王雍,李思妍,何思銳,張迪,連帥,王建發(fā),武瑞
BLV-miRNA跨界調(diào)控人類靶基因預(yù)測及生物信息學(xué)分析
王雍,李思妍,何思銳,張迪,連帥,王建發(fā),武瑞
黑龍江八一農(nóng)墾大學(xué)動(dòng)物科技學(xué)院/黑龍江省牛病防制重點(diǎn)實(shí)驗(yàn)室,黑龍江大慶 163319
【】評估牛白血病病毒(BLV)來源的miRNAs跨界調(diào)控人源基因的風(fēng)險(xiǎn)。對BLV-miRNA可能帶來的食品安全問題及對人體健康可能造成何種影響進(jìn)行前瞻性研究,為未來實(shí)際生產(chǎn)中地方流行性白血病防控措施執(zhí)行的必要性研究奠定基礎(chǔ),對BLV與人類疾病間關(guān)聯(lián)性的研究提供理論指導(dǎo)。首先使用mirbase網(wǎng)站對BLV miRNA的成熟序列進(jìn)行查詢,通過miRanda軟件對BLV編碼的10種miRNA(BLV-miR-B1-3P,5P、BLV-miR-B2-3P,5P、BLV-miR-B3-3P,5P、BLV-miR-B4-3P,5P、BLV-miR-B5-3P,5P)進(jìn)行靶基因預(yù)測,并選取每個(gè)BLV-miRNA評分前10的候選靶基因(去除重復(fù)基因后共88個(gè))進(jìn)行功能分析,對受到多個(gè)BLV miRNA共同調(diào)控的候選靶基因使用RNAhybrid軟件進(jìn)行二次預(yù)測驗(yàn)證,并對其功能進(jìn)行分析。BLV編碼的10種miRNA經(jīng)預(yù)測后分別獲得1 630—16 383個(gè)靶基因不等。對評分前十的共計(jì)88個(gè)候選靶基因進(jìn)行功能分析后發(fā)現(xiàn),其中18個(gè)基因無相關(guān)功能報(bào)道;36個(gè)候選靶基因與腫瘤性疾病的發(fā)生發(fā)展存在相關(guān)性。2個(gè)候選靶基因可以對細(xì)胞周期起調(diào)控作用;16個(gè)候選靶基因參與細(xì)胞信號轉(zhuǎn)導(dǎo)的調(diào)控;14個(gè)候選靶基因在細(xì)胞結(jié)構(gòu)/骨架蛋白的形成中發(fā)揮作用;細(xì)胞的增殖與凋亡的功能表現(xiàn)成拮抗關(guān)系,往往促進(jìn)增殖的基因同時(shí)也可以抑制細(xì)胞凋亡,共有13個(gè)基因?qū)?xì)胞的增殖和凋亡起調(diào)節(jié)作用,有趣的是,這13的候選靶基因?qū)?xì)胞增殖凋亡功能的調(diào)節(jié)是雙向性的,但不能明確BLV miRNA對細(xì)胞的調(diào)節(jié)到底是更趨向于增殖還是凋亡,因此仍需要后續(xù)研究深入探討;2個(gè)候選靶基因?qū)?xì)胞分化起調(diào)節(jié)作用;16個(gè)候選靶基因?qū)?xì)胞的遷移/侵襲功能起調(diào)節(jié)作用,再次提示BLV miRNA與腫瘤性疾病可能存在更重要的關(guān)聯(lián)性。7個(gè)候選靶基因可能在乳腺細(xì)胞的分化、遷移、侵襲過程中發(fā)揮重要作用,提示BLV與人乳腺癌相關(guān)性的研究中,可以從BLV miRNA的角度深入探討;BLV-B4-3P的2個(gè)候選靶基因Ⅰ型膠原α1鏈基因(COL1A1)、斷裂點(diǎn)簇集區(qū)(BCR)對人急性淋巴細(xì)胞白血?。ˋLL)具有調(diào)節(jié)作用。此外,可以被多個(gè)BLV miRNA共同靶向的候選靶基因均屬于黏蛋白家族(MUC5B、MUC12和 MUC16),且均可以在結(jié)腸中表達(dá),對結(jié)腸黏膜的形成產(chǎn)生影響。外源性BLV miRNA可能跨界調(diào)控細(xì)胞周期、信號轉(zhuǎn)導(dǎo)、結(jié)構(gòu)/骨架、增殖、凋亡、分化、遷移/侵襲相關(guān)等細(xì)胞功能相關(guān)基因,破壞細(xì)胞結(jié)構(gòu);BLV miRNA與人乳腺癌的相關(guān)性可能表現(xiàn)在人乳腺癌細(xì)胞的分化、遷移、和侵襲過程中;而BLV-miR-B4-3p本身與白血病相關(guān)miR 29a共享同一種子區(qū)域,可能對人急性淋巴細(xì)胞白血病的發(fā)生發(fā)展造成影響;外源性BLV miRNA具有靶向抑制黏蛋白基因(MUC5B、MUC12、MUC16)表達(dá),通過破壞腸黏膜形成這一途徑,跨界調(diào)控人源基因的風(fēng)險(xiǎn)。
生物信息學(xué);牛白血病病毒;跨界調(diào)控;人源基因;miRNA
【研究意義】牛白血病病毒(BLV)是牛群中常見的傳染性病毒之一,在世界各地均有分布,陽性牛群會(huì)呈持續(xù)感染狀態(tài),通常為亞臨床型,只有約5%的BLV陽性牛會(huì)表現(xiàn)出淋巴瘤的癥狀[1]。最新的調(diào)查結(jié)果顯示,BLV在我國牛群中的發(fā)病率約為49%[2]。牛群中出現(xiàn)BLV感染后,會(huì)出現(xiàn)產(chǎn)奶量下降[3]、平均壽命降低[4]、免疫失敗[5]等諸多問題?;贐LV臨床癥狀不明顯的特點(diǎn),在目前的實(shí)際生產(chǎn)中并不能引起飼養(yǎng)者的重視,而BLV編碼的miRNA具有靶向調(diào)控人源基因的風(fēng)險(xiǎn),可能會(huì)對乳制品食用者的健康產(chǎn)生威脅,因此對BLV miRNA的研究對乳制品安全風(fēng)險(xiǎn)的預(yù)防具有重要意義。【前人研究進(jìn)展】乳汁中發(fā)現(xiàn)的BLV可能引發(fā)全球性的公共衛(wèi)生問題,1974年,McClure等用自然感染BLV奶牛乳汁(未巴氏消毒)飼喂6只初生黑猩猩,連續(xù)飼喂至第30周后全部黑猩猩出現(xiàn)了嗜睡、厭食、白細(xì)胞增多、貧血和進(jìn)行性肺炎癥狀,第35周和第46周時(shí)有兩只黑猩猩分別死亡,病死黑猩猩被確診患有紅細(xì)胞白血?。╡rythroleukemia)[6]。1976年,Graves等發(fā)現(xiàn)BLV可以體外感染牛、羊、貓、蝙蝠、類人猿和人類細(xì)胞(人胚肺二倍體細(xì)胞)。2015年以來,美國、澳大利亞和阿根廷乳腺癌患者乳腺組織樣品中相繼被檢出BLV核酸片段[7]。2019年4月,Buehring等在美國加州當(dāng)?shù)卣心剂?5名婦女志愿者,對其血液中BLV核酸和BLV IgA、IgM、IgG進(jìn)行了檢測,發(fā)現(xiàn)BLV核酸陽性數(shù)為33,IgG和IgA抗體陽性數(shù)均為30,IgM抗體陽性數(shù)為55[8]。因此,雖然尚無充分證據(jù)表明BLV是導(dǎo)致人乳腺癌的元兇,但BLV引發(fā)的公共衛(wèi)生問題愈發(fā)受到關(guān)注。BLV作為逆轉(zhuǎn)錄病毒,但已經(jīng)有研究者通過高通量測序技術(shù)證實(shí)BLV可編碼miRNA,且在BLV陽性牛的肉和乳汁中發(fā)現(xiàn)了BLV miRNAs的存在[9-10]。機(jī)體內(nèi)BLV主要依靠miRNA調(diào)控牛淋巴細(xì)胞功能,當(dāng)BLV感染后,其核酸序列整合到B淋巴細(xì)胞基因組中,導(dǎo)致B細(xì)胞在宿主體內(nèi)異常增殖[11]。但是由于B細(xì)胞淋巴瘤中缺乏5′LTR驅(qū)動(dòng)的RNA聚合酶II(PolII),BLV在原代B細(xì)胞淋巴瘤中出現(xiàn)轉(zhuǎn)錄沉默,無法檢測到病毒mRNA和蛋白質(zhì)[12]。基于此,研究者在對BLV致病機(jī)制的研究過程中發(fā)現(xiàn),白血病牛B淋巴細(xì)胞中存在大量高度保守的由RNA聚合酶III(PolIII)轉(zhuǎn)錄的BLV編碼的miRNA[9],也打破了RNA病毒不編碼miRNA以避免其基因組或mRNA的非生產(chǎn)性切割的傳統(tǒng)認(rèn)知。miRNA相比mRNA具有極高的穩(wěn)定性,乳品中BLV-miRNA具有危害人類健康的潛在風(fēng)險(xiǎn),BLV可編碼5類共計(jì)10種miRNA,其中miR-B4-3p、miR-B2-5p、miR-B5-5p、miR-B1-3p、miR-B5-3p與牛白血病的發(fā)生相關(guān)[13],這些miRNA主要靶向顆粒酶A(GZMA)、棕櫚酰蛋白硫酯酶1(PPT1)、膜聯(lián)蛋白A1(ANXA1)、促分裂原活化蛋白激酶激酶1(MAP2K1)、磷酸肌醇3激酶(PIK3CG)、FBJ鼠科骨肉瘤病毒原癌基因(FOS)等癌相關(guān)基因,清除上述miRNA后BLV不能誘導(dǎo)白血病發(fā)生[14]。BLV與人類T淋巴細(xì)胞白血病病毒1型(HTLV-1)存在共同的致瘤機(jī)制和結(jié)構(gòu)高度相似的致瘤miRNA[15]。miRNA可以跨物種、跨代際穩(wěn)定存在,并在不同物種間、代際間跨界調(diào)控基因表達(dá),且miRNA跨界調(diào)控的普適性規(guī)律已得到廣泛認(rèn)可[16]。BLV修飾后的牛樹突狀細(xì)胞外泌體攜帶有致瘤miRNA,并且牛奶外泌體所攜miRNA可跨界調(diào)控人類免疫細(xì)胞功能[17]?!颈狙芯壳腥朦c(diǎn)】前人對BLV可能對人類健康產(chǎn)生風(fēng)險(xiǎn)的研究主要集中于BLV與人乳腺癌之間的聯(lián)系,本文以miRNA跨界調(diào)控的普適性作為切入點(diǎn), BLV作為一種可以編碼miRNA的逆轉(zhuǎn)錄病毒,其所編碼的miRNA可以在牛奶的外泌體中發(fā)現(xiàn)[10],具有跨界調(diào)控人源基因的食品安全風(fēng)險(xiǎn)?!緮M解決的關(guān)鍵問題】通過miranda軟件,預(yù)測了BLV miRNAs可能調(diào)控的人源靶基因,并對BLV miRNAs的候選靶基因功能進(jìn)行查詢并分析,對進(jìn)一步認(rèn)識(shí)BLV miRNAs跨界調(diào)控人源基因風(fēng)險(xiǎn)的研究具有重要的科學(xué)意義和實(shí)際價(jià)值。
通過mirbase(www.mirbase.org)查詢BLV-miR- B1-3P,5P、BLV-miR-B2-3P,5P、BLV-miR-B3-3P,5P、BLV-miR-B4-3P,5P、BLV-miR-B5-3P,5P成熟序列(表1)。
表1 BLV miRNAs成熟序列
miRanDa軟件主要通過miRNA和mRNA間的序列互補(bǔ)匹配程度和形成復(fù)合結(jié)構(gòu)的自由能兩個(gè)因素來判斷miRNA與候選靶基因的結(jié)合位點(diǎn),根據(jù)序列匹配的打分值和對應(yīng)的自由能預(yù)測結(jié)合位點(diǎn)的可能性,當(dāng)分值大于150時(shí),可以被認(rèn)定為該miRNA 的候選靶基因,由于不依賴結(jié)合位點(diǎn)的保守性,可以更加廣泛的對miRNA的結(jié)合位點(diǎn)進(jìn)行評估,因此我們在哈爾濱醫(yī)科大學(xué)李春權(quán)老師幫助下,于2019年7月在哈爾濱醫(yī)科大學(xué)大慶分校區(qū)應(yīng)用miRanda(V1.9)軟件對BLV-miR-B1-3P,5P、BLV-miR-B2-3P,5P、BLV- miR-B3-3P,5P、BLV-miR-B4-3P,5P、BLV-miR-B5-3P,5P序列進(jìn)行靶基因預(yù)測分析。
通過NCBI、Bing檢索工具檢索每個(gè)BLV-miRNA所預(yù)測的靶基因評分前十位的靶基因功能。通過RNAhybrid[18]對多個(gè)BLV-miRNA共同調(diào)控的靶基因進(jìn)行二次預(yù)測驗(yàn)證,當(dāng)最小自由能(△G)≤-15 kcal·mol-1時(shí)結(jié)合的可能性較高。
通過miRanda軟件對BLV miRNAs進(jìn)行靶基因預(yù)測,BLV miRNAs分別獲得了1 630—16 383個(gè)靶基因不等(圖1)。
圖1 BLV miRNAs靶基因預(yù)測
對BLV-miRNAs的靶基因進(jìn)行了分別預(yù)測,并對每個(gè)BLV-miRNA評分排名前十的靶基因(去除重復(fù)基因后共88個(gè))功能進(jìn)行了整理分析,由于18個(gè)候選靶基因沒有相關(guān)功能報(bào)道,最終本研究對70個(gè)靶基因的功能進(jìn)行了分析,其中有36個(gè)基因的功能與腫瘤的發(fā)生發(fā)展存在相關(guān)性。這些候選靶基因所表達(dá)的蛋白在細(xì)胞的周期、信號轉(zhuǎn)導(dǎo)、結(jié)構(gòu)/骨架、增殖、凋亡、分化、遷移/侵襲功能中發(fā)揮了重要作用(表2—7)。
BLV屬于反轉(zhuǎn)錄病毒科,丁型反轉(zhuǎn)錄病毒屬,在分類學(xué)上與人類T淋巴細(xì)胞白血病病毒I型最為接近。而BLV miRNAs進(jìn)入人體后仍然存在調(diào)控人源白血病細(xì)胞的可能性,BLV-miR-B4-3p作為患病牛體內(nèi)表達(dá)量最高的BLV miRNA,在所有評分排名前十的候選靶基因中有兩個(gè)靶基因可以在人急性淋巴細(xì)胞白血?。ˋLL)的發(fā)生發(fā)展中發(fā)揮作用,且均為BLV-miR-B4-3p的候選靶基因(表8)。
發(fā)現(xiàn)BLV miRNAs靶向調(diào)控的評分前十的候選靶基因中,有5個(gè)miRNA調(diào)控的7個(gè)候選靶基因在乳腺細(xì)胞的分化、遷移、侵襲生命活動(dòng)中發(fā)揮了重要作用(表9)。
在評分前10的候選靶基因中,可以同時(shí)被多個(gè)BLV miRNA共同靶向的候選靶基因聚類于MUC5B、MUC12、MUC16基因(同屬于黏蛋白家族)。我們通過RNAhybrid對這3個(gè)基因進(jìn)行了二次預(yù)測驗(yàn)證的結(jié)果顯示,這些BLV miRNA與靶基因結(jié)合的自由能均小于-15 kcal/mol(圖2—4)。
紅色核酸序列:候選靶基因序列;綠色核酸序列:miRNA序列;mfe:最小自由能
表2 參與調(diào)控細(xì)胞周期的候選靶基因
表3 參與細(xì)胞信號轉(zhuǎn)導(dǎo)的候選靶基因
表4 參與合成細(xì)胞結(jié)構(gòu)/骨架蛋白的候選靶基因
表5 參與細(xì)胞增殖/凋亡的候選靶基因
紅色核酸序列:候選靶基因序列;綠色核酸序列:miRNA序列;mfe:最小自由能
表6 參與細(xì)胞分化的候選靶基因
表7 參與細(xì)胞遷移/侵襲的候選靶基因
表8 參與調(diào)控人急性淋巴細(xì)胞白血病的候選靶基因
表9 參與調(diào)控人乳腺癌的候選靶基因
紅色核酸序列:候選靶基因序列;綠色核酸序列:miRNA序列;mfe:最小自由能
20世紀(jì)90年代,URSIN等提出了一項(xiàng)前瞻性研究,研究了牛奶消費(fèi)與癌癥之間存在可能聯(lián)系,評估了包括白血病、淋巴癌等癌癥類型,雖然此項(xiàng)調(diào)查沒有確定牛奶消費(fèi)與癌癥總發(fā)病率之間的關(guān)系,但是牛奶消費(fèi)量(每天兩杯)和淋巴器官癌癥,特別是淋巴癌之間存在密切聯(lián)系[53],雖然它們之間是通過何種方式進(jìn)行互作還需進(jìn)一步研究,但這與我們所探究的BLV miRNAs通過食源途徑跨界調(diào)控人源基因的風(fēng)險(xiǎn)可以相互印證。
筆者查詢分析的70個(gè)候選靶基因中,36個(gè)候選靶基因的功能與腫瘤的發(fā)生發(fā)展存在相關(guān)性。這些候選靶基因所表達(dá)的蛋白在細(xì)胞的周期、信號轉(zhuǎn)導(dǎo)、結(jié)構(gòu)/骨架、增殖、凋亡、分化、遷移/侵襲功能中發(fā)揮重要作用。值得注意的是,調(diào)控細(xì)胞增殖與凋亡的候選靶基因均具有雙向性,即促進(jìn)與抑制細(xì)胞增殖和凋亡功能的基因共同存在,但對凋亡和增殖功能起抑制作用的基因相對較多,被miRNA靶向后可能增強(qiáng)細(xì)胞的代謝速度。有16個(gè)候選靶基因?qū)?xì)胞的遷移/侵襲功能產(chǎn)生影響,遷移/侵襲作為癌細(xì)胞最主要的功能表達(dá)形式,同樣證實(shí)了BLV miRNAs與癌癥存在相關(guān)性。
BLV-miR-B4-3p作為BLV編碼的10種miRNA中,是患病牛體內(nèi)表達(dá)量最高的一個(gè)[10],與白血病相關(guān)miR 29a共享同一種子區(qū)域[9],人急性淋巴細(xì)胞白血病的融合轉(zhuǎn)錄本同樣作為BLV-miR-B4-3p的候選靶基因,提示BLV miRNA跨界進(jìn)入人體后可能對人白血病的發(fā)生發(fā)展產(chǎn)生影響,雖然BLV與人類T淋巴細(xì)胞白血病病毒I型和Ⅱ(HTLV-1,2)同源性較高,但目前未見兩種疾病間相關(guān)性的研究,這也可能是未來BLV的研究方向之一。但一直以來,BLV最受大家關(guān)注的公共衛(wèi)生問題就是其與人乳腺癌之間的關(guān)系,雖然目前尚無證據(jù)表明BLV就是人源乳腺癌的重要致病因素之一,但近年來美國、澳大利亞、阿根廷等國家已經(jīng)相繼在乳腺癌患者的組織樣品中檢測到BLV基因片段[7],BLV miRNAs作為BLV在機(jī)體內(nèi)致病功能的主要發(fā)動(dòng)者[9, 54],我們的研究顯示BLV miRNA在乳腺癌細(xì)胞的分化、遷移、侵襲過程中,均可以發(fā)揮重要作用,這一結(jié)論對BLV與人源乳腺癌之間相關(guān)性的研究有重要意義與實(shí)際價(jià)值。
BLV miRNAs的候選靶基因中,可以同時(shí)被多個(gè)BLV miRNA共同靶向的候選靶基因聚類于黏蛋白家族的MUC5B、MUC12、MUC16。其中MUC12可以編碼一種完整的膜糖蛋白,可以在結(jié)腸表面的凝膠狀分泌物中作為關(guān)鍵組成部分;雖然MUC5B是呼吸道黏蛋白的主要貢獻(xiàn)者,MUC16是一種眾所周知的卵巢癌標(biāo)志物,但MUC5B在結(jié)腸中同樣存在大量表達(dá),MUC16也可以作為結(jié)腸癌的獨(dú)立預(yù)后標(biāo)志物[55]。鑒于miRNA所存在的跨界調(diào)控機(jī)制[16],而結(jié)腸作為機(jī)體吸收水分的重要腸段,我們推測BLV miRNAs極有可能通過靶向調(diào)控結(jié)腸組織細(xì)胞,破壞黏蛋白功能,進(jìn)而跨界進(jìn)入人體,并通過這一途徑靶向調(diào)控人源基因。基于此,我們認(rèn)為牛白血病病毒來源的miRNAs具有跨界調(diào)控人源基因的風(fēng)險(xiǎn)。
外源性牛白血病病毒 miRNA可能跨界調(diào)控細(xì)胞周期、信號轉(zhuǎn)導(dǎo)、結(jié)構(gòu)/骨架、增殖、凋亡、分化、遷移/侵襲相關(guān)等細(xì)胞功能相關(guān)基因,破壞細(xì)胞結(jié)構(gòu)。
牛白血病病毒miRNA與人乳腺癌的相關(guān)性可能表現(xiàn)在人乳腺癌細(xì)胞的分化、遷移和侵襲過程中;而BLV-miR-B4-3p本身與白血病相關(guān)miR 29a共享同一種子區(qū)域,可能對人急性淋巴細(xì)胞白血病的發(fā)生發(fā)展造成影響。
外源性牛白血病病毒 miRNA具有靶向抑制黏蛋白基因(MUC5B、MUC12、MUC16)表達(dá),通過破壞腸黏膜形成這一途徑,跨界調(diào)控人源基因的風(fēng)險(xiǎn)。
[1] GILLET N, FLORINS A, BURTEAU C, NIGRO A, VANDERMEERS F, BALON H, BOUZAR A, DEFOICHE J, BURNY A, REICHERT M, KETTMANN R, WILLEMS L. Mechanisms of leukemogenesis induced by bovine leukemia virus: Prospects for novel anti-retroviral therapies in human. Retrovirology, 2007, 4: 18.
[2] 楊奕. 牛白血病病毒分子流行病學(xué)調(diào)查及其致病性的研究[D]. 揚(yáng)州:揚(yáng)州大學(xué), 2018.
YANG Y. Molecular epidemiological investigation and pathogenicity of bovine leukemia virus[D]. Yangzhou: Yangzhou University, 2018. (in Chinese)
[3] OTT S, JOHNSON R, WELLS S. Association between Bovine- Leukosis virus seroprevalence and herd-level productivity on US dairy farms. Preventive Veterinary Medicine, 2003, 61(4): 249-262.
[4] ERSKINE R, BARLETT P C, BYREM T M, RENDER C L, FEBVAY C, HOUSEMAN J T. Association between bovine leukemia virus, production, and population age in Michigan dairy herds. Journal of Dairy Science, 2012, 95: 727-734.
[5] FRIE M, SPORER K, WALLACE J, MAES R, SORDILLO L, BARTLETT P, COUSSENS P. Reduced humoral immunity and atypical cell-mediated immunity in response to vaccination in cows naturally infected with bovine leukemia virus. Veterinary Immunology and Immunopathology, 2016, 182: 125-135.
[6] MCCLURE H M, KEELING M E, CUSTER R P, MARSHAK R R, ABT D A, FERRER J F. Erythroleukemia in two infant chimpanzees fed milk from cows naturally infected with the bovine C-type virus. Cancer Research, 1974, 34(10): 2745-2757.
[7] MARTINEZ C L, PAMELA L, NIETO F M, DOLCINI G L, CERIANI C. Can bovine leukemia virus be related to human breast cancer? A review of the evidence. Journal of Mammary Gland Biology and Neoplasia, 2018, 23(3): 101-107.
[8] BUEHRING G C, DELANEY A, SHEN H, et al. Bovine leukemia virus discovered in human blood. BMC Infectious Diseases, 2019, 19(1): 297.
[9] KINCAID R P, BURKE J M, SULLIVAN C S, CHU D L C, RAZAVIAN N, SCHWARTZ D A, DEMKOVICH Z R, BATES M N. RNA virus microRNA that mimics a B-cell oncomiR. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(8): 3077-3082.
[10] NICOLAS R, MéLANIE M, KEITH D, HARUKO T, FLORIAN C, YVETTE C, CéLINE V, FRANCK M, ERIC W, ARSèNE B, MICHEL G, ANNE V. Deep sequencing reveals abundant noncanonical retroviral microRNAs in B-cell leukemia/lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(6): 2306-2311.
[11] MOULES V, POMIER C, SIBON D, GABET A S, REICHERT M, KERKHOFS P, WILLEMS L, MORTREUX F, WATTEL E. Fate of premalignant clones during the asymptomatic phase preceding lymphoid malignancy. Cancer Research, 2005, 65(4): 1234-1243.
[12] MERIMI M, KLENER P, SZYNAL M, CLEUTER Y, KERKHOFS P, BURNY A, MARTIAT P, VAN DEN BROEKE A. Suppression of viral gene expression in bovine leukemia virus-associated B-cell malignancy: interplay of epigenetic modifications leading to chromatin with a repressive histone code. Journal of Virology, 2007, 81(11): 5929-5939.
[13] SAFARI R, HAMAIDIA M, DE BROGNIEZ A, GILLET N, WILLEMS L. Cis-drivers and trans-drivers of bovine leukemia virus oncogenesis. Current Opinion in Virology, 2017, 26: 15-19.
[14] GILLET N A, HAMAIDIA M, DE BROGNIEZ A, GUTIéRREZ G, RENOTTE N, REICHERT M, TRONO K, WILLEMS L. Bovine leukemia virus small noncoding rnas are functional elements that regulate replication and contribute to oncogenesis. PLoS Pathogens, 2016, 12(4): e1005588.
[15] ROSEWICK N, DURKIN K, ARTESI M, MAR?AIS A, HAHAUT V, GRIEBEL P, ARSIC N, AVETTAND-FENOEL V, BURNY A, CHARLIER C, HERMINE O, GEORGES M, VAN DEN BROEKE A. Cis-perturbation of cancer drivers by the HTLV-1/BLV proviruses is an early determinant of leukemogenesis. Nature Communications, 2017, 8(1): 15264.
[16] ZHANG L, HOU D, LI D, ZHU L Y, ZHANG Y J, LI J, BIAN Z, LIANG X Y, CAI X, YIN Y, WANG C, ZHANG T F, ZHU D H, ZHANG D M, XU J, CHEN Q, BA Y, LIU J, ZHANG C Y. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Research, 2011, 22: 107-126.
[17] IZUMI H, TSUDA M, SATO Y, KOSAKA N, OCHIYA T, IWAMOTO H, NAMBA K, TAKEDA Y. Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. Journal of Dairy Science, 2015, 98(5): 2920-2933.
[18] REHMSMEIER M, STEFFEN P, HOCHSMANN M, GIEGERICH R. Fast and effective prediction of microRNA/target duplexes. RNA -A Publication of The RNA Society, 2004, 10(10): 1507-1517.
[19] MUKHERJEE R, MAJUMDER P, CHAKRABARTI O. MGRN1- mediated ubiquitination of alpha-tubulin regulates microtubule dynamics and intracellular transport. Traffic, 2017, 18(12): 791-807.
[20] XIAO X H, LV L C, DUAN J, WU Y M, HE S J, HU Z Z, XIONG L X. Regulating Cdc42 and its signaling pathways in cancer: Small molecules and microrna as new treatment candidates. Molecules, 2018, 23(4): 787.
[21] FeLBERBAUM-CORTI M, MOREL E, CAVALLI V, VILBOIS F, GRUENBERG J. The redox sensor TXNL1 plays a regulatory role in fluid phase endocytosis. PLoS ONE, 2007, 2(11): e1144.
[22] LIU Z, ZHENG Y. A requirement for epsin in mitotic membrane and spindle organization. Journal of Cell Biology, 2009, 186(4): 473-480.
[23] DORNIER E, COUMAILLEAU F, OTTAVI J F, et al. TspanC8 tetraspanins regulate ADAM10 / Kuzbanian trafficking and promote Notch activation in flies and mammals. Journal of Cell Biology, 2012, 199(3): 481-496.
[24] QUINTERO O A, DIVITO M M, ADIKES R C, KORTAN M B, CASE L B, LIER A J, PANARETOS N S, SLATER S Q, RENGARAJAN M, FELIU M, CHENEY R E. Human Myo19 is a novel myosin that associates with mitochondria. Current Biology, 2009, 19(23): 2008-2013.
[25] SHRIVER M, STROKA K M, VITOLO M I, MARTIN S, HUSO D L, KONSTANTOPOULOS K, KONTROGIANNI-KONSTANTOPOULOS A. Loss of giant obscurins from breast epithelium promotes epithelial- to-mesenchymal transition, tumorigenicity and metastasis. Oncogene, 2015, 34(32): 4248-4259.
[26] JANG S I, KALININ A, TAKAHASHI K, MAREKOV L N, STEINERT P M. Characterization of human epiplakin: RNAi-mediated epiplakin depletion leads to the disruption of keratin and vimentin IF networks. Journal of Cell Science, 2005, 118(Pt 4): 781-793.
[27] JUNG J, KIM J, ROH S H, JUN I, SAMPSON R D, GEE H Y, CHOI J Y, LEE M G. The HSP70 co-chaperone DNAJC14 targets misfolded pendrin for unconventional protein secretion. Nature Communications, 2016, 7: 11386.
[28] AU F K, JIA Y, JIANG K, GRIGORIEV I, HAU B K, SHEN Y, DU S, AKHMANOVA A, QI R Z. GAS2L1 Is a centriole-associated protein required for centrosome dynamics and disjunction. Developmental Cell, 2017, 40(1): 81-94.
[29] BRANCOLINI C, BOTTEGA S, SCHNEIDER C. Gas2, a growth arrest-specific protein, is a component of the microfilament network system. Journal of Cell Biology, 1992, 117(6): 1251-1261.
[30] FU X, FAN X, HU J, ZOU H, CHEN Z, LIU Q, NI B, TAN X, SU Q, WANG J, WANG L, WANG J. Overexpression of MSK1 is associated with tumor aggressiveness and poor prognosis in colorectal cancer. Digestive and Liver Disease, 2017, 49(6): 683-691.
[31] ZHANG M, HUANG N, YANG X, LUO J, YAN S, XIAO F, CHEN W, GAO X, ZHAO K, ZHOU H, LI Z, MING L, XIE B, ZHANG N. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene, 2018, 37(13): 1805-1814.
[32] LIU F, LIU X, XU Z, YUAN P, ZHOU Q, JIN J, YAN X, XU Z, CAO Q, YU J, CHENG Y, WAN R, HONG K. Molecular mechanisms of Ellisvan Creveld gene variations in ventricular septal defect. Molecular Medicine Reports, 2018, 17(1): 1527-1536.
[33] WANG Z, LUO H, FANG Z, FAN Y, LIU X, ZHANG Y, RUI S, CHEN Y, HONG L, GAO J, ZHANG M. MiR-204 acts as a potential therapeutic target in acute myeloid leukemia by increasing BIRC6-mediated apoptosis. BMB Reports, 2018, 51(9): 444-449.
[34] MCCLURE H M, KEELING M E, CUSTER R P, MARSHAK R R, ABT D A, FERRER J F. Erythroleukemia in two infant chimpanzees fed milk from cows naturally infected with the bovine C-type virus. Cancer Research, 1974, 34(10): 2745-2757.
[35] BEDAL K B, GRASSEL S, SPANIER G, REICHERT T E, BAUER R J. The NC11 domain of human collagen XVI induces vasculogenic mimicry in oral squamous cell carcinoma cells. Carcinogenesis, 2015, 36(11): 1429-1439.
[36] XIONG W, DENG Z, TANG Y, DENG Z, LI M. Downregulation of KMT2D suppresses proliferation and induces apoptosis of gastric cancer. Biochemical and Biophysical Research Communications, 2018, 504(1): 129-136.
[37] FB U B, CAU L, TAFAZZOLI A, MECHIN M C, WOLF S, ROMANO M T, VALENTIN F, WIEGMANN H, HUCHENQ A, KANDIL R, et al. Mutations in three genes encoding proteins involved in hair shaft formation cause uncombable hair syndrome. American Journal of Human Genetics, 2016, 99(6): 1292-1304.
[38] AO R, GUAN L, WANG Y, WANG J N. Silencing of COL1A2, COL6A3, and THBS2 inhibits gastric cancer cell proliferation, migration, and invasion while promoting apoptosis through the PI3k-Akt signaling pathway. Journal of Cellular Biochemistry, 2018, 119(6): 4420-4434.
[39] ROHN J L, PATEL J V, NEUMANN B, BULKESCHER J, MCHEDLISHVILI N, MCMULLAN R C, QUINTERO O A, ELLENBERG J, BAUM B. Myo19 ensures symmetric partitioning of mitochondria and coupling of mitochondrial segregation to cell division. Current Biology, 2014, 24(21): 2598-2605.
[40] GAWRZAK S, RINALDI L, GREGORIO S, ARENAS E J, SALVADOR F, UROSEVIC J, FIGUERAS-PUIG C, ROJO F, DEL BARCO BARRANTES I, CEJALVO J M, et al. MSK1 regulates luminal cell differentiation and metastatic dormancy in ER(+) breast cancer. Nature Cell Biology, 2018, 20(2): 211-221.
[41] LEONTOVICH A A, JALALIRAD M, SALISBURY J L, MILLS L, HADDOX C, SCHROEDER M, TUMA A, GUICCIARDI M E, ZAMMATARO L, GAMBINO M W, et al. NOTCH3 expression is linked to breast cancer seeding and distant metastasis. Breast Cancer Reserach, 2018, 20(1): 105.
[42] EL SHAMIEH S, SALEH F, MOUSSA S, KATTAN J, FARHAT F. RICTOR gene amplification is correlated with metastasis and therapeutic resistance in triple-negative breast cancer. Pharmacogenomics, 2018, 19(9): 757-760.
[43] BROCKSCHMIDT A, TROST D, PETERZIEL H, ZIMMERMANN K, EHRLER M, GRASSMANN H, PFENNING P N, WAHA A, WOHLLEBER D, BROCKSCHMIDT F F, et al. KIAA1797/FOCAD encodes a novel focal adhesion protein with tumour suppressor function in gliomas. Brain, 2012, 135(Pt 4): 1027-1041.
[44] NGUYEN T T, PARK W S, PARK B O, KIM C Y, OH Y, KIM J M, CHOI H, KYUNG T, KIM C H, LEE G, et al. PLEKHG3 enhances polarized cell migration by activating actin filaments at the cell front. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(36): 10091-10096.
[45] RATZINGER S, EBLE J A, PASOLDT A, OPOLKA A, ROGLER G, GRIFKA J, GRASSEL S. Collagen XVI induces formation of focal contacts on intestinal myofibroblasts isolated from the normal and inflamed intestinal tract. Matrix Biology, 2010, 29(3): 177-193.
[46] DERYUGINA E I, ZAJAC E, ZILBERBERG L, MURAMATSU T, JOSHI G, DABOVIC B, RIFKIN D, QUIGLEY J P. LTBP3 promotes early metastatic events during cancer cell dissemination. Oncogene, 2018, 37(14): 1815-1829.
[47] ZHU C, YANG Q, XU J, ZHAO W, ZHANG Z, XU D, ZHANG Y, ZHAO E, ZHAO G. Somatic mutation of DNAH genes implicated higher chemotherapy response rate in gastric adenocarcinoma patients. Journal of Translational Medicine, 2019, 17(1): 109.
[48] MIYOSHI N, ISHII H, MIMORI K, TANAKA F, NAGAI K, UEMURA M, SEKIMOTO M, DOKI Y, MORI M. ATP11A is a novel predictive marker for metachronous metastasis of colorectal cancer. Oncology Reports, 2010, 23(2): 505-510.
[49] ZHANG Z, FANG C, WANG Y, ZHANG J, YU J, ZHANG Y, WANG X, ZHONG J. COL1A1: A potential therapeutic target for colorectal cancer expressing wild-type or mutant KRAS. International Journal of Oncology, 2018, 53(5): 1869-1880.
[50] CHOPRA A, SONI S, VERMA D, KUMAR D, DWIVEDI R, VISHWANATHAN A, VISHWAKAMA G, BAKHSHI S, SETH R, GOGIA A, KUMAR L, KUMAR R. Prevalence of common fusion transcripts in acute lymphoblastic leukemia: A report of 304 cases. Asia-Pacific Journal of Clinical Oncology, 2015, 11(4): 293-298.
[51] SCHMIDT K M, DIETRICH P, HACKL C, GUENZLE J, BRONSERT P, WAGNER C, FICHTNER-FEIGL S, SCHLITT H J, GEISSLER E K, HELLERBRAND C, LANG S A. Inhibition of mTORC2/RICTOR impairs melanoma hepatic metastasis. Neoplasia, 2018, 20(12): 1198-1208.
[52] ROHINI M, HARITHA MENON A, SELVAMURUGAN N. Role of activating transcription factor 3 and its interacting proteins under physiological and pathological conditions. International Journal of Biological Macromolecules, 2018, 120(Pt A): 310-317.
[53] URSIN G, BJELKE E, HEUCH I, VOLLSET S E. Milk consumption and cancer incidence: a Norwegian prospective study. British Journal of Cancer, 1990, 61(3): 454-459.
[54] SANTANAM U, ZANESI N, EFANOV A, COSTINEAN S, PALAMARCHUK A, HAGAN J P, VOLINIA S, ALDER H, RASSENTI L, KIPPS T, CROCE C M, PEKARSKY Y. Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(27): 12210-12215.
[55] BJORKMAN K, MUSTONEN H, KAPRIO T, HAGLUND C, BOCKELMAN C. Mucin 16 and kallikrein 13 as potential prognostic factors in colon cancer: Results of an oncological 92-multiplex immunoassay. Tumour Biology, 2019, 41(7): 1010428319860728.
Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes
WANG Yong, LI SiYan, HE SiRui, ZHANG Di, LIAN Shuai, WANG JianFa, WU Rui
College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, Heilongjiang
【】To assess risk of regulation of human-derived genes by miRNAs derived from bovine leukemia virus (BLV), the prospective research on the possible food safety problems and the possible impact on human health caused by BLV-miRNA were carried out, which would lay the foundation for the necessary research on the implementation of Enzootic Bovine Leukosis (EBL) prevention and control measures in actual production in the future, and provide theoretical guidance for the study of the relationship between BLV and human diseases.【】In this study, the mature sequence of BLV miRNAs was first queried using mirbase website, and the miRanda software was used to predict target genes. The predictive 10 miRNAs (BLV-miR-B1-3P,5P, BLV-miR-B2-3P, 5P, BLV-miR-B3-3P,5P, BLV-miR-B4-3P,5P, and BLV-miR-B5-3P,5P) were encoded by BLV. The top 10 candidate target genes of each BLV-miRNA score were selected for functional analysis, including a total of 88 duplicated genes. The candidate target genes co-regulated by multiple BLV miRNAs were verified by secondary prediction using RNAhybrid software, and their functions were analyzed. 【】The ten miRNAs encoded by BLV were predicted to obtain 1 630-16 383 target genes, respectively. After functional analysis of eighty-eight candidate target genes in the top ten, it was found that eighteen of them had no relevant functional reports. Thirty-six candidate target genes were related to the occurrence and development of neoplastic diseases. Two candidate target genes could regulate cell cycle. Sixteen candidate target genes were involved in the regulation of cell signal transduction. Fourteen candidate target genes played a role in the formation of structure/cytoskeleton proteins. The function of cell proliferation and apoptosis showed an antagonistic relationship and the genes that often promoting proliferation could also suppress apoptosis. A total of thirteen genes played a regulatory role in cell proliferation and apoptosis. Interestingly, the regulation of the thirteen candidate target genes on cell proliferation and apoptosis was bidirectional. However, it was not clear whether the regulation of BLV miRNA towards cells was more prone to proliferation or apoptosis, so further studies were still needed to discuss in depth. Two candidate target genes could regulate cell differentiation. The sixteen candidate target genes played a role in regulating cell migration/invasion function, again suggesting that BLV miRNA might have a more important correlation with neoplastic diseases. The seven candidate target genes might play an important role in the differentiation, migration and invasion of breast cells, suggesting that the study on the correlation between BLV and human breast cancer could be further discussed from the perspective of BLV miRNA. Two candidate target genotypes of BLV-B4-3P, Collagen 1 chain gene (COL1A1), had a regulatory effect on human acute lymphoblastic leukemia (ALL). In addition, candidate target genes that could be co-targeted by multiple BLV miRNAs belong to the mucin family (MUC5B, MUC12 and MUC16), and be expressed in the colon, influencing the formation of colon mucosa.【】Exogenous BLV miRNA might transboundary regulate cell cycle signal transduction structure/cytoskeleton proliferation apoptosis differentiation migration/invasion related cell function related genes and destroy cell structure. The correlation between BLV miRNA and human breast cancer might be shown in the process of differentiation, migration and invasion of human breast cancer cells. BLV-miR-B4-3p shared a seed sequence with miR 29a, which might affect the occurrence and development of human acute lymphoblastic leukemia. Exogenous BLV miRNA had the target of inhibiting the expression of mucin genes, such as MUC5B, MUC12, and MUC16, through the destruction of intestinal mucosa formation to achieve transboundary regulation of human gene risk.
bioinformatics; bovine leukemia virus; transboundary regulation; human-derived genes; miRNA
10.3864/j.issn.0578-1752.2021.03.019
2020-02-23;
2020-07-29
國家自然科學(xué)基金(2041340046)、黑龍江省自然科學(xué)基金(YQ2019C014)、研究生創(chuàng)新科研項(xiàng)目(YJSCX2019-Y39)
王雍,Tel:13251599676;E-mail:bywy0209@126.com。通信作者武瑞,Tel:13836961026;E-mail:fuhewu@126.com
(責(zé)任編輯 林鑒非)