馬麗娜 馬丹 許欣竹 王藝璇 劉文俊 段志園 單德紅
【摘要】 目的:圍繞肝細(xì)胞線粒體的形態(tài)、產(chǎn)能和線粒體未折疊蛋白反應(yīng)(mitochondrial unfolded protein response,UPRmt),研究半夏瀉心湯治療2型糖尿病的可能機(jī)制。方法:選取若干只SPF級(jí)雄性SD大鼠,適應(yīng)性喂養(yǎng)1周后,隨機(jī)選取8只為正常組給予普通飼料喂養(yǎng),其余給予高脂高糖飼料喂養(yǎng)4周后,腹腔注射鏈脲佐菌素(STZ)誘導(dǎo)T2DM模型;將造模成功的大鼠24只,隨機(jī)分為模型組、半夏瀉心湯組(中藥組)、二甲雙胍(MET)組,每組8只。采用血糖儀檢測空腹血糖(fasting plasma glucose,F(xiàn)PG);比色法和分光光度計(jì)法測定肝組織ATP和反應(yīng)性氧簇(reactive oxygen spieces,ROS)含量;透射電鏡觀察肝細(xì)胞線粒體超微結(jié)構(gòu);Western blot法檢測UPRmt相關(guān)蛋白表達(dá)。結(jié)果:模型組、MET組和中藥組的體質(zhì)量均低于正常組,F(xiàn)PG均高于正常組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。MET組和中藥組的FPG均低于模型組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。模型組和MET組的ATP均低于正常組,且中藥組高于模型組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。模型組和中藥組的ROS均高于正常組,但MET組和中藥組均低于模型組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。模型組線粒體腫脹,電子密度下降;MET組和中藥組線粒體形態(tài)基本正常,但也有電子密度下降情況。中藥組LonP表達(dá)高于正常組、模型組和MET組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。模型組ClpX表達(dá)低于正常組,MET組、中藥組均高于模型組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。模型組ClpP表達(dá)低于正常組,MET組、中藥組均高于模型組,且中藥組高于MET組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。結(jié)論:T2DM發(fā)生時(shí)肝細(xì)胞UPRmt損傷,而半夏瀉心湯可能通過提升UPRmt而保護(hù)肝細(xì)胞線粒體,從而有效干預(yù)2型糖尿病。
【關(guān)鍵詞】 2型糖尿病 肝細(xì)胞 線粒體未折疊蛋白反應(yīng) 半夏瀉心湯 二甲雙胍
Effects of Banxia Xiexin Decoction on Mitochondrial Unfolded Protein Response of Liver Cells in Type 2 Diabetes Mellitus Mode Rats/MA Li’na, MA Dan, XU Xinzhu, WANG Yixuan, LIU Wenjun, DUAN Zhiyuan, SHAN Dehong. //Medical Innovation of China, 2021, 18(32): 00-006
[Abstract] Objective: To study the possible mechanim of Banxia Xiexin Decoction treating type 2 diabetes mellitus (T2DM) based on mitochondrial morphology, generating energy and mitochondrial unfolded protein response (UPRmt) in liver cells. Method: A number of SPF male SD rats were selected, after 1 week of adaptive feeding, 8 rats were randomly selected to be fed with normal diet, and the rest were fed with high fat and high sugar diet for 4 weeks, then Streptozotocin (STZ) was intraperitoneally injected to induce T2DM model. 24 rats were randomly divided into model group, Banxia Xiexin Decoction group (Chinese medicine group) and Metformin (MET) group, with 8 rats in each group. Glucomere was used to detect rat fasting plasma glucose (FPG); colorimetry and photometer were employed to measure ATP and reactive oxygen spieces (ROS) levels respectively; transmission electron microscopy was applied to observe mitochondrial ultrastructures in liver cells; Western blot was chosen to detect expressions of proteins related UPRmt. Result: Body mass of the model group, MET group and Chinese medicine group were lower than that of the normal group; FPG of the model group, MET group and Chinese medicine group were higher than that of the normal group, the differences were statistically significant (P<0.05). The FPG of the MET group and Chinese medicine group were lower than that of the model group, the differences were statistically significant (P<0.05). ATP of the model group and MET group were lower than that of the normal group, but that of the Chinese medicine group was higher than that of the model group, the differences were statistically significant (P<0.05). ROS of the model group and Chinese medicine group were higher than that of the normal group, but MET of the model group and Chinese medicine group were lower than that of the model group, the differences were statistically significant (P<0.05). Mitochondrial swelling and electron density decreased in model group. The morphology of mitochondria in the MET group and Chinese medicine group were basically normal, but electron density also decreased. LonP expression of the Chinese medicine group was higher than those of the normal group, the model group and the MET group, the differences were statistically significant (P<0.05). The expression of ClpX of the model group was lower than that of the normal group, while those of the MET group and the Chinese medicine group were higher than that of the model group, the differences were statistically significant (P<0.05). The expression of ClpP of the model group was lower than that of the normal group, but those of the MET group and Chinese medicine group were higher than that of the model group, and Chinese medicine group was higher than that of the MET group, the differences were statistically significant (P<0.05). Conclusion: UPRmt is damaged in T2DM liver cells, and Banxia Xiexin decoction might protect liver cell mitochondria via enhancing UPRmt to treat T2DM effectively.
[Key words] Type 2 diabetes mellitus Liver cell Mitochondrial unfolded protein response Banxia Xiexin Decoction Metformin
First-author’s address: Integrated Chinese and Western Medicine College of Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
doi:10.3969/j.issn.1674-4985.2021.32.001
近年來,關(guān)于半夏瀉心湯治療2型糖尿病(type 2 diabetes mellitus,T2DM)的報(bào)道較多,但相關(guān)作用機(jī)制尚不清楚[1-4]。T2DM以胰島素不足和/或胰島素抵抗為特征,肝細(xì)胞是胰島素的靶細(xì)胞之一。肝細(xì)胞影響血糖的途徑主要是糖原的合成與分解、糖異生和糖脂轉(zhuǎn)化等,而這些活動(dòng)均為能量依賴式,因此肝細(xì)胞線粒體健康對于血糖穩(wěn)態(tài)極為重要。實(shí)際上,肝細(xì)胞線粒體損傷廣泛參與了T2DM的發(fā)生發(fā)展[5-6]。
線粒體基質(zhì)蛋白眾多,主要由核基因編碼,但部分呼吸鏈復(fù)合體由線粒體基因參與編碼。細(xì)胞內(nèi)存在多種線粒體質(zhì)量控制機(jī)制,其中線粒體內(nèi)的主要是線粒體未折疊蛋白反應(yīng)(mitochondrial unfolded protein response,UPRmt),即錯(cuò)誤折疊或損傷的蛋白可由熱休克蛋白(hot shock protein, HSP)重新折疊修復(fù),而難以修復(fù)的則由Lon蛋白酶(Lon protease, LonP)和ClpXP等分解清除[7-8]。關(guān)于肝細(xì)胞UPRmt在T2DM中變化目前還沒有報(bào)道。本研究主要采用透射電鏡和分生等技術(shù),觀察半夏瀉心湯對T2DM大鼠肝細(xì)胞線粒體超微結(jié)構(gòu)和產(chǎn)能等影響,進(jìn)而從UPRmt方面探討其可能的作用機(jī)制。
1 材料與方法
1.1 實(shí)驗(yàn)動(dòng)物 SPF級(jí)雄性SD大鼠,平均體質(zhì)量(200±10)g,購于遼寧省本溪市實(shí)驗(yàn)動(dòng)物中心,許可證號(hào):SCXK(遼)-2010-0001,于本校實(shí)驗(yàn)動(dòng)物中心[許可證號(hào):SYXK(遼)-2013-000-9]適應(yīng)性飼養(yǎng)1周后開始實(shí)驗(yàn)。飼養(yǎng)條件:(24±2)℃;光照周期12 h/12 h;相對濕度45%~55%;自由進(jìn)食水。
1.2 主要藥物、試劑、抗體及儀器 (1)主要藥物。半夏瀉心湯(法半夏12 g、黃芩9 g、干姜9 g、人參9 g、酒黃連3 g、大棗4枚、炙甘草9 g)購自本校第一附院藥房,常規(guī)水煎煮、過濾、濃縮(生藥1 g/mL)和冷藏;鏈脲佐菌素[Streptozocin(STZ),購自Gentihold,批號(hào):S0130];鹽酸二甲雙胍(Metformin,MET)片(生產(chǎn)廠家:中美上海施貴寶制藥有限公司,批準(zhǔn)文號(hào):國藥準(zhǔn)字H20023370,規(guī)格:0.5 g/片)。(2)主要試劑??偟鞍滋崛≡噭┖匈徲诒本┤浇鹕锛夹g(shù)有限公司(批號(hào):K21128);BCA法蛋白含量測定試劑盒購于北京索萊寶科技有限公司(批號(hào):PC0020);ATP含量測定試劑盒和EasySee Western Blot發(fā)光液均購于北京全式金生物技術(shù)有限公司(批號(hào):K20103、10419);過氧化氫(H2O2)含量檢測試劑盒購自索萊寶生化試劑盒事業(yè)部(批號(hào):BC3595);蛋白Marker來自上海碧云天生物技術(shù)有限公司(批號(hào):P0079)。(3)主要抗體。HSP70抗體、LonP和ClpP多克隆抗體、actin、山羊抗兔二抗和山羊抗鼠二抗均購于Proteintech(批號(hào):00055287、00022581、00023008、10004156、20000174、20000002);ClpX多克隆抗體購自武漢博士德生物工程有限公司(批號(hào):0001812Day77812)。(4)主要儀器。透射電鏡,日本電子(型號(hào):JEM-1011);高速冷凍離心機(jī),美國ThermoSientific(型號(hào):ST-16R);電泳儀和轉(zhuǎn)膜儀,均購自美國Bio-Rad公司(型號(hào):042BR14173;690BR024666);顯影儀,上海天能科技有限公司(型號(hào):Tanon5200);血糖儀,中國魚躍公司(YUWELL)。
1.3 大鼠T2DM模型復(fù)制和分組 所有大鼠適應(yīng)性喂養(yǎng)1周后,隨機(jī)選取8只為正常組給予普通飼料喂養(yǎng),其余給予4周高脂高糖大鼠飼料(生產(chǎn)廠家:沈陽茂華生物技術(shù)有限公司:20%果糖、12%豬油、5%脫脂奶粉、2%雞蛋黃和61%普通飼料),禁食水12 h后腹腔內(nèi)注射STZ溶液,45 mg/kg;STZ溶于pH值4.4的0.1 M枸櫞酸緩沖鹽溶液,10 min內(nèi)注射完成,之后繼續(xù)喂飼高脂高糖飼料,72 h后測定空腹尾靜脈血糖(fasting plasma glucose,F(xiàn)PG),當(dāng)其≥16.7 mmol/L或連續(xù)3 d≥11.1 mmol/L為造模成功。將造模成功大鼠隨機(jī)分為模型組、MET組(MET組)和半夏瀉心湯組(中藥組),每組8只。
1.4 治療方法 正常組施加灌胃動(dòng)作,模型組灌服2 mL鹽水,MET組灌服鹽酸二甲雙胍(溶于蒸餾水中,現(xiàn)用現(xiàn)配)0.3 g/kg,中藥組灌胃半夏瀉心湯(用前恢復(fù)到室溫,按成人用藥量折算為大鼠用量)0.85 g/kg,1次/d。治療連續(xù)8周,其中每日8時(shí)各組大鼠稱重后更新給藥量,同時(shí)密切觀察大鼠的精神狀態(tài)、毛色、飲食和二便等變化。
1.5 肝細(xì)胞線粒體超微結(jié)構(gòu)觀察 按文獻(xiàn)[9-10]方法,各組大鼠腹腔注射10%水合氯醛(0.35 mL/
100 g)麻醉,開腹取肝組織,4 ℃下切成約1 mm3小塊,2.5%戊二醛固定,PBS漂洗,1%鋨酸固定,乙醇、丙酮梯度脫水,環(huán)氧樹脂包埋聚合,3%醋酸鈾-枸櫞酸鉛雙染,鏡下選擇線粒體豐富處觀察并拍片。
1.6 肝組織ATP和H2O2水平檢測 分別采用比色法和分光光度計(jì)法檢測。按上法取肝組織,制備組織勻漿,分別檢測各組ATP和H2O2(代表反應(yīng)性氧簇,reactive oxygen spieces,ROS)水平,嚴(yán)格按照說明書操作。
1.7 蛋白表達(dá) 采用Western blot(WB)法。按文獻(xiàn)[11-13]所載方法,取50 mg肝組織,鹽水洗凈后置于無菌EP管內(nèi),每管加入300 μL裂解液,靜置30 min,冰上充分研磨,吸取溶液后4 ℃下
14 000×g離心10 min,取上清液;BCA法測定蛋白濃度;每管加入2×SDS-PAGE蛋白上樣緩沖液,100 ℃變性;各組取相同質(zhì)量總蛋白上樣量50 μg計(jì)算上樣體積,進(jìn)行SDS-PAGE凝膠電泳,電泳結(jié)束后轉(zhuǎn)移至PVDF膜(25 V,1.0 A,30 min);根據(jù)Marker提示分子量切膜,以5%脫脂奶粉封閉后,加入HSP70、LonP、ClpX、ClpP與actin各5 mL,4 ℃搖床過夜;TBST洗膜,前4個(gè)加入5 mL HRP標(biāo)記山羊抗兔二抗,后者5 mL HRP記山羊抗鼠二抗,室溫孵育2 h;TBST洗膜;滴加ECL發(fā)光液,曝光顯影后,應(yīng)用AlphaView SA軟件分析蛋白的相對表達(dá)量。
1.8 統(tǒng)計(jì)學(xué)處理 采用SPSS 20.0軟件對所得數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,計(jì)量資料用(x±s)表示,比較采用t檢驗(yàn);計(jì)數(shù)資料以率(%)表示,比較采用字2檢驗(yàn)。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 造模成功情況 正常組大鼠毛色潤澤,反應(yīng)靈敏,無死亡和脫失。造模過程中,模型組大鼠的毛色逐漸晦暗無光澤,反應(yīng)遲鈍,出現(xiàn)多飲、多食和二便增加等,且墊料潮濕,味道加重。
2.2 四組治療后體質(zhì)量、FPG、肝組織ATP和ROS水平變化 模型組、MET組和中藥組的體質(zhì)量均低于正常組,F(xiàn)PG均高于正常組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。MET組和中藥組的FPG均低于模型組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。模型組和MET組的ATP均低于正常組,且中藥組高于模型組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。模型組和中藥組的ROS均高于正常組,但MET組和中藥組均低于模型組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。見表1。
2.3 四組肝細(xì)胞線粒體超微結(jié)構(gòu)變化 細(xì)胞核附近可見多個(gè)線粒體,正常組線粒體為圓形,邊緣清楚,內(nèi)部致密,可見片狀嵴;模型組線粒體大小不一,存在腫脹和內(nèi)部電子密度下降現(xiàn)象,嵴不清楚;MET組和中藥組變化相似,線粒體為圓形和桿狀,外膜清楚,嵴為片狀,但也有電子密度下降情況。見圖1。
2.4 肝細(xì)胞UPRmt相關(guān)蛋白表達(dá) 每組選取4只小鼠進(jìn)行測定。正常組、模型組、MET組、中藥組HSP70表達(dá)分別為(0.864±0.042)、(0.698±0.065)、(0.815±0.098)和(0.772±0.087)。正常組、模型組、MET組、中藥組LonP表達(dá)分別為(0.478±0.071)、(0.523±0.034)、(0.461±0.173)和(0.752±0.050)。正常組、模型組、MET組、中藥組ClpX表達(dá)分別為(0.573±0.061)、(0.318±0.069)、(0.731±0.127)和(0.690±0.109)。正常組、模型組、MET組、中藥組ClpP表達(dá)分別為(0.496±0.040)、(0.312±0.096)、(0.544±0.118)和(0.763±0.052)。四組HSP70表達(dá)比較,差異均無統(tǒng)計(jì)學(xué)意義(P>0.05)。中藥組LonP表達(dá)高于正常組、模型組和MET組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。模型組ClpX表達(dá)低于正常組,MET組、中藥組均高于模型組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。模型組ClpP表達(dá)低于正常組,MET組、中藥組均高于模型組,且中藥組高于MET組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。見圖2。
3 討論
T2DM發(fā)生時(shí)肝細(xì)胞線粒體結(jié)構(gòu)與功能損傷多有報(bào)道[14-15]。本研究也觀察到類似現(xiàn)象,如模型組線粒體出現(xiàn)腫脹、峭減少、ATP合成減少和ROS增加等。因?yàn)榫€粒體產(chǎn)能主要源于附著于內(nèi)膜嵴上呼吸鏈的氧化磷酸化反應(yīng),所以上述變化提示呼吸鏈出現(xiàn)損傷。實(shí)際上,在T2DM發(fā)生時(shí),肝細(xì)胞線粒體蛋白損傷較為廣泛,進(jìn)而干擾了β-氧化、三羧酸循環(huán)、氧化磷酸化、抗細(xì)胞凋亡和抗氧化應(yīng)激等眾多反應(yīng),因此肝細(xì)胞線粒體是T2DM治療的重要靶點(diǎn)[16]。
MET是常用降糖藥。體外實(shí)驗(yàn)發(fā)現(xiàn),MET在肝細(xì)胞線粒體內(nèi)的濃度高于胞外約100倍,10~100倍治療劑量的MET能夠抑制線粒體呼吸鏈復(fù)合體Ⅰ活性,從而干擾糖異生,減少肝糖輸出[17-18]。體內(nèi)研究報(bào)道,治療劑量的MET雖然抑制糖異生,卻未影響呼吸鏈復(fù)合體Ⅰ[19]。因此,MET對肝細(xì)胞線粒體的作用還需探討[20]。本研究觀察到,MET能夠降低FPG,在一定程度上恢復(fù)肝細(xì)胞線粒體形態(tài),雖未提升ATP水平,但降低了ROS含量,表明MET能夠減輕肝細(xì)胞線粒體損傷。在此基礎(chǔ)上,本研究圍繞UPRmt探討MET的可能作用機(jī)制。
HSP為分子伴侶,其在線粒體內(nèi)的作用主要是蛋白組裝,并賦予其相應(yīng)功能,也可以對錯(cuò)誤折疊或損傷的蛋白進(jìn)行再折疊。LonP和ClpXP屬于AAA+超家族,前者能夠識(shí)別并降解異常蛋白;后者由ClpX和ClpP組成,其中ClpX可以展開異常蛋白,ClpP負(fù)責(zé)分解[21-22]。本研究結(jié)果顯示,相對于正常組,模型組的HSP70和LonP表達(dá)沒有變化,但ClpXP表達(dá)下降,提示T2DM發(fā)生后,肝細(xì)胞UPRmt下降;與模型組比較,MET組的HSP70和LonP表達(dá)沒有改變,但ClpXP表達(dá)增加,表明MET能夠在一定程度上提升UPRmt,從而維持線粒體蛋白穩(wěn)態(tài)。
與西醫(yī)認(rèn)識(shí)不同,中醫(yī)認(rèn)為糖尿病為虛實(shí)夾雜,治療當(dāng)隨證施為,而調(diào)暢中焦氣機(jī)和溫脾清胃是一條重要思路[23-24]。半夏瀉心湯能夠辛開苦降,宣通三焦氣機(jī),溫而不耗胃陰,寒而不傷脾陽,對T2DM具有較好療效[1-4]。本研究結(jié)果顯示,半夏瀉心湯能夠降低血糖,改善肝細(xì)胞形態(tài),提高ATP水平,減少ROS產(chǎn)生,提示該方能夠較好地改善T2DM大鼠肝細(xì)胞線粒體形態(tài)和產(chǎn)能。而在UPRmt方面,中藥組的HSP70表達(dá)雖與其他三組沒有明顯變化,但LonP和ClpXP等表達(dá)均高于模型組,且LonP和ClpP表達(dá)均高于MET組,提示半夏瀉心湯能更好地啟動(dòng)UPRmt,增強(qiáng)線粒體蛋白質(zhì)控水平,從而維持肝細(xì)胞線粒體蛋白穩(wěn)態(tài)。
綜上所述,本研究認(rèn)為T2DM發(fā)生時(shí)肝細(xì)胞UPRmt損傷,而半夏瀉心湯可能通過提升UPRmt而保護(hù)肝細(xì)胞線粒體,從而有效干預(yù)2型糖尿病。
參考文獻(xiàn)
[1]弓意涵,龐國明.半夏瀉心湯治療糖尿病的理論探討與臨床應(yīng)用[J].中國民間療法,2019,27(21):2-3,14.
[2]賈艷萍,張旭劍.半夏瀉心湯治療空腹血糖受損的臨床療效觀察[J].實(shí)用糖尿病雜志,2020,16(6):49-50.
[3]王晶,汪曉敏,岳仁宋.半夏瀉心湯對2型糖尿?。ㄆ⑷跷笍?qiáng)證)患者細(xì)胞免疫及其腸道菌群的影響[J].時(shí)珍國醫(yī)國藥,2020,31(9):2163-2166.
[4]史麗偉,杜立娟,倪青.半夏瀉心湯治療糖尿病的理論探討與臨床應(yīng)用[J].中醫(yī)雜志,2018,59(3):246-250.
[5] Pinti M V,F(xiàn)ink G K,Hathaway Q A,et al.Mitochondrial dysfunction in type 2 diabetes mellitus:an organ-based analysis[J/OL].Am J Physiol Endocrinol Metab,2019,316(2):E268-E285.
[6] Wada J,Nakatsuka A.Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes[J].Acta Med Okayama,2016,70(3):151-158.
[7] Seli E,Wang T,Horvath T L.Mitochondrial unfolded protein response:a stress response with implications for fertility and reproductive aging[J].Fertil Steril,2019,111(2):197-204.
[8] Melber A,Haynes C M.UPRmt regulation and output: a stress response mediated by mitochondrial-nuclear communication[J].Cell Res,2018,28(3):281-295.
[9]宋飛飛,范英麗,劉文俊,等.脾氣虛大鼠股四頭肌線粒體蛋白質(zhì)控的研究[J].中華中醫(yī)藥學(xué)刊,2019,37(4):915-918.
[10]劉文俊,許欣竹,穆靖洲,等.脾氣虛大鼠海馬神經(jīng)元線粒體自噬水平及PINK1/Parkin途徑的研究[J].中華中醫(yī)藥雜志,2019,34(1):341-343.
[11]許欣竹,李振鈺,劉文俊,等.脾氣虛大鼠胃平滑肌線粒體蛋白質(zhì)控的研究[J].中國醫(yī)藥導(dǎo)報(bào),2019,16(31):10-13.
[12]劉文俊,李振鈺,許欣竹,等.脾氣虛證大鼠股四頭肌線粒體自噬水平及AMPK/ULK1途徑變化的研究[J].北京中醫(yī)藥大學(xué)學(xué)報(bào),2019,42(9):760-765.
[13]戴國英,李振鈺,劉文俊,等.基于海馬神經(jīng)元線粒體自噬探討脾氣虛心神不足的可能機(jī)制[J].中華中醫(yī)藥學(xué)刊,2019,37(11):2636-2638,2825.
[14] Chow J,Rahman J,Achermann J C,et al.Mitochondrial disease and endocrine dysfunction[J].Nat Rev Endocrinol,2017,13(2):92-104.
[15] Kupriyanova Y,Zaharia O P,Bobrov P,et al.Early changes in hepatic energy metabolism and lipid content in recent-onset type 1 and 2 diabetes mellitus[J].J Hepatol,2021,74(5):1028-1037.
[16] Wada J,Nakatsuka A.Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes[J].Acta Med Okayama,2016,70(3):151-158.
[17] Wilcock C,Bailey C J.Accumulation of metformin by tissues of the normal and diabetic mouse[J].Xenobiotica,1994,24(1):49-57.
[18] Logie L,Harthill J,Patel K,et al.Cellular responses to the metal-binding properties of metformin[J].Diabetes,2012,61(6):1423-1433.
[19] Larsen S,Rabl R,Hansen C N,et al.Metformin-treated patients with type 2 diabetes have normal mitochondrial complex Ⅰrespiration[J].Diabetologia,2012,55(2):443-449.
[20] Sliwinska A,Drzewoski J.Molecular action of metformin in hepatocytes:an updated insight[J].Curr Diabetes Rev,2015,11(3):175-181.
[21] WENG H,MA Y,CHEN L,et al.A New Vision of Mitochondrial Unfolded Protein Response to the Sirtuin Family[J].Curr Neuropharmacol,2020,18(7):613-623.
[22] Yi H S,Chang J Y,Shong M.The mitochondrial unfolded protein response and mitohormesis:a perspective on metabolic diseases[J].J Mol Endocrinol,2018,61(3):R91-R105.
[23]劉弘毅,陳爍,馬迪.晚清至民國時(shí)期中醫(yī)對糖尿病的認(rèn)知及思考[J].中國中醫(yī)基礎(chǔ)醫(yī)學(xué)雜志,2020,26(9):1277-1279.
[24]黃晨.基于中醫(yī)脾癉理論探討糖尿病前期[J].中醫(yī)藥臨床雜志,2018,30(3):434-436.
(收稿日期:2021-09-13) (本文編輯:張明瀾)
中國醫(yī)學(xué)創(chuàng)新2021年32期