22],其中泛素化修飾并降解自身及其底物,進(jìn)而影響乙烯含量變化;編碼WD40重復(fù)蛋白并且與黃瓜器官大小的發(fā)育密切相關(guān);編碼絲氨酸/蘇氨酸蛋白激酶。檢測(cè)到了8個(gè)與果實(shí)大小相關(guān)的QTL[23];可以增強(qiáng)果實(shí)中乙烯的含量,進(jìn)而導(dǎo)致果實(shí)發(fā)生彎曲[24];、和三個(gè)基因通過(guò)相互作用共同調(diào)節(jié)葉綠素含量的積累,從而影響嫩瓜果皮顏色[25];將多效應(yīng)黑刺基因精細(xì)定位于Chr.4上50 kb的區(qū)段內(nèi),獲得候選基因轉(zhuǎn)錄因子[26];將心皮數(shù)基因精細(xì)定位在Chr.1上[27],將果實(shí)多刺基因精細(xì)定位在Chr.2上[28],將黃綠葉色基因精細(xì)定位在Chr.6上50.9 kb內(nèi)[29]。
黃瓜植株形態(tài)建成相關(guān)性狀分子生物學(xué)研究方面,解析了分枝、花打頂?shù)戎晷驼{(diào)控機(jī)制,是控制分枝的關(guān)鍵基因,通過(guò)抑制生長(zhǎng)素運(yùn)輸基因,導(dǎo)致側(cè)枝中生長(zhǎng)素過(guò)量積累,從而抑制側(cè)枝的生長(zhǎng)發(fā)育[30]。克隆了控制有限生長(zhǎng)的關(guān)鍵基因,該基因通過(guò)與互作來(lái)影響花發(fā)育[31]。在性別表達(dá)和開花時(shí)間研究上,將雄性不育基因精細(xì)定位到了76 kb區(qū)間,獲得候選基因[32];檢測(cè)到3個(gè)調(diào)控開花時(shí)間的QTL,其中FT6.2是主效QTL[33]。
基因調(diào)控網(wǎng)絡(luò)解析方面,明確了黃瓜苦味代謝和進(jìn)化源于兩個(gè)主轉(zhuǎn)錄因子直接調(diào)控的一個(gè)9基因模塊[34];復(fù)合體調(diào)控果刺的其實(shí)發(fā)育[35];復(fù)合體調(diào)控果瘤的形成[36];在轉(zhuǎn)錄因子HD-ZIPIII和CsWUS 之間具有調(diào)配器的功能,從而調(diào)控花粉和胚珠的發(fā)育[38];鑒定到一個(gè)控制果實(shí)長(zhǎng)度的關(guān)鍵基因,該基因通過(guò)抑制生長(zhǎng)素運(yùn)輸基因和的表達(dá)進(jìn)而減少生長(zhǎng)素積累[38]。
本專題所匯集的5篇論文,分別在黃瓜植株形態(tài)建成、雌花及果實(shí)發(fā)育、抗白粉病機(jī)制等方面取得了新進(jìn)展。在黃瓜Chr.1、Chr.2、Chr.3、Chr.4、Chr.5、Chr.6上,檢測(cè)到8個(gè)與下胚軸長(zhǎng)度密切關(guān)聯(lián)的SNP位點(diǎn),挖掘到8個(gè)調(diào)控下胚軸長(zhǎng)度的候選基因[39]。從9930基因組中鑒定得到138個(gè)ERF基因家族成員,其中部分成員在不同性型材料中差異表達(dá),可能參與雌花分化初期的基因表達(dá)調(diào)控[40]??寺〉玫焦麑?shí)發(fā)育調(diào)控網(wǎng)絡(luò)中,參與胎座框的形成的重要基因,擬南芥異源過(guò)表達(dá)轉(zhuǎn)基因植株的果莢變短,花粉育性降低,且種子發(fā)育受到抑制[41]。分別在Chr.1、Chr.3、Chr.6上檢測(cè)到4個(gè)單性結(jié)實(shí)QTL,挖掘到4個(gè)與單性結(jié)實(shí)性狀相關(guān)的候選基因[42]。篩選獲得了抗白粉病新材料,在成熟期葉片的防御信號(hào)途徑相關(guān)基因表達(dá)上,抗病材料的表達(dá)高于感病材料[43]。這些僅僅是黃瓜重要農(nóng)藝性狀分子生物學(xué)研究領(lǐng)域中的一小部分內(nèi)容,謹(jǐn)希望以專題的形式呈現(xiàn),促進(jìn)該學(xué)科領(lǐng)域的快速發(fā)展。
[1] http://www.fao.org/faostat/en/#data, 2019.
[2] HUANG S W, LI R Q, ZHANG Z H, LI L, GU X F, FAN W, LUCAS W J, WANG X W, XIE B Y, NI P X, REN Y Y, ZHU H M, LI J, LIN K, JIN W W, FEI Z J, LI G C, STAUB J E, KILIAN A, VAN DER VOSSEN E A G,. The genome of the cucumber,L., 2009, 41: 1275-1281.
[3] YANG L M, KOO D H, LI Y H, ZHANG X J, LUAN F S, HAVEY M, JIANG J M, WENG Y Q. Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly., 2012, 71(6): 895-906.
[4] LI Q, LI H B, HUANG W, XU Y C, ZHOU Q, WANG S H, RUAN J, HUANG S W, ZHANG Z H. A chromosome-scale genome assembly of cucumber (L.)., 2019, 8: 1-10.
[5] QI J J, LIU X, SHEN D, MIAO H, XIE B Y, LI X X, ZENG P, WANG S H, SHANG Y, GU X F, DU Y C, LI Y, LIN T, YUAN J H, YANG X Y, CHEN J F, CHEN H M, XIONG X Y, HUANG K, FEI Z J, MAO L Y, TIAN L, ST?DLER T, RENNER S S, KAMOUN S, LUCAS W J, ZHANG Z H, HUANG S WA genomic variation map provides insights into the genetic basis of cucumber domestication and diversity., 2013, 45: 1510
[6] ZHANG W W, PAN J S, HE H L, ZHANG C, LI Z, ZHAO J L, YUAN X J, ZHU L H, HUANG S W, CAI R. Construction of a high density integrated genetic map for cucumber (L.)., 2012, 124(2): 249-259.
[7] ZHOU Q, MIAO H, LI S, ZHANG S P, WANG Y, ZHANG Z H, HUANG S W, GU X F. A sequencing-based linkage map enables precise localization of Mendelian genes and quantitative trait loci in cucumber., 2015, 8(6): 961-963.
[8] KANG H X, WENG Y Q, YANG Y H, ZHANG Z H, ZHANG S P, MAO Z C, CHENG G H, GU X F, HUANG S W, XIE B Y. Fine genetic mapping localizes cucumber scab resistance geneinto angene cluster., 2010, 122: 795-803.
[9] AMANO M, MOCHIZUKI A, KAWAGOE Y, IWAHORI K, NIWA K, SVOBODA T, MAEDA T, IMURA Y. High-resolution mapping of, a recessive gene for zucchini yellow mosaic virus resistance in cucumber., 2013, 126(12): 2983-2993.
[10] ZHANG S P, MIAO H, YANG Y H, XIE B Y, WANG Y, GU X F. A major quantitative trait locus conferring resistance to fusarium wilt was detected in cucumber by using recombinant inbred lines., 2014, 34(4): 1805-1815.
[11] WANG Y H, VANDENLANGENBERG K, WEN C L, WEHNER T C, WENG Y Q. QTL mapping of downy and powdery mildew resistances in PI 197088 cucumber with genotyping?by?sequencing in RIL population.cs, 2018, 131(3): 597-611.
[12] WIN K T, VEGAS J, ZHANG C Y, SONG K, LEE S. QTL mapping for downy mildew resistance in cucumber via bulked segregant analysis using next-generation sequencing and conventional methods., 2017, 130: 199-211.
[13] Zhang S P, Liu S L, Miao H, Shi Y X, Wang M, Wang Y, Li B J, Gu X F. Inheritance and QTL mapping of resistance to gummy stem blight in cucumber stem., 2017, 37(4): 49.
[14] S?OMNICKA R, OLCZAK-WOLTMAN H, KORZENIEWSKA A, GOZDOWSKI D, NIEMIROWICZ-SZCZYTT K, BARTOSZEWSKI G. Genetic mapping oflocus and quantitative trait loci for angular leaf spot resistance in cucumber., 2018, 38: 111.
[15] PAN J S, TAN J Y, WANG Y H, ZHENG X Y, OWENS K, LI D W, LI Y H, WENG Y Q.() is a candidate for the anthracnose () resistance locusin Gy14 cucumber.,2018, 131(7): 1577-1587.
[16] WANG Y H, TAN J Y, WU Z M, VANDENLANGENBERG K, WEHNER T C, WEN C L, ZHENG X Y, OWENS K, THORNTON A, BANG H H, HOEFT E, KRAAN P A G, SUELMANN J, PAN J S, WENG Y Q. STAYGREEN, STAY HEALTHY: A loss-of- susceptibility mutation in thegene provides durable, broad-spectrum disease resistances for over 50 years of US cucumber production.,2019, 221(1): 415-430.
[17] XIN T X, ZHANG Z, LI S, ZHANG S, LI Q, ZHANG Z H, HUANG S W, YANG X Y. Genetic regulation of ethylene dosage for cucumber fruit elongation., 2019, 31: 1063-1076.
[18] YANG L M, LIU H Q, ZHAO J Y, PAN Y P, CHENG S Y, LIETZOW C D, WEN C L, ZHANG X L, WENG Y Q. LITTLELEAF (LL) encodes a WD40 repeat domain-containing protein associated with organ size variation in cucumber., 2018, 95: 834-847.
[19] ZHANG C W, CHEN F F, ZHAO Z Y, HU L L, LIU H Q, CHENG Z H, WENG Y Q, CHEN P, LI Y H. Mutations inencoding a Ser/Thr protein kinase are responsible for round leaf shape in cucumber (L.).,2018, 131(6): 1379-1389.
[20] GUO C L, YANG X Q, Wang Y L, NIE J T, YANG Y, SUN J X, DU H, ZHU W Y, PAN J, CHEN Y, LV D, HE H L, LIAN H L, PAN J S, CAI R. Identification and mapping of(), a gene involved in soft spine development in, 2018, 131: 1-12.
[21] YANG X Q, ZHANG W W, HE H L, NIE J T, BIE B B, ZHAO J L, REN G L, LI Y, ZHANG D B, PAN J S, CAI R. Tuberculate fruit geneencodes a C2H2 zinc finger protein that is required for the warty fruit phenotype in cucumber (L.)., 2014, 78: 1034-1046.
[22] BO K L, MIAO H, WANG M, XIE X X, SONG Z C, XIE Q, SHI L X, WANG W P, WEI S, ZHANG S P, GU X F. Novel lociandregulate ultra-high fruit spine density in cucumber., 2019, 132(1): 27-40.
[23] Pan Y P, Qu S P, Bo K L, Gao M L, Haider K R, Weng Y Q. QTL mapping of domestication and diversifying selection related traits in round?fruited semi?wild Xishuangbanna cucumber (L. var.).2017, 130: 1531-1548.
[24] WANG C H, XIN M, ZHOU X Y, LIU C H, LI S G, LIU D, XU Y, QIN Z W. The novel ethylene-responsive factoraffects the development of fruit bending in cucumber., 2017, 95: 519-531.
[25] JIAO J Q, LIU H Q, LIU J, CUI M M, XU J, MENG H W, LI Y H, CHEN S X, CHENG Z H. Identification and functional characterization ofcontrolling green immature fruit color in cucumber (L.)., 2017, 83: 233-243.
[26] LI Y H, WEN C L, WENG Y Q. Fine mapping of the pleiotropic locusfor black spine and orange mature fruit color in cucumber identifies a 50 kb region containing a R2R3-MYB transcription factor., 2013, 126(8): 2187-2196.
[27] LI S, PAN Y P, WEN C L, LI Y H, LIU X F, ZHANG X L, BEHERA T K, XING G M, WENG Y Q. Integrated analysis in bi-parental and natural populations reveals() underlying carpel number variations in cucumber., 2016, 129(5): 1007-1022.
[28] XIE Q, LIU P N, SHI L X, MIAO H, BO K L, WANG Y, GU X F, ZHANG S P. Combined fine mapping, genetic diversity and transcriptome profiling reveals that the auxin transporter geneplays an important role in cucumber fruit spine development., 2018, 131(6): 1-14.
[29] MIAO H, ZHANG S P, WANG M, WANG Y, WENG Y Q, GU X F. Fine mapping of virescent leaf genein cucumber (L.)., 2016(17): 1602.
[30] SHEN J J, ZHANG Y Q, GE D F, WANG Z Y, SONGA W Y, GUA R, CHE G, CHENG Z H, LIU R Y, ZHANG X L.inhibits axillary bud outgrowth by directly repressing the auxin efflux carrierin cucumber., 2019, 116(34): 17105-17114.
[31] WEN C L, ZHAO W S, LIU W L, YANG L M, WANG Y H, LIU X W, XU Y, REN H Z, GUO Y D, LI C, LI J G, WENG Y Q, ZHANG X L.inhibits determinate growth and terminal flower formation through interaction within cucumber., 2019,146(14): dev180166.
[32] HAN Y K, ZHAO F Y, GAO S, WANG X Y, WEI A M, CHEN Z G, LIU N, TONG X Q, FU X M, WEN C L, ZHANG Z X, WANG N G, DU S L. Fine mapping of a male sterility genein a novel cucumber (L.) mutant., 2018, 131(2): 449-460.
[33] PAN Y P, QU S P, BO K L, GAO M L, HAIDER K R, WENG Y Q. QTL mapping of domestication and diversifying selection related traits in round?fruited semi?wild Xishuangbanna cucumber (L. var.)., 2017, 130: 1531-1548.
[34] SHANG Y, MA Y S, ZHOU Y, ZHANG H M, DUAN L X, CHEN H M, ZENG J G, ZHOU Q, WANG S H, GU W H, LIU M, REN J W, GU X F, ZHANG S P, WANG Y, YASUKAWA K, BOUWMEESTER H J, QI X Q, ZHANG Z H, LUCAS W J, HUANG S W. Biosynthesis, regulation, and domestication of bitterness in cucumber., 2014, 346: 1084-1088.
[35] YANG S, CAI Y l, LIU X W, DONG M M, ZHANG Y Q, CHEN S Y, ZHANG W B, LI Y J, TANG M, ZHAI X L, WENG Y Q, REN H Z. Amodule regulates fruit trichome initiation in cucumber., 2018, 69(8): 1887-1902.
[36] YANG S, WEN C L, LIU B, CAI Y L, XUE S D, BARTHOLOMEW E S, DONG M M, JIAN C, XU S, WANG T, QI W Z, PANG J N, MA D H, LIU X W, REN H Z. A CsTu-TS1 regulatory module promotes fruit tubercule formation in cucumber., 2019, 17(1): 289-301.
[37] LIU X F, NING K, CHE G, YAN S S, HAN L J, GU R , LI Z, WENG Y Q, ZHANG X L. CsSPL functions as an adaptor between HD‐ZIP III and CsWUS transcription factors regulating anther and ovule development in(cucumber)., 2018, 94: 535-547.
[38] ZHAO J Y, JIANG L, CHE G, PAN Y P, LI Y Q, HOU Y, ZHAO W S, ZHONG Y T, DING L, YAN S S, SUN C Z, LIU R Y, YAN L Y, WU T, LI X X, WENG Y Q, ZHANG X L. A functional allele ofregulates fruit length through repressingand inhibiting auxin transport in cucumber., 2019, 31(6): 1289-1307.
[49] 蔡和序, 薄凱亮, 周琪, 苗晗, 董邵云, 顧興芳, 張圣平. 黃瓜幼苗下胚軸長(zhǎng)度GWAS分析及候選基因挖掘. 中國(guó)農(nóng)業(yè)科學(xué), 2020, 53(1): 122-132.
CAI H X, BO K L, ZHOU Q, MIAO H, DONG S Y, GU X F, ZHANG S P. GWAS analysis of hypocotyl length and candidate gene mining in cucumber seedlings., 2020, 53(1): 122-132. (in Chinese)
[40] 潘健, 溫海帆, 何歡樂(lè), 連紅莉, 王剛, 潘俊松, 蔡潤(rùn). 黃瓜ERF基因家族鑒定及其在雌花芽分化中的表達(dá)分析. 中國(guó)農(nóng)業(yè)科學(xué), 2020, 53(1): 133-147.
PAN J, WEN H F, HE H L, LIAN H L, WANG G, PAN J S, CAI R. Genome-wide identification of cucumber ERF gene family and expression analysis in female bud differentiation., 2020, 53(1): 133-147. (in Chinese)
[41] 宋維源, 侯鈺, 趙劍宇, 劉小鳳, 張小蘭. 黃瓜的克隆及其功能分析. 中國(guó)農(nóng)業(yè)科學(xué), 2020, 53(1): 148-159.
Song W Y, Hou Y, Zhao J Y, Liu X F, Zhang X L. Cloning and functional analysis ofin cucumber., 2020, 53(1): 148-159. (in Chinese)
[42] 牛志紅, 宋曉飛, 李曉麗, 郭曉雨, 何書強(qiáng), 賀欒勁芝, 馮志紅, 孫成振, 閆立英. 黃瓜單性結(jié)實(shí)性狀遺傳與QTL定位.中國(guó)農(nóng)業(yè)科學(xué), 2020, 53(1): 160-171.
NIU Z H, SONG X F, LI X L, GUO X Y, HE S Q, HE L J Z, FENG Z H, SUN C Z, YAN L Y. Inheritance and QTL mapping for parthenocarpy in cucumber., 2020, 53(1): 160-171. (in Chinese)
[43] 亓飛, 林姝, 宋蒙飛, 張孟茹, 陳姝延, 張乃心, 陳勁楓, 婁群峰. 黃瓜抗白粉病突變體篩選與鑒定. 中國(guó)農(nóng)業(yè)科學(xué), 2020, 53(1): 172-182.
QI F, LIN S, SONG M F, ZHANG M R, CHEN S Y, ZHANG N X, CHEN J F, LOU Q F. Screening and identification of cucumber mutant resistant to powdery mildew., 2020, 53(1): 172-182. (in Chinese)
Molecular Biology of Important Agronomic Traits in Cucumber
ZHANG ShengPing, GU XingFang
(Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crop Biology and Germplasm Creation, Ministry of Agriculture and Rural Areas, Beijing 100081)
2019-12-14;
2019-12-30
中國(guó)農(nóng)業(yè)科學(xué)院創(chuàng)新工程(CAAS-ASTIP-2017-IVF)
張圣平,E-mail:zhangshengping@caas.cn。顧興芳,E-mail:guxingfang@caas.cn
10.3864/j.issn.0578-1752.2020.01.011
(責(zé)任編輯 趙伶俐)