国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

茉莉素、生長素和表觀遺傳調(diào)控水稻穎花發(fā)育的研究進(jìn)展

2021-03-28 02:57陳睿
福建農(nóng)業(yè)科技 2021年1期
關(guān)鍵詞:生長素水稻

陳睿

摘 要:穎花是水稻的繁殖器官和形成籽粒的基礎(chǔ),其正常發(fā)育直接影響稻谷產(chǎn)量和稻米品質(zhì)。因此,研究水稻穎花發(fā)育的分子調(diào)控機(jī)理,對于水稻發(fā)育的基礎(chǔ)理論研究和農(nóng)業(yè)育種具有重要的意義。近年來的研究結(jié)果表明茉莉素、生長素和表觀遺傳在水稻穎花發(fā)育中具有重要的調(diào)控作用。綜述了茉莉素、生長素和表觀遺傳在調(diào)控水稻穎花的產(chǎn)生和形態(tài)建成等方面的最新研究進(jìn)展,并提出未來研究需要分離更多相關(guān)基因以充實(shí)水稻穎花發(fā)育調(diào)控網(wǎng)絡(luò),促進(jìn)其分子機(jī)制的解析。

關(guān)鍵詞:水稻;穎花;茉莉素;生長素;表觀遺傳

中圖分類號:S 511 文獻(xiàn)標(biāo)志碼:A 文章編號:0253-2301(2021)01-0062-06

DOI:10.13651/j.cnki.fjnykj.2021.01.011

Abstract:The floret are the reproductive organs of rice and the basis of grain formation, and their normal development directly affects the yield and quality of rice. Therefore, it is of great significance to study the molecular regulation mechanism of rice floret development for the basic theoretical research of rice development and agricultural breeding. The research results in recent years have shown that jasmonates, auxin and epigenetics have important regulating effect in rice floret development. In this paper, the recent research progress in the regulation of jasmonates, auxin and epigenetics on the production of rice floret and their morphogenesis were reviewed, and it was suggested that more related genes should be isolated in further studies, thus to enrich the regulatory network of rice floret development and promote the analysis of their molecular mechanisms.Key words:Rice; Floret; Jasmonates; Auxin; Epigenetics

水稻Oryza sativa L.是世界重要的糧食作物之一。穎花是水稻花序的基本結(jié)構(gòu)單位[1],由1個(gè)穎花軸、2個(gè)退化穎片(副護(hù)穎)、2個(gè)不育外稃(護(hù)穎)和1朵小花組成[2-4]。小花從外向內(nèi)依次為內(nèi)外稃(內(nèi)外穎)、漿片、雄蕊和雌蕊;內(nèi)外稃包被漿片、雄蕊和雌蕊,共同成為水稻成熟谷粒中的谷殼[5-6]。因此,水稻穎花不僅是繁殖器官,而且是形成籽粒的基礎(chǔ),其正常發(fā)育直接影響稻谷產(chǎn)量和稻米品質(zhì),探明水稻穎花發(fā)育的分子調(diào)控機(jī)理具有重要的理論與實(shí)際意義[7-8]。

越來越多的證據(jù)表明水稻穎花發(fā)育是眾多基因參與的復(fù)雜而又精細(xì)的生物學(xué)過程,其與雙子葉擬南芥在花器官形態(tài)建成過程中既保守又獨(dú)特[9-12]。水稻穎花具有禾本科特有的器官穎殼,即退化穎片、不育外稃和內(nèi)外稃。近年來,研究結(jié)果表明水稻漿片同源于花瓣,與雄雌蕊構(gòu)成水稻的內(nèi)輪花器官;內(nèi)稃可能與花萼同源;退化穎片、不育外稃和外稃可能是苞葉的同源器官。水稻中已克隆多個(gè)與擬南芥功能相似的花同源異型

MADS-box基因,建成了調(diào)控水稻穎花屬性的ABCDE模型。除了MADS-box家族基因外,研究還發(fā)現(xiàn)茉莉素、生長素和表觀遺傳對水稻穎花發(fā)育具有重要的調(diào)控作用。本文綜述了茉莉素、生長素和表觀遺傳對水稻穎花調(diào)控的最新研究進(jìn)展,以期為水稻穎花發(fā)育的分子機(jī)理研究提供科學(xué)參考。

1 茉莉素調(diào)控水稻的穎花發(fā)育

茉莉素指茉莉酸(JA)和茉莉酸甲酯(MeJA)、12氧代植物二烯酸(OPDA)等環(huán)戊酮的衍生物[13]。已克隆的茉莉素合成及轉(zhuǎn)導(dǎo)的相關(guān)基因EG1[14]、EG2/OsJAZ1[14]、DFO2[15-16]、OsOPR7[16]和OsMYC2[17]在穎花早期發(fā)育中發(fā)揮著重要的作用。

EG1屬于磷脂酶A1家族Ⅰ類,同源于擬南芥DAD1和DGL基因,是JA生物合成途徑在葉綠體內(nèi)的重要酶;EG2/OsJAZ1是JA信號抑制因子。兩基因單突變均導(dǎo)致不育外稃伸長,額外穎片狀結(jié)構(gòu)產(chǎn)生;內(nèi)稃邊緣區(qū)缺失,主體結(jié)構(gòu)具有5個(gè)維管束等外稃特征;漿片向穎片-漿片鑲嵌結(jié)構(gòu)轉(zhuǎn)化;雄雌蕊數(shù)目減少。雙突變穎花產(chǎn)生更多的額外穎片狀結(jié)構(gòu),花器官喪失特性轉(zhuǎn)化為穎片狀或雙生花穗狀結(jié)構(gòu)。EG1和EG2/OsJAZ1基因單雙突穎花的異常表明水稻花分生組織決定性和花器官的特性,首次證實(shí)JA在水稻穎花發(fā)育的重要作用。JA通過OsCO1b介導(dǎo)的蛋白酶體途徑促進(jìn)OsJAZ1降解。OsJAZ1與OsMYC2相互作用并抑制OsMYC2,觸發(fā)OsMADS1的轉(zhuǎn)錄活性,從而直接調(diào)控OsMADS1的表達(dá)。同時(shí)突變體中OsMADS1、OsMADS7和OsMADS8表達(dá)量均下調(diào),推測JA可能通過激活OsMADS1、OsMADS7和OsMADS8的表達(dá)來調(diào)控穎花的早期發(fā)育[14]。

DFO2編碼過氧化物酶體靶向序列1受體蛋白OsPEX5,功能缺失水稻產(chǎn)生異常穎花:不育外稃缺失或伸長,額外穎片、側(cè)生小花以及內(nèi)外稃異常;漿片轉(zhuǎn)化為穎片狀結(jié)構(gòu);雄蕊數(shù)量1~7個(gè)或轉(zhuǎn)化成雌雄蕊嵌合體,雌蕊多個(gè)柱頭或心皮。DFO2/OsPEX5負(fù)責(zé)過氧化物酶體蛋白OsOPR7的定位。OsOPR7編碼12氧植物二烯酸還原酶,在JA生物合成中負(fù)責(zé)催化OPDA生成OPC8:0[15];基因敲除突變體表現(xiàn)出開放穎殼的異常穎花,花序內(nèi)源JA和JAIle水平均顯著下降,外源施加外源MeJA挽救部分穎花表型,證實(shí)OsPEX5通過調(diào)節(jié)OsOPR7的過氧化物酶體輸入從而調(diào)控JA生物合成,進(jìn)而影響穎花發(fā)育[16]。

堿性螺旋環(huán)螺旋轉(zhuǎn)錄因子OsMYC2是早期JA信號的正調(diào)控因子[17]。Osmyc2突變體表現(xiàn)出比dfo2更嚴(yán)重的穎花異常表型,同時(shí)dfo2中OsMYC2表達(dá)下調(diào),這些再次證實(shí)JA在調(diào)節(jié)水稻穎花發(fā)育中的關(guān)鍵作用。但OsPEX5和OsOPR7基因在Osmyc2和野生型植株內(nèi)的表達(dá)水平?jīng)]有差異,說明OsPEX5、OsOPR7和OsMYC2之間不存在反饋調(diào)節(jié)。OsMYC2與OsJAZ1、OsJAZ3和OsJAZ6相互作用,可能是以上3個(gè)基因的共同直接靶標(biāo);OsMADS1、OsMADS7和OsMADS14是OsMYC2的直接下游靶基因。

2 生長素調(diào)控水稻穎花發(fā)育

隨著生長素(IAA)合成、信號傳遞和極性運(yùn)輸相關(guān)基因OsARF1[18]、OsARF18[19]、OsARF19[20]、TDD1[21]和OsPID[22-25]功能的解析證實(shí)生長素在調(diào)控水稻穎花花生分組織及花器官屬性過程中起關(guān)鍵作用[10,13]。

生長素反應(yīng)由一類稱為生長素反應(yīng)因子(Auxin response factors,ARFs)的轉(zhuǎn)錄因子介導(dǎo),在缺乏生長素的情況下,這些轉(zhuǎn)錄因子會(huì)被Aux/IAA蛋白質(zhì)抑制[26]。水稻中有25個(gè)生長素反應(yīng)因子,其中OsARF1主要表達(dá)于幼穗和愈傷組織。抑制OsARF1表達(dá)導(dǎo)致轉(zhuǎn)基因植株生長矮小,無花、開花延遲或不育等生殖發(fā)育缺陷[18]。OsARF18是OsmiR160的靶基因。mOsARF18植株中OsARF18基因產(chǎn)生OsmiR160抗性,表達(dá)明顯上調(diào);植株矮化,分蘗較少,葉子短且卷曲,內(nèi)外稃突變無法封閉保護(hù)內(nèi)輪花器官,雄蕊異常衰老且結(jié)實(shí)率降低。OsmiR160解除對OsARF18的調(diào)控使生長素合成、信號傳導(dǎo)和極性運(yùn)輸?shù)南嚓P(guān)基因,以及體內(nèi)OsmiR160主要來源的OsMIR160a、OsMIR160b基因表達(dá)下調(diào),表明該突變表型是由于OsmiR160以負(fù)反饋環(huán)路方式微調(diào)生長素信號途徑遭破壞,從而造成水稻生長發(fā)育異常[19]。

TDNA插入阻斷OsARF19基因轉(zhuǎn)錄導(dǎo)致水稻穎花產(chǎn)生3種異常類型且育性降低:內(nèi)稃同側(cè)增生1個(gè)外稃狀器官,彎曲頂部的增大狀內(nèi)稃導(dǎo)致開穎,從輕微退化到完全喪失的退化內(nèi)稃。RNAi突變體表現(xiàn)出與T-DNA插入相似表型,證實(shí)OsARF19下調(diào)或缺失表達(dá)造成花器官的異常發(fā)育。OsARF19優(yōu)勢表達(dá)于葉片、葉片接合部、基部節(jié)間、幼穗、雄蕊和根。osarf19突變體中參與生長素合成的基因上調(diào),參與生長素失活基因下調(diào),而異?;ㄆ鞴僦蠴sMDAS22、OsMDAS29表達(dá)顯著上調(diào),OsMADS3、CFO1/OsMDAS32表達(dá)輕微上調(diào)。上調(diào)的MADS-box基因啟動(dòng)子均含有生長素應(yīng)答元件(AuxREs,TGTCTC),暗示基因功能可能受到ARF的影響[20]。鑒于OsMADS22和OsMADS29的異位表達(dá)同樣呈現(xiàn)osarf19相似的內(nèi)稃紊亂表型,表明花器官的異常可能是由于不規(guī)則的局部生長素濃度及其反應(yīng)引起的[20,27-28]。

色氨酸生物合成途徑是植物IAA生物合成的關(guān)鍵步驟之一。TDD1編碼OASB1基因,是色氨酸生物合成的限速酶。tdd1突變體在色氨酸生物合成中存在部分缺陷,胚胎致死,其上皮細(xì)胞的胚性愈傷組織能夠再生整個(gè)植株。再生植株矮化,葉片和花器官形態(tài)異常。畸形的內(nèi)外稃之間形成了一個(gè)不正常的間隙,漿片位置偶爾出現(xiàn)外稃狀器官,雄蕊數(shù)目0~7個(gè),漿片與雄蕊、雄蕊與雌蕊均可形成融合狀器官,育性極低。通過過表達(dá)Trp依賴的IAA合成途徑的關(guān)鍵酶OsYUCCA1提高生長素的內(nèi)源性水平部分挽救tdd1表型,證實(shí)生長素調(diào)控水稻花器官發(fā)育[21]。

OsPID是生長素極性運(yùn)輸基因。該基因過表達(dá)雌蕊柱頭數(shù)增加,雄蕊數(shù)降低;缺失則造成內(nèi)外稃、漿片異常發(fā)育,雌蕊柱頭和花柱發(fā)生不同程度退化,毛刷狀結(jié)構(gòu)稀疏,雄蕊數(shù)目增加,結(jié)實(shí)率下降或不育[22-25]。最新研究首次提出OsPID調(diào)控水稻花器官的形成和發(fā)育的分子機(jī)制[25]:通過磷酸化OsPIN1a和OsPIN1b調(diào)控生長素的運(yùn)輸,改變生長素的極性分布,同時(shí)與OsMADS16、LAX1等轉(zhuǎn)錄因子相互作用調(diào)控水稻花器官的形成和發(fā)育;另外,OsPID與LAX1/LAX2互作,通過控制水稻的分枝和分蘗而影響產(chǎn)量。

穎花異常突變體中生長素相關(guān)重要基因表達(dá)量下調(diào)則從另一層面表明生長素對水稻穎花發(fā)育具有重要的調(diào)控作用。ASP1編碼一個(gè)轉(zhuǎn)錄共抑制因子,突變導(dǎo)致水稻發(fā)育過程中的多效性表型,如不規(guī)則的分枝模式、異常的穎花形態(tài)、葉序排列紊亂和腋芽休眠解除。asp1中生長素響應(yīng)因子OsIAA20表達(dá)水平顯著上調(diào),表明asp1中OsIAA20表達(dá)對生長素的響應(yīng)較野生型高,推測在野生型植株OsIAA20表達(dá)受反饋調(diào)節(jié)的控制,目的是防止生長素的過度反應(yīng),但這種調(diào)節(jié)可能在asp1中被破壞[29]。osmads1突變體的轉(zhuǎn)錄組分析顯示生長素響應(yīng)基因如OsARF-GAP、OsETTIN2、OsARF9、OsARF16、OsARF18和生長素極性運(yùn)輸基因OsPIN1等表達(dá)水平均產(chǎn)生明顯改變,推測在小花發(fā)育過程中OsMADS1對生長素信號轉(zhuǎn)導(dǎo)有直接的調(diào)節(jié)作用[30]。OsMADS29過表達(dá)產(chǎn)生異?;ㄐ?,僅有4朵小花。內(nèi)稃顯著縮小,漿片基本正常,雄蕊無花藥,雌蕊失去羽狀外觀且柱頭無毛變形。過表達(dá)植株中參與生長素信號傳導(dǎo)的OsSAUR10、OsSAUR12基因表達(dá)量上調(diào),OsIAA24等相關(guān)基因表達(dá)下調(diào),表明生長素信號通路被破壞[31]。

3 表觀遺傳調(diào)控水稻穎花發(fā)育

表觀遺傳修飾包括DNA甲基化、組蛋白修飾和非編碼RNA調(diào)控等,目前研究表明其調(diào)控水稻穎花發(fā)育[32-34]。JMJ706功能的闡明首次證實(shí)表觀遺傳修飾調(diào)控水稻穎花的發(fā)育。該基因編碼一種異染色質(zhì)相關(guān)的H3K9去甲基化酶,T-DNA插入導(dǎo)致植株穎花部分內(nèi)稃或外稃缺失,部分增生1個(gè)額外內(nèi)稃;雌雄蕊數(shù)目增多;部分穎花生成玻璃狀結(jié)構(gòu)或產(chǎn)生畸形種子。Sun等[35-36]發(fā)現(xiàn)JMJ706特異性清除水稻中組蛋白H3K9me2和H3K9me3,推測JMJ706可能是花器官發(fā)育相關(guān)基因OsMADS47和DH1的靶向基因。

PcG是表觀遺傳抑制因子,形成PRC2介導(dǎo)組蛋白H3K27me3調(diào)控水稻穎花的發(fā)育。OsVIL2同源于擬南芥VIN3,是PRC2的組成部分。OsVIL2與OsEMF2b互作,在穎花發(fā)育的早期起作用,是穎花正常發(fā)育所必需的[37-38]。OsEMF2b與OsLFL1啟動(dòng)子區(qū)結(jié)合,維持OsLFL1的H3K27me3,正調(diào)控水稻開花。同時(shí)OsEMF2b直接靶向H3K27me3標(biāo)記的OsMADS4,調(diào)控水稻花的形態(tài)[32]。OsFIE1與擬南芥中PRC2的核心成分FIE同源,含有WD40結(jié)構(gòu)域。突變體Epi-df植株矮化,分蘗增多,小花呈現(xiàn)一系列缺陷,包括額外內(nèi)稃或外稃的形成,伸長的漿片,雄雌蕊數(shù)目的改變,結(jié)實(shí)率顯著降低;FIE1啟動(dòng)子和5′區(qū)域表現(xiàn)出低甲基化,H3K9me2減少,H3K4me3增加;數(shù)百個(gè)基因的H3K27me3水平受到干擾,表明DNA甲基化、H3K9me2和H3K27me3之間互相協(xié)調(diào),共同調(diào)控水稻的穎花發(fā)育[39]。

MicroRNAs(miRNAs)是水稻穎花發(fā)育的重要調(diào)控因子,通過與靶mRNA的互補(bǔ)配對,造成mRNA的降解或翻譯抑制[34,39]。水稻miR172家族有4個(gè)成員(miR172a-d)。miR172通過靶向AP2基因調(diào)控花器官的特性和花分生組織的確定性,特別是外稃/內(nèi)稃的伸長[40-41]。miR172家族過表達(dá)植株均顯示嚴(yán)重的花器官異常,內(nèi)外稃扭曲均無法閉合,內(nèi)外稃間的連鎖結(jié)構(gòu)缺失。同時(shí)OsMADS1對miR172具有抑制作用,OsMADS1-miR172-AP2形成調(diào)控網(wǎng)絡(luò)參與花器官的發(fā)育[42]。OsmiR396d及其靶基因OsGRFs對于維護(hù)內(nèi)外稃間的連鎖是必不可缺的。 OsmiR396d負(fù)調(diào)控OsGRFs,OsGRFs與其輔激活子OsGIF1相互作用直接激活包括OsJMJ706和OsCR4在內(nèi)的靶基因的表達(dá),從而影響穎殼的開放和不育外稃長度等[43-45]。

siRNAs介導(dǎo)的DNA甲基化(RdDM)途徑在水稻穎花發(fā)育過程也扮演重要角色。OsDRM2編碼水稻主要的DRM1/2型甲基轉(zhuǎn)移酶基因,定向破壞該基因產(chǎn)生嚴(yán)重生長缺陷和異常DNA甲基化。osdrm 2不抽穗或抽穗延遲,形成小且未成熟圓錐花序,穎花異常,多稃且鮮少開穎,有雌蕊和花藥但無花粉,完全不育。進(jìn)一步研究發(fā)現(xiàn)OSDRM2受損細(xì)胞缺失RdDM過程的從頭甲基化[46]。另一個(gè)參與RdDM途徑的相關(guān)基因OsFDML1,同源于擬南芥IDN 2/RDM 12基因,優(yōu)勢表達(dá)于花序和穎花。osfdml 1穎花數(shù)量劇減,內(nèi)稃缺失邊緣區(qū)域,主體部分轉(zhuǎn)化為外稃狀,漿片數(shù)目增多、柱頭和心皮融合數(shù)量增加,分生組織不確定。OsMADS6直接靶向OsFDML1基因,OsFDML1蛋白與近親同源物OsFDML2形成異源二聚體調(diào)控水稻花發(fā)育[47]。

4 展望

正常的水稻穎花是后代繁育和稻谷產(chǎn)值的重要保證,因此其調(diào)控機(jī)制的研究一直備受植物學(xué)家和育種工作者的關(guān)注。近年來,在退化穎片、不育外稃及內(nèi)外稃的建成和屬性,高階蛋白復(fù)合物、激素和表觀遺傳調(diào)控等方面的研究取得了顯著進(jìn)展,讓學(xué)者們意識到穎花發(fā)育調(diào)控的復(fù)雜性。隨著一系列控制水稻穎花發(fā)育基因的克隆,包含MADS-box和非MADS-box基因,有關(guān)水稻穎花發(fā)育的分子機(jī)制已有較為深入的了解,但相比于人們對雙子葉植物擬南芥花發(fā)育分子機(jī)制的研究還顯不足,尤其是對內(nèi)源激素的合成、信號轉(zhuǎn)導(dǎo)以及表觀遺傳修飾如何調(diào)控水稻MADS-box基因,進(jìn)而控制穎花發(fā)育進(jìn)程仍知之甚少。隨著三代測序技術(shù)及CRISPR/Cas9介導(dǎo)的定點(diǎn)編輯技術(shù)的應(yīng)用,結(jié)合轉(zhuǎn)錄組學(xué)、代謝組學(xué)和蛋白質(zhì)組學(xué)等多組學(xué)整合分析,將有助于分離并鑒定更多有關(guān)水稻穎花發(fā)育突變體及其調(diào)控基因,進(jìn)而全面闡明水稻穎花發(fā)育的分子機(jī)制。

參考文獻(xiàn):

[1]JUN-ICHI I,KEN-ICHI N,KYOKO I,et al.Rice Plant Development:from Zygote to Spikelet[J].Plant Cell Physiology,2005,46(1):23-47.

[2]KELLOGG E A.Evolutionary History of the Grasses[J].Plant Physiology,2001,125(3):1198-1205.

[3]LOMBARDO F,YOSHIDA H.Interpreting lemma and palea homologies:a point of view from rice floral mutants[J].Frontiers in Plant Science,2015,6(61):61.

[4]TANAKA W,TORIBA T,HIRANO H Y.Flower development in rice[J].Advances in Botanical R- esearch,2014,72(8):221-262.

[5]楊弘遠(yuǎn).水稻生殖生物學(xué)[M].杭州:浙江大學(xué)出版社,2005:19-23.

[6]王忠.水稻的開花與結(jié)實(shí)[M].北京:科學(xué)出版社,2015:13-44.

[7]YOSHIDA H,NAGATO Y.Flower development in rice[J].Journal of Experimental Botany,2011,62(14):4719-4730.

[8]ALI Z,RAZA Q,ATIF R M,et al.Genetic and molecular control of floral organ identity in cereals[J].International Journal of Molecular Sciences,2019,20(11):2743.

[9]SIYI G,BO S,LIANG-SHENG L,et al.Co-ordination of flower development through epigenetic regulation in two model species:rice and arabidopsis[J].Plant Cell Physiol,2015,56(5):830-842.

[10]吳迪,袁政,張大兵.水稻小穗器官發(fā)生分子調(diào)控機(jī)制的研究進(jìn)展[J].生命科學(xué),2018,30(11):1173-1183.

[11]CINDY C,TUCKER M R,DABING Z,et al.Dissecting the role of MADS-box genes in monocot floral development and diversity[J].Journal of Experimental Botany,2018,69(10):2435-2459.

[12]SHIGE-HIRO S,YUKIKO Y,SUZUHA O,et al.Rice Flower Development Revisited:Regulation of Carpel Specification and Flower Meristem Determinacy[J].Plant and Cell Physiology,2019,60(6):1284-1295.

[13]沈衛(wèi)平,蔡強(qiáng),周鋒利,等.植物激素調(diào)控水稻花器官發(fā)育分子機(jī)制的研究進(jìn)展[J].植物生理學(xué)報(bào),2015,51(5):593-600.

[14]CAI Q,YUAN Z,CHEN M,et al.Jasmonic acid regulates spikelet development in rice[J].Nature Communications,2014,5:3476.

[15]TANI T,SOBAJIMA H,OKADA K,et al.Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice[J].Planta,2008,227(3):517-526.

[16]YOU X M,ZHU S S,ZHANG W,et al.OsPEX5 regulates rice spikelet development through modulating jasmonic acid biosynthesis[J].The New Phytologist,2019,224(2):712-724.

[17]UJI Y,TANIGUCHI S,DAISUKE TAMAOKI D,et al.Overexpression of OsMYC2 results in the up-regulation of early JA-responsive genes and bacterial blight resistance in rice[J].Plant and Cell Physiology,2016,57(9):1814-1827.

[18]ATTIA K A,ABDELKHALIK A F,AMMAR M H,et al.Antisense phenotypes reveal a functional expression of OsARF1,an auxin response factor,in transgenic rice[J].Current Issues in Molecular Biology,2009,11(S1):29-34.

[19]HUANG J,LI Z,ZHAO D.Deregulation of the OsmiR160 Target Gene OsARF18 Causes Growth and Developmental Defects with an Alteration of Auxin Signaling in Rice[J].Scientific Reports,2016,6(1):29938.

[20]ZHANG S,WU T,LIU S,et al.Disruption of OsARF19 is Critical for Floral Organ Development and Plant Architecture in Rice(Oryza sativa L.)[J].Plant Molecular Biology Reporter,2016,34(4):748-760.

[21]SAZUKA T,KAMIYA N,NISHIMURA T,et al.A rice tryptophan deficient dwarf mutant,tdd1,contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos[J].The Plant Journal,2010,60(2):227-241.

[22]MORITA Y,KYOZUKA J.Characterization of OsPID,the Rice ortholog of PINOID,and its possible involvement in the control of polar auxin transport[J].Plant Cell Physiology,2007,48(3):540-549.

[23]HE Y,YAN L,GE C,et al.PINOID is required for formation of the stigma and style in rice[J].Plant Physiology,2019,180(2):926-936.

[24]XU M,TANG D,CHENG X,et al.OsPINOID regulates stigma and ovule initiation through maintenance of the floral meristem by auxin signaling[J].Plant Physiology,2019,180(2):952-965.

[25]WU H M,XIE D J,TANG Z S,et al.PINOID regulates floral organ development by modulating auxin transport and interacts with MADS16 in rice[J].Plant Biotechnology Journal,2020,18(8):1778-1795.

[26]GUILFOYLE T J,HAGEN G.Auxin response factors[J].Current Opinion in Plant Biology,2007,10(5):453-460.

[27]SARASWATI N,RITA S,KUMAR T A,et al.Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis[J].Journal of Experimental Botany,2013,64(14):4239-4253.

[28]SENTOKU N,KATO H,KITANO H,et al.OsMADS22,an STMADS11-like MADS-box gene of rice,is expressed in non-vegetative tissues and its ectopic expression induces spikelet meristem indeterminacy[J].Molecular Genetics and Genomics,2005,273(1):1-9.

[29]YOSHIDA A,OHMORI Y,KITANO H,et al.ABERRANT SPIKELET AND PANICLE1,encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice[J].The Plant Journal,2012,70(2):327-339.

[30]KHANDAY I,YADAV S R,VIJAYRAGHAVAN U.Rice LHS1/OsMADS1 controls floret meristem specification by coordinated regulation of transcription factors and hormone signaling pathways[J].Plant Physiology,2013,161(4):1970-1983.

[31]SARASWATI N,RITA S,KUMAR T A,et al.Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis

[J].Journal of Experimental Botany,2013,64(14):4239-4253.

[32]XIE S,CHEN M,PEI R,et al.OsEMF2b acts as a regulator of flowering transition and floral organ identity by mediating H3K27me3 deposition at OsLFL1and OsMADS4 in rice[J].Plant Molecular Biology Reporter,2015,33(1):121-132.

[33]BANERJEE A,ROYCHOUDHURY A.The gymnastics of epigenomics in rice[J].Plant Cell Reports,2017,37(S4):1-25.

[34]WAHEED S,LI H,ZENG L H.The Critical Role of miRNAs in Regulation of Flowering Time and Flower Development[J].Genes,2020,11(3):319.

[35]SUN Q,ZHOU D X.Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(36):13679-13684.

[36]LI A,ZHANG Y,WU X,et al. Dh1,a lob domain-like protein required for glume formation in rice[J].Plant Molecular Biology,2008,66(5):491-502.

[37]YOON H Y,YANG J L,LIANG W Q,et al.OsVIL2 regulates spikelet development by controlling regulatory genes in Oryza sativa[J].Frontiers in Plant Science,2018,9:102.

[38]CONRAD L J,KHANDAY I,JOHNSON C,et al.The Polycomb Group Gene EMF2B is essential for maintenance of floral meristem determinacy in rice[J].The Plant Journal,2014,80(5):883-894.

[39]ZHANG L,CHENG Z,QIN R,et al.Identification and characterization of an Epi-Allele of FIE1 reveals a regulatory linkage between two epigenetic marks in rice[J].The Plant Cell,2012,24(11):4407-4421.

[40]ZHU Q H,UPADHYAYA N M,GUBLER F,et al.Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice(Oryza sativa)[J].BMC Plant Biology,2009,9:149.

[41]LEE Y S,LEE D Y,CHO L H,et al.Rice miR172 induces flowering by suppressing OsIDS1 and SNB,two AP2 genes that negatively regulate expression of Ehd1 and florigens[J].Rice,2014(7):31.

[42]DAI Z Y,WANG J,ZHU M,et al.OsMADS1 represses microRNA172 in elongation of palea/lemma development in rice[J].Frontiers in Plant Science,2016(7):1891.

[43]PU C X , MA Y,WANG J,et al.Crinkly4 receptor-like kinase is required to maintain the interlocking of the palea and lemma,and fertility in rice,by promoting epidermal cell differentiation[J].Plant Journal,2012,70(6):940-953.

[44]LIU H,GUO S,XU Y,et al.OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4[J].Plant Physiology,2014,165(1):160-174.

[45]LI Y F,ZHENG Y,ADDO-QUAYE C,et al.Transcriptome-wide identification of microRNA targets in rice[J].Plant Journal,2010,62:742-759.

[46]MORITOH S,EUN C H,ONO A,et al.Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2,OsDRM2,impairs the growth of rice plants by abnormal DNA methylation[J].The Plant Journal,2012,71(1):85-98.

[47]TAO J,LIANG W,AN G,et al.OsMADS6 controls flower development by activating rice FACTOR OF DNA METHYLATION LIKE 1[J].Plant Physiol,2018,177:713-727.

(責(zé)任編輯:柯文輝)

猜你喜歡
生長素水稻
生長素的兩重性剖析
中國水稻栽培現(xiàn)狀、存在問題及改進(jìn)措施
水稻種子
為什么向日葵能夠不停地向著太陽轉(zhuǎn)
揭示獨(dú)腳金內(nèi)酯抑制PIN依賴性的生長素轉(zhuǎn)運(yùn)渠化(2020.7.18 Plant Biotechnology Journal)
水稻栽培現(xiàn)狀與高產(chǎn)栽培技術(shù)建議
水稻栽培現(xiàn)狀與高產(chǎn)栽培技術(shù)建議
“生長素的極性運(yùn)輸”開放性實(shí)驗(yàn)探究和改進(jìn)
黔北山鄉(xiāng)水稻飄香