魏 寧,李 梅
具有雙參數(shù)擾動(dòng)的Holling II捕食-食餌模型分析
*魏 寧,李 梅
(南京財(cái)經(jīng)大學(xué)應(yīng)用數(shù)學(xué)學(xué)院,江蘇,南京 210023)
針對(duì)一類具有雙參數(shù)擾動(dòng)的Holling II隨機(jī)捕食-食餌模型的一些動(dòng)力學(xué)性質(zhì)問題,利用隨機(jī)微分方程的一些基本理論和不等式技巧,證明了該系統(tǒng)的正解的存在性和唯一性,隨機(jī)最終有界性,一致H?lder連續(xù)性和隨機(jī)持久性,并給出了該系統(tǒng)滅絕的充分性條件。最后,通過數(shù)值模擬直觀表現(xiàn)種群在雙參數(shù)擾動(dòng)下的數(shù)量變化,并與理論結(jié)果一致。
雙參數(shù)擾動(dòng); 捕食-食餌模型; 隨機(jī)最終有界; 隨機(jī)持久性; 滅絕
種群間的相互作用關(guān)系是生態(tài)學(xué)中重要的現(xiàn)象之一,其中捕食與食餌之間的關(guān)系是生態(tài)學(xué)界和生物數(shù)學(xué)界研究的一個(gè)重要課題,近年來,對(duì)捕食-食餌模型的動(dòng)力學(xué)行為的研究受到了廣泛關(guān)注[1-5]。然而,在生態(tài)系統(tǒng)中,種群不可避免地會(huì)受到環(huán)境噪聲的干擾,從而導(dǎo)致模型系統(tǒng)中涉及的出生率、死亡率等其他參數(shù)或多或少地出現(xiàn)隨機(jī)波動(dòng)的現(xiàn)象。因此,為了使模型更貼近實(shí)際,許多學(xué)者用隨機(jī)擾動(dòng)來表示環(huán)境波動(dòng)對(duì)種群的影響,并引入到確定性模型中。Mao和Sabais[6]研究了一類經(jīng)典Lotka–Volterra隨機(jī)互惠模型,考慮了環(huán)境噪聲對(duì)種內(nèi)和種間相互作用系數(shù)的影響; Li X[7],Li M[8]和劉思潤(rùn)等[9]針對(duì)不同的種群模型,探究了環(huán)境噪聲對(duì)種群增長(zhǎng)率的影響。文獻(xiàn)[10]考慮了環(huán)境波動(dòng)對(duì)內(nèi)稟增長(zhǎng)率和死亡率的影響,提到了下列帶有隨機(jī)擾動(dòng)項(xiàng)的Holling II捕食者-食餌模型:
進(jìn)而建立了下列帶有雙參數(shù)擾動(dòng)的隨機(jī)模型:
系統(tǒng)的全局正解的存在唯一性對(duì)研究種群模型長(zhǎng)時(shí)間的動(dòng)力學(xué)行為具有重要作用,本節(jié)首先證明模型(2)具有唯一的全局正解,從而可進(jìn)一步分析其他的漸進(jìn)性質(zhì)。
系統(tǒng)解的有界性表示種群系統(tǒng)的合理性,接下來,本節(jié)證明了模型(2)的解是隨機(jī)最終有界的。
利用Young’s不等式:
因此,
同理可得:
在種群動(dòng)力學(xué)系統(tǒng)中,探究種群系統(tǒng)的一致H?lder連續(xù)性和隨機(jī)持久性對(duì)農(nóng)業(yè)、林業(yè)、自然資源和珍稀動(dòng)物的保護(hù),利用和管理具有重要意義, 是研究種群動(dòng)力學(xué)行為的重要課題之一。因此,本節(jié)先后討論了模型(2)的正解的一致H?lder連續(xù)性和隨機(jī)持久性。
證明:式(2)的第一個(gè)方程可以轉(zhuǎn)換為下面的隨機(jī)積分方程:
由定理2,式(3)和離散H?lder不等式[13],可得:
定理4模型(2)是隨機(jī)持久的。
其中
因此
同理可得:
則
那么,
,
由隨機(jī)持久性的定義[13]即可得證本定理成立。
本節(jié)給出模型(2)中種群滅絕的充分性條件。
將式(7)代入式(6)可得:
圖1 種群的數(shù)量變化
[1] Yang J, Tang S. Holling type II predator-prey model with nonlinear pulse as state-dependent feedback control [J]. Journal of Computational and Applied Mathematics, 2016, 291(1): 225-241.
[2] Raw S N, Mishra P, Kumar R, et al. Complex behavior of prey-predator system exhibiting group defense: A mathematical modeling study [J]. Chaos Solitons & Fractals, 2017, 100: 74-90.
[3] Zhang B, Wang H, Lv G. Exponential extinction of a stochastic predator-prey model with Allee effect [J]. Physica A Statal Mechanics & Its Applications, 2018, 507: 192-204.
[4] Chen M X, Wu R C, Liu B, et al.Pattern selection in a predator-prey model with Michaelis-Menten type nonlinear predator harvesting[J]. Ecological Complexity, 2018, 36: 239-249.
[5] Liu Q, Jiang D, Hayat T, et al. Stationary distribution of a regime-switching predator-prey model with anti-predator behaviour and higher-order perturbations [J]. Physica A: Statal Mechanics and its Applications, 2019, 515: 199-210.
[6] Mao X, Sabais S, Renshaw E. Asymptotic behavior of stochastic Lotka-Volterra model [J]. J. Math. Anal, 2003, 287: 141-156.
[7] Li X, Jiang D, Mao X. Population dynamical behavior of Lotka-Volterra system under regime switching [J]. Journal of Computational & Applied Mathematics,2009,232(2): 427-448.
[8] Li M, Gao J H, Sun C F, et al. Analysis of A Mutualism Model with Stochastic Perturbations [J]. Int. J. Biomath, 2015(8): Article ID 1550072
[9] 劉思潤(rùn),呂敬亮.一類隨機(jī)互惠模型的漸進(jìn)性質(zhì)[J]. 黑龍江大學(xué)自然科學(xué)學(xué)報(bào), 2016, 33(2): 162-169.
[10] Liu Q, Zu L, Jiang D. Dynamics of stochastic predator- prey models with Holling II functional response [J]. Communications in Nonlinear ence & Numerical Simulation, 2016, 37(1): 62-76.
[11] Liu Q, Jiang D, Shi N, et al. Stochastic mutualism model with Lévy jumps [J]. Commun Nonlinear Sci Numer Simulat, 2017, 43(1): 78-90.
[12] Friedman A. Stochastic Differential Equations and Their Applications [M]. New York: Academic Press, 1976: 98-125.
[13] Mao X. Stochastic Differential Equations and Applications [M]. Chichester : Horwood Publishing Limited,1997.
[14] Luo J W, Li M, Liu K, et al. Analysis of a mutualism model with time-related coefficients in a stochastic environment [J]. International Journal of Biomathematics, 2020, 11(3): 1-20.
[15] Karatzas I, Shreve S E. Brownian Motion and Stochastic Calculus [M]. Berlin: Springer-Verlag, 1991: 53-55.
[16] 趙愛民, 趙曉丹, 劉桂榮. 一類隨機(jī)互惠種群模型的漸近行為[J]. 山西大學(xué)學(xué)報(bào):自然科學(xué)版, 2019, 42(02): 6-11.
[17] Higham D J. An algorithmic introduction to numerical simulation of stochastic differential equations [J], SIAM Rev, 2001, 43(3): 525-546.
ANALYSIS OF HOLLING II PREDATOR-PREY MODEL WITH TWO PARAMETERS PERTURBATION
*WEI Ning, LI Mei
(School of Applied Mathematics, Nanjing University of Finance & Economics, Nanjing, Jiangsu 210023, China)
In terms of some dynamics properties questions of Holling II stochastic predator-prey model with two parameters perturbation, through some theories of stochastic differential equations and inequalities, the existence and uniqueness of the positive solution, stochastically ultimate boundedness, uniformly H?lder-continuous and stochastic permanence of the system were proved. Moreover, the sufficient conditions for the system to be extinct were given. Finally, the quantitative change of the population under two parameters perturbation was showed, which was consistent with the theoretical results.
two parameters perturbation; predator-prey model; stochastically ultimate boundedness; stochastic permanence; extinction
O175.13/O29
A
10.3969/j.issn.1674-8085.2021.01.001
1674-8085(2021)01-0001-06
2020-09-25;
2020-11-03
國(guó)家自然科學(xué)基金項(xiàng)目(11601225)
*魏 寧(1997-),女,河南安陽(yáng)人,碩士生,主要從事生物數(shù)學(xué)研究(E-mail: wn1097128722@163.com);
李 梅(1966-),女,江蘇興化人,教授,博士,主要從事生物數(shù)學(xué)研究(E-mail: 9120021078@nufe.edu.cn).