劉高尚,劉雅玄,卞達,趙永武
氧化石墨烯接枝碳纖維及其樹脂涂層在不同載荷下的摩擦學性能
劉高尚,劉雅玄,卞達,趙永武
(江南大學 機械工程學院,江蘇 無錫 214122)
提升碳纖維(CF)在水性聚酰胺酰亞胺(PAI)樹脂涂層中的界面性能,從而使PAI復合涂層獲得優(yōu)異的摩擦學性能。以硅烷(KH550)為偶聯(lián)劑,制備氧化石墨烯(GO)化學接枝CF增強體(CF&GO),研究CF接枝前后的熱穩(wěn)定性和添加CF&GO的PAI復合涂層在不同載荷下的摩擦學行為和磨損機理。利用紅外光譜儀(FTIR)、X射線衍射儀(XRD)和掃描電子顯微鏡(SEM)對樣品的官能團、成分和表面形貌進行表征;利用熱失重儀(TGA)對接枝前后CF的熱穩(wěn)定進行表征;利用SEM、摩擦磨損試驗機和白光干涉儀分別對CF&GO在PAI復合涂層中的分布和摩擦學性能進行表征。GO通過與硅烷改性后的CF形成酰胺鍵成功接枝,接枝后,CF形成多尺度增強體,且表面形貌粗糙。此外,接枝后, CF的熱穩(wěn)定性降低,熱穩(wěn)定性規(guī)律為GO 氧化石墨烯;碳纖維;接枝;熱穩(wěn)定性;摩擦因數(shù);磨損率 PAI因其出色的機械強度、良好的耐化學腐蝕和熱穩(wěn)定性[1-2],廣泛應用于醫(yī)療器械、航空、微電子、汽車等領域。為了擴大其應用環(huán)境,將CF引入PAI中,制成了力學性能增強的復合材料[3]。CF增強的PAI復合材料,由于其優(yōu)異的力學和物理性能,在汽車、航空航天、化工等領域得到了廣泛應用。 CF增強聚合物基復合材料具有強度高、耐疲勞、耐腐蝕等特點[4-9]。由于CF的表面光滑特性,導致CF與基體之間的潤濕性和吸附性較差,與樹脂基體之間的界面結合強度較弱[10]。因此,有必要通過對CF的表面改性來改善CF復合材料的界面性能[11-15]。 由于GO獨特的結構和物理性能,如優(yōu)異的剛度、強度、導電和導熱系數(shù)等,在復合材料中引入納米尺度的GO已成為增強復合材料性能(如界面、力學和摩擦學性能)的有效手段[16-18]。GO作為廣泛應用的碳納米增強材料,在改善復合材料的界面條件方面,表現(xiàn)出巨大潛力。GO作為增強復合材料的納米填充劑時,可以有效地將應力傳遞到聚合物基體上。然而,由于GO之間的強范德華力,導致其在復合材料中形成嚴重的聚合[19],從而限制了應力傳遞[20]。因此,主要的挑戰(zhàn)仍然是實現(xiàn)GO在基體中的均勻分散。 將CF和納米GO組裝起來,一方面可以顯著提高CF復合材料的界面抗拔出能力;另一方面,GO附著在CF表面,可以在復合材料中均勻分散[21-22]。目前,將GO引入到CF表面的方法有很多,包括物理直接法混合[23]、電泳沉積[21]、化學氣相沉積[24]、化學接枝[25]和溶液浸漬[26]等。在以上所有方法中,化學接枝是通過在CF和GO之間形成化學鍵,比其他方法在CF和GO之間形成的范德華力,作用力更強,CF和GO就更不容易在復合材料中被拔出,界面性能更好。 本工作中,通過化學方法把GO接枝在CF表面,其中硅烷作為橋接,分別與GO和CF形成化學鍵,如圖1所示。CF強酸氧化之后,利用硅烷與其表面的羧基和羥基反應,實現(xiàn)對CF硅烷化功能化處理。GO與硅烷改性后,CF在偶聯(lián)劑DMF的作用下,發(fā)生酰胺反應,形成酰胺鍵,接枝在CF表面。對這種增強體(CF&GO)的熱穩(wěn)定性和其在PAI樹脂中不同載荷下的摩擦學性能進行研究。 圖1 纖維接枝流程 將3 g CF與150 mL丙酮超聲混合0.5 h后,放入三口燒瓶中,70 ℃下回流24 h,去除CF表面涂漿。去漿后,3 g CF與150 mL混合強酸(濃硝酸∶濃硫酸= 1∶1)在100 ℃下進行酸化反應2 h,在CF表面引入羥基和羧基。將酸化后的CF,用離心機(4000 r/min)離心0.5 h,去除上層清液后,加入去離子水和無水乙醇震蕩,重復操作洗滌,直至溶液pH值為中性,之后進行真空干燥。 配制100 mL硅烷偶聯(lián)劑溶液,配比為72 mL無水乙醇+20 mL KH550+8 mL去離子水。將3 g酸化CF加入到該溶液中,然后溶解在300 mL乙醇溶液中。將混合液磁力攪拌0.5 h后,超聲處理0.5 h,得到均勻的懸浮液。將混合液倒入500 mL三口燒瓶中,油浴加熱至78 ℃,不間斷磁力攪拌回流4 h。反應結束后,迅速離心,去除上層清液,加入去離子水和無水乙醇震蕩清洗,離心,反復操作6次,以去除CF表面多余的硅烷偶聯(lián)劑。最后在80 ℃下真空干燥24 h,得到硅烷化處理的碳纖維CF-APTS。 先將0.1 g的GO加入到150 mL的DMF溶液中,再加入1 g的CF-APTS,超聲和磁力攪拌各0.5 h,得到均勻的懸浮液。將懸浮液倒入500 mL三口燒瓶中,油浴加熱至105 ℃,不間斷磁力攪拌回流6 h。反應結束后,迅速離心,去除上層清液,加入去離子水和乙醇震蕩清洗,離心,反復操作6次,洗滌CF表面多余的DMF偶聯(lián)劑。最后在80 ℃下真空干燥24 h,得到CF&GO多尺度增強體CF&GO。 課題組前期試驗發(fā)現(xiàn),PAI(固含量28%)為粘結劑,固體填料CF質(zhì)量分數(shù)為20%時,制備的復合涂層的摩擦學行為表現(xiàn)最佳,摩擦因數(shù)為0.258,磨損率為3.36×106μm3/(N·m)。固體填料含量對PAI復合涂層的摩擦學性能影響較大。固體填料含量過低時,材料增強特性較弱;含量過高時,填料在PAI內(nèi)團聚,粘接效果急劇變差,導致復合涂層摩擦學性能減弱。因此,為保證PAI樹脂粘接效果,本文制備CF&GO復合涂層固體填料含量定為20%。 將質(zhì)量分數(shù)為20%的CF&GO加入到PAI樹脂中,磁力攪拌3 h,得到CF&GO復合樹脂涂料。將涂料刮涂在鋁合金基體表面,之后放在鼓風烤箱中加熱至190 ℃,最后得到CF&GO復合涂層。經(jīng)涂鍍層測厚儀測得厚度為200 μm,其中PAI固含量為28%,因此固化后涂層填料含量為47.2%。 CF購于中麗新材有限公司,粒徑為500目,直徑為7 μm。多層GO購于南京先豐納米材料科技有限公司。硅烷偶聯(lián)劑(KH550)、N,N-二甲基甲酰胺、硫酸、硝酸、丙酮購于國藥集團化學試劑有限公司。PAI購于南通博聯(lián)化工有限公司,固含量為28%。 1)采用賽默飛Nicolet傅里葉紅外光譜儀測試增強體官能團,掃描范圍為400~4000 cm–1。 2)采用理學Smartlab9型X射線衍射儀測試增強體成分,掃描速度和范圍分別為2 (°)/min和5°~ 80°。 3)采用蔡司EVO18掃描電鏡(10 kV),觀測涂層磨痕表面形貌。 4)采用Rtec摩擦磨損試驗機(MFT-5000型)測試計算涂層摩擦因數(shù)。室溫下,用直徑為9.5 mm的氮化硅陶瓷球對磨涂層表面,實驗參數(shù):往復模式,往復距離為10 mm,頻率為1 Hz,測試時間為20 min。 5)在Rtec白光干涉輪廓儀20倍鏡下分析涂層磨損量。 6)用TGA Q500熱重分析儀分析纖維的熱穩(wěn)定性,測量范圍為30~800 ℃,氮氣(N2)保護,升溫速率為10 ℃/min。 CF-APTS、GO、CF&GO的紅外光譜見圖2。CF-APTS(曲線a)表面特征峰顯示,1434 cm–1呈現(xiàn)N—H面內(nèi)變形峰,1037 cm–1呈現(xiàn)Si—O—Si伸縮振動峰[27],1120 cm–1呈現(xiàn)Si—O—C伸縮振動峰。這證明KH550與CF表面基團發(fā)生縮合反應形成化學鍵,成功接枝在CF表面。GO(曲線b)表面特征峰顯示,3390 cm–1處寬吸收峰呈現(xiàn)—OH拉伸振動峰,1733、1620、1223、1053 cm–1處分別呈現(xiàn)C==O、C==C、 C—OH和C—O拉伸振動峰[28]。CF&GO(曲線c)表面特征峰顯示,3186 cm–1處寬峰和1607 cm–1處峰分別部分歸屬于仲酰胺N—H伸縮振動和彎曲振動,1375 cm–1處峰呈現(xiàn)仲酰胺C—N振動。這表明GO通過硅烷成功接枝在CF表面上。 圖2 CF表面各處理階段紅外光譜 CF(見圖3曲線a)在2=25°呈現(xiàn)代表石墨(002)晶面的衍射峰[29],GO(見圖3曲線b)在2=10.73°呈現(xiàn)代表GO(002)晶面的衍射峰[30],CF&GO(見圖3曲線c)中呈現(xiàn)代表CF和GO的特征峰。這證明GO已成功接枝到CF上,與紅外實驗結果一致。圖3中,代表CF的特征峰(曲線c)寬化,歸因于經(jīng)濃硫酸和濃硝酸氧化后的CF,較大尺寸的表層微晶腐蝕剝離,較小尺寸的次表層微晶顯露[31]。CF表面微晶尺寸減小,結晶邊界增多,導致表面的活性碳原子增多,有利于更多的GO接枝在CF上。 圖3 CF各處理階段XRD圖譜 CF接枝GO前后的表面形貌如圖4所示。CF丙酮去漿后,表面光滑平整、無凹坑,如圖4a所示。GO的褶皺形貌如圖4b所示。CF經(jīng)KH-550硅烷偶聯(lián)劑改性后,表面粗糙,并附著一層硅烷膜(見圖4c)。對表面膜進行EDS點掃,測得Si的原子數(shù)分數(shù)為7.56%,證明CF硅烷改性成功,與FTIR測試結果一致。GO成功接枝在CF表面,與FTIR和XRD測試結果一致,如圖4d所示。GO接枝在CF表面形成的多尺度增強體,增加了CF的粗糙度,提升了纖維的界面性能,增強了CF與樹脂基體之間的粘接強度[32]。 圖4 CF接枝GO前后的表面形貌 CF接枝GO前后的熱穩(wěn)定性曲線如圖5所示,其熱穩(wěn)定性依次為GO 圖5 CF接枝GO前后TGA曲線 如圖6a所示,涂層摩擦因數(shù)呈現(xiàn)隨載荷增大而減小的趨勢。載荷為10 N時,摩擦因數(shù)最大,為0.212;載荷為20 N時,摩擦因數(shù)最小,為0.168。這可能是因為涂層切向力的大小受實際接觸面積的影響。當載荷增加時,接觸載荷的上升快于接觸面積的上升,也就是接觸載荷的上升快于切向力上升,導致高載荷下涂層摩擦因數(shù)值反而降低[35]。如圖6b所示,涂層磨損率呈現(xiàn)隨載荷增大而增大的趨勢。載荷為10 N時,涂層磨損率最小,為2.64×106μm3/(N·m);載荷為20 N時,涂層磨損率最大,為3.74×106μm3/(N·m)。這主要歸因于樹脂涂層硬度較低,隨著載荷的增大,碾壓作用增強,涂層塑性變形增大,導致涂層耐磨性降低。不同載荷下涂層磨痕的三維形貌如圖7所示。10 N載荷下,涂層的磨痕淺且窄;15 N載荷下,涂層的磨痕深度增加;20 N載荷下,涂層的磨痕最深,磨損最為嚴重,與磨痕截面曲線結果一致。 圖6 不同載荷下CF&GO樹脂涂層的摩擦因數(shù)及磨痕截面 未改性CF樹脂涂層的截面SEM形貌如圖8a所示,纖維表面未完全被樹脂包覆,與樹脂界面結合較差。主要原因是,CF表面光滑,與樹脂之間的潤濕性和吸附性較差。CF&GO樹脂涂層截面的SEM形貌如圖8b所示,纖維表面被樹脂完全包覆,與樹脂界面結合較好[36]。CF&GO增強體鑲嵌在樹脂基體中,纖維折斷,仍未脫離基體。CF表面的GO與樹脂層片緊密地咬合在一起,顯著提升了CF的界面性能。其主要原因是GO表面有含氧官能團,呈現(xiàn)親水性,因此與水性樹脂WPAI結合較好。同時可以發(fā)現(xiàn),相較于CF,CF&GO涂層截面的孔隙減少。主要原因是,GO填充了樹脂層片間的細小孔洞,提升了涂層的致密性,進而提升了涂層的摩擦學性能。 如圖9所示,不同載荷下,磨痕表面纖維無脫落拔出,改性后,樹脂的粘接效果較好。CF&GO參與形成涂層潤滑膜,纖維有助于接觸應力的傳遞,增強涂層耐磨性。10、15 N載荷下,涂層磨痕表面犁痕明顯,因此其主要磨損形式為磨粒磨損。20 N載荷下,磨痕表面存在犁痕和塊狀樹脂脫落后被碾壓在磨痕表面形成的樹脂堆疊,因此主要磨損形式為磨粒磨損和粘著磨損。 圖9 不同載荷下CF&GO樹脂涂層磨痕的SEM圖像 涂層磨痕寬度逐漸增加,與磨痕三維圖規(guī)律一致,歸因于載荷增加,碾壓作用增強,涂層的塑性變形增大。表面犁痕由淺變深,歸因于載荷增加,導致磨粒對涂層表面的刻劃加重。潤滑膜由光滑變粗糙,表面缺陷(裂紋和樹脂剝落坑)增多,歸因于載荷增加,局部接觸應力增加,界面摩擦劇烈,導致潤滑膜破裂剝落。隨著載荷的增加,涂層磨痕的表面質(zhì)量逐漸降低。 1)通過在CF上接枝GO,制成了一種多尺度增強體CF&GO。CF和GO通過與硅烷形成化學鍵緊密結合,提高了CF表面粗糙度和界面性能。 2)測試CF、GO、CF&GO的熱穩(wěn)定性得出:GO 3)隨著載荷的增加,GO&CF樹脂復合涂層的摩擦因數(shù)降低,磨損率增大。 [1] LI Zhuo, SONG Hai-wang, HE Min-hui, et al. Atomic oxygen-resistant and transparent polyimide coatings from [3,5-bis(3-aminophenoxy) phenyl] diphenylphosphine oxide and aromatic dianhydrides: Preparation and characteriza-tion[J]. Progress in organic coatings, 2012, 75(1-2): 49-58. [2] MEHDIPOUR A, SHAHRAM S, YAGHOUB H M. Novel thermally stable polyimides based on flexible diamine: Synthesis, characterization and properties[J]. European polymer journal, 2004, 40(9): 2009-2015. [3] YUAN Xue-yu, JIANG Jing, WEI Hua-wei, et al. PAI/ MXene sizing-based dual functional coating for carbon fiber/PEEK composite[J]. Composites science and tech-nology, 2020, 201: 108496. [4] GI Chae-han, SATISH K. Materials science: Making strong fibers[J]. Science, 2008, 319(5865): 908. [5] BAJPAI A, SAXENA P, KUNZE K. Tribo-mechanical characterization of carbon fiber-reinforced cyanate ester resins modified with fillers[J]. Polymers, 2020, 12(8): 1725. [6] GONCALVES G, MARQUES P A A P, BARROS- TIMMONS A, et al. Graphene oxide modified with PMMA via ATRP as a reinforcement filler[J]. Journal of materials chemistry, 2010, 20(44): 9927-9934. [7] GONG L, KINLOCH I A, YOUNG R J, et al. Interfacial stress transfer in a graphene monolayer nanocomposite[J]. Advanced materials, 2010, 22(24): 2694-2697. [8] ZOU Zhen-yue, QIN Yan, FU Hua-dong, et al. ZrO2f- coated Cfhybrid fibrous reinforcements and properties of their reinforced ceramicizable phenolic resin matrix com-posites[J]. Journal of the European Ceramic Society, 2020, 41(3): 1810-1816. [9] HE Wei-dong, WANG Xin, DING Li-ning, et al. Experi-mental study on bond behavior of interface between fiber- reinforced polymer grids and concrete substrate[J]. Com-posite structures, 2020, 257: 113164. [10] HE Xiao-dong, WANG Chao, TONG Li-yong, et al. Direct measurement of grafting strength between an individual carbon nanotube and a carbon fiber[J]. Carbon, 2012, 50(10): 3782-3788. [11] YAO Ting-ting, LIU Yu-ting, ZHU Hong, et al. Controlling of resin impregnation and interfacial adhesion in carbon fiber/polycarbonate composites by a spray-coating of poly-mer on carbon fibers[J]. Composite science and techno-logy, 2019, 182: 107761-107763. [12] SUN Tong, LI Mu-xuan, ZHOU Sheng-tai, et al. Multi- scale structure construction of carbon fiber surface by electrophoretic deposition and electropolymerization to enhance the interfacial strength of epoxy resin compo-sites[J]. Applied surface science, 2020, 499: 143929. [13] ZHANG Meng-jie, LIU Liu, JIN Lin, et al. Catechol- based co-deposited carbon fiber surfaces for enhancement of fiber/epoxy composites[J]. Polymer composites, 2020, 41(9): 3817-3829. [14] STANFIELD M, EYCKENS D, MéDARD J, et al. Using redox active molecules to build multilayered architecture on carbon fibers and the effect on adhesion in epoxy composites[J]. Composites science and technology, 2020, 202: 108564. [15] KOSTOPOULOS V A, KOTROTSOS A, GEITONA A, et al. Low velocity impact response and post impact assess-ment of carbon fiber/epoxy composites modified with Diels-Alder based healing agent. A novel approach[J]. Composites part A: Applied science and manufacturing, 2020, 140: 106151. [16] JIANG Hao, LI Zhao, GAN Jian-tuo, et al. Improved thermal and mechanical properties of bismaleimide nano-composites via incorporation of a new allylated siloxane graphene oxide[J]. RSC advances, 2020, 10(60): 36853- 36861. [17] BOUIBED A, DOUFNOUNE R. Synthesis and charac-terization of hybrid materials based on graphene oxide and silica nanoparticles and their effect on the corrosion protection properties of epoxy resin coatings[J]. Journal of adhesion science & technology, 2019, 27(1): 834-840. [18] ZENG Xiao-ling, TANG Bo-lin, SHEN Xiao-jun, et al. Effect of graphene oxide size on interlaminar shear strength of glass fabric/epoxy composites[J]. Materials research express, 2019, 6(10): 105306. [19] MCALLISTER M J, LI J L, ADAMSON D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chemistry of materials, 2007, 19(18): 4396-4404. [20] VERDEJO R, BERNAL M M, ROMASANTA L J, et al. Graphene filled polymer nanocomposites[J]. Journal of materials chemistry, 2011, 21(10): 3301-3310. [21] LI Yi-bin, PENG Qing-yu, HE Xiao-dong, et al. Synthesis and characterization of a new hierarchical reinforcement by chemically grafting graphene oxide onto carbon fibers [J]. Journal of materials chemistry, 2012, 22(36): 18748- 18752. [22] RAFIEE M A, RAFIEE J, SRIVASTAVA I, et al. Fracture and fatigue in graphene nanocomposites[J]. Small, 2010, 6(2): 179-183. [23] LI Fei, LIU Yu, QU Cheng-bing, et al. Enhanced me-chanical properties of short carbon fiber reinforced polye-thersulfone composites by graphene oxide coating[J]. Polymer, 2015, 59: 155-165. [24] KUANG Tai-rong, MI Hao-yang, FU Da-jiong, et al. Fabrication of poly(lactic acid)/graphene oxide foams with highly oriented and elongated cell structure via uni-directional foaming using supercritical carbon dioxide[J]. Industrial & engineering chemistry research, 2015, 54(2): 758-768. [25] WANG Chao, LI Yi-bin, TONG Li-yong, et al. The role of grafting force and surface wettability in interfacial enhancement of carbon nanotube/carbon fiber hierarchical composites[J]. Carbon, 2014, 69: 239-246. [26] 劉秀影, 宋英, 李存梅, 等. 氧化石墨烯接枝碳纖維新型增強體的制備與表征[J]. 無機化學學報, 2011, 27(11): 2128-2132. LIU Xiu-ying, SONG Ying, LI Cun-mei, et al. Synthesis and characterization of carbon fibers reinforcement with grafted graphene oxide[J]. Chinese journal of inorganic chemistry, 2011, 27(11): 2128-2132. [27] ZIELKE U, HüTTINGER K J, HOFFMAN W P. Surface-oxidized carbon fibers: I. Surface structure and chemistry[J]. Carbon, 1996, 34(8): 983-998. [28] ZHANG Xiao-qing, FAN Xin-yu, LI Hong-zhou, et al. Facile preparation route for graphene oxide reinforced polyamide 6 composites via in situ anionic ring-opening polymerization[J]. Journal of materials chemistry, 2012, 22(45): 24081-24091. [29] 劉鐘鈴, 李國明, 童元建, 等. 國產(chǎn)碳纖維微晶結構與缺陷結構研究[J]. 玻璃鋼/復合材料, 2014(11): 58-62. LIU Zhong-ling, LI Guo-ming, TONG Yuan-jian, et al. Research on the micro-crystallization structure and defect structure of domestic carbon fiber[J]. Fiber reinforced plastics/composites, 2014(11): 58-62. [30] JEONG Hae-kyung, LEE Yun-pyo, LAHAYE R J W E, et al. Evidence of graphitic AB stacking order of graphite oxides[J]. Journal of the American Chemical Society, 2008, 130(4): 1362-1366. [31] 楊君, 張立先, 周莉, 等. 復合材料用碳纖維的表面硝酸液相處理[J]. 當代化工, 2015(10): 2289-2293. YANG Jun, ZHANG Li-xian, ZHOU Li, et al. Surface treatment of carbon fiber with nitric acid[J]. Contempo-rary chemical industry, 2015(10): 2289-2293. [32] CHEN Lei, DU Yun-zhe, HUANG Yu-dong, et al. Hierar-chical poly(p-phenylene benzobisoxazole)/graphene oxide reinforcement with multifunctional and biomimic middle layer[J]. Composites part A applied ence & manufactu-ring, 2016, 88: 123-130. [33] WAN Yan-jun, TANG Long-cheng, YAN Dong, et al. Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process[J]. Composites science & technology, 2013, 82: 60-68. [34] FAN Xiao-bin, PENG Wen-chao, LI Yang, et al. Deoxy-genation of exfoliated graphite oxide under alkaline con-ditions: A green route to graphene preparation[j]. Advan-ced materials, 2008, 20(23): 4490-4493. [35] 范娜, 王云霞, 王秋鳳, 等. 載荷對304不銹鋼微動磨損性能的影響[J]. 摩擦學學報, 2016, 36(5): 555-561. FAN Na, WANG Yun-xia, WANG Qiu-feng, et al. Effects of load on fretting wear behaviors of 304 stainless steels [J]. Tribology, 2016, 36(5): 555-561. [36] WAN Yan-jun, GONG Li -xiu, TANG Long-cheng, et al. Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide[J]. Composites part A, 2014, 64: 79-89. Tribological Properties of Graphene Oxide Grafted Carbon Fiber and Its Resin Coating under Different Loads ,,, (School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China) To improve the interfacial properties of carbon fiber (CF) in the water-based polyamideimide (PAI) resin coating to obtain the PAI composite coating with excellent tribological properties. Silane (KH550) was used as the coupling agent to prepare graphene oxide (GO) chemically grafted CF reinforcement (CF&GO). The thermal stability before and after CF grafting and the tribological behavior and wear mechanism of PAI composite coating with CF&GO under different loads were studied. The infrared spectrometer (FTIR), X-ray diffractometer (XRD) and scanning electron microscope (SEM) was used to characterize the functional groups, composition and surface morphology of the sample; thermal weight loss instrument (TGA) was used to characterize the thermal stability of CF before and after grafting SEM, friction and wear tester and white light interferometer were used to characterize the distribution and tribological properties of CF&GO in the PAI composite coating. GO was successfully grafted by forming an amide bond with the silane-modified CF. After the grafting, the CF formed a multi-scale reinforcement and the surface morphology was rough; in addition, the thermal stability of the grafted CF was reduced, and the thermal stability law was GO graphene oxide; carbon fiber; grafting; thermal stability; friction factor; wear rate 2020-10-12; 2021-03-05 LIU Gao-shang (1995—), Male, Master, Research focus: mechanical tribology and surface technology. E-mail: 1043059121@qq.com 卞達(1990—),男,博士,講師, 主要研究方向為機械摩擦學與表面技術。郵箱: biand@jiangnan.edu.cn Corresponding author:BIAN Da (1990—), Male, Doctor, Lecturer, Research focus: mechanical tribology and surface technology. E-mail: biand@jiangnan.edu.cn 通訊作者:趙永武(1962—),男,博士,教授,主要研究方向為機械摩擦學與表面技術。郵箱: zhaoyw@jiangnan.edu.cn Corresponding author:ZHAO Yong-wu (1962—), Male, Doctor, Professor, Research focus: mechanical tribology and surface technology. E-mail: zhaoyw@jiangnan.edu.cn 劉高尚, 劉雅玄, 卞達, 等. 氧化石墨烯接枝碳纖維及其樹脂涂層在不同載荷下的摩擦學性能[J]. 表面技術, 2021, 50(4): 62-69. TQ326.9;TB332 A 1001-3660(2021)04-0062-08 10.16490/j.cnki.issn.1001-3660.2021.04.005 2020-10-12; 2021-03-05 江蘇省自然科學基金(BK20190611);中國博士后科學基金(2020M681482);江蘇省博士后科學基金(2020Z196) Fund:Natural Science Foundation of Jiangsu Province (BK20190611); China Postdoctoral Science Foundation (2020M681482); Postdoctoral Science Foundation of Jiangsu Province (2020Z196) 劉高尚(1995—),男,碩士,主要研究方向為機械摩擦學與表面技術。郵箱:1043059121@qq.com LIU Gao-shang, LIU Ya-xuan, BIAN Da, et al. Tribological properties of graphene oxide grafted carbon fiber and its resin coating under different loads[J]. Surface technology, 2021, 50(4): 62-69.1 實驗
1.1 材料制備
1.2 測試與表征
2 結果與討論
2.1 FTIR分析
2.2 XRD分析
2.3 SEM和EDS元素分析
2.4 CF接枝GO前后熱穩(wěn)定性分析
2.5 不同載荷下CF&GO樹脂涂層的摩擦學性能分析
2.6 涂層截面SEM
2.7 不同載荷下CF&GO樹脂涂層磨痕表面分析
3 結論