国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

飼糧微量元素添加模式對肉仔雞生長和胴體性能及肌肉品質(zhì)的影響

2021-12-07 07:50張?zhí)m王良治黃艷玲廖秀冬張麗陽呂林羅緒剛
中國農(nóng)業(yè)科學(xué) 2021年22期
關(guān)鍵詞:仔雞胴體飼糧

張?zhí)m,王良治,,黃艷玲,廖秀冬,張麗陽,呂林,羅緒剛

飼糧微量元素添加模式對肉仔雞生長和胴體性能及肌肉品質(zhì)的影響

張?zhí)m1,王良治1,2,黃艷玲1,廖秀冬2,張麗陽2,呂林2,羅緒剛3

1青藏高原動物遺傳資源保護(hù)教育部重點(diǎn)實(shí)驗(yàn)室,西南民族大學(xué),成都 610041;2中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所礦物元素營養(yǎng)研究室,北京 100193;3揚(yáng)州大學(xué)動物科技學(xué)院,家禽礦物元素營養(yǎng)研究室,江蘇揚(yáng)州 225000

【目的】研究飼糧微量元素不同添加模式對肉仔雞生長和胴體性能及肌肉品質(zhì)的影響,探尋肉仔雞飼糧中微量元素平衡模式,為飼糧中合理添加微量元素提供試驗(yàn)依據(jù)。【方法】采用單因子完全隨機(jī)設(shè)計(jì),選取240只1日齡AA肉仔雞,按體重隨機(jī)分為5組,每組6個(gè)重復(fù),每個(gè)重復(fù)8只。在玉米-豆粕型基礎(chǔ)飼糧中分別按不同模式添加微量元素:按照NRC(1994)肉雞推薦量以無機(jī)形式添加微量元素(T1,1—42日齡銅、鐵、錳、鋅和硒添加量分別為8、80、60、40 和 0.15 mg·kg-1);按照中國雞飼養(yǎng)標(biāo)準(zhǔn)(農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)NY/T 33-2004)中肉雞推薦量以無機(jī)形式添加微量元素(T2,1—21日齡銅、鐵、錳、鋅和硒添加量分別為8、100、120、100和0.3 mg·kg-1;22—42日齡添加量分別為8、80、120、80和0.3 mg·kg-1);按照課題組前期微量元素需要量研究結(jié)果以無機(jī)形式添加微量元素(T3,1—21日齡銅、鐵、錳、鋅和硒添加量分別為4、40、110、60和0.35 mg·kg-1;22—42日齡添加量分別為0、30、80、40和0.35 mg·kg-1);按照實(shí)驗(yàn)室前期結(jié)果以有機(jī)形式減量添加微量元素(T4,1—21日齡銅、鐵、錳、鋅和硒添加量分別為2、30、80、40和0.25 mg·kg-1;22—42日齡添加量分別為0、15、50、30和0.25 mg·kg-1);按照NY/T 33-2004中肉雞推薦量以有機(jī)形式添加微量元素(T5,1-21和22-42日齡銅、鐵、錳、鋅和硒添加量同T2)。無機(jī)微量元素源分別為飼料級五水硫酸銅、一水硫酸亞鐵、一水硫酸錳、一水硫酸鋅和亞硒酸鈉,有機(jī)微量元素源分別為飼料級蛋氨酸銅、甘氨酸鐵、蛋氨酸錳、甘氨酸鋅和酵母硒。試驗(yàn)期42d。【結(jié)果】微量元素添加模式對肉仔雞平均日采食量、平均日增重均無顯著影響(>0.05); T2組的22—42日齡料重比顯著高于T1、T4和T5組(<0.05),而T2與T3組無顯著差異(>0.05); T2組的1-42日齡料重比顯著高于其他組(<0.05),而其他各組之間差異不顯著(>0.05)。42日齡肉仔雞胴體性能及胸肌和腿肌的L值、a*值、pH和滴水損失均不受微量元素添加模式影響(>0.05),但T5組的胸肌b*值顯著高于T1和T3組(<0.05),而與T4組無顯著差異(>0.05);T4組的腿肌剪切力顯著低于T1和T5組(<0.05),肌肉嫩度相對較好?!窘Y(jié)論】本試驗(yàn)條件下,在玉米-豆粕型飼糧中減量添加有機(jī)微量元素(T4, 1—21日齡銅、鐵、錳、鋅和硒添加量分別為2、30、80、40和0.25 mg·kg-1;22—42日齡添加量分別為0、15、50、30和0.25 mg·kg-1)對肉仔雞生長性能和肌肉品質(zhì)的作用效果較好。

微量元素添加模式;生長性能;胴體性能;肉品質(zhì);肉仔雞

0 引言

【研究意義】微量元素(trace elements,TE)對于家禽的生長[1-2]、發(fā)育和繁殖[3-4]等各種生理過程[5]是必不可少的。銅[6-7]、鐵[8-9]、鋅[10-12]、錳和硒[13-15]等作為許多酶的輔助因子,在一些關(guān)鍵的代謝反應(yīng)中起著非常重要的作用[16-19]。在商業(yè)生產(chǎn)中為了滿足動物需要并提高動物成活率、生長性能、胴體性能、免疫機(jī)能和肉品質(zhì)等,微量元素添加量通常高于NRC(1994)推薦量[20-21]。如NRC(1994)建議銅、鋅和錳需要量分別為8、40和60 mg·kg-1,而商業(yè)生產(chǎn)中的補(bǔ)充量分別為125、120、和100 mg·kg-1 [22-23]。在動物體內(nèi)高濃度的TE之間可能會發(fā)生拮抗作用,如過量的鋅會抑制銅的吸收,銅鋅超氧化物歧化酶(CuZn-SOD)活性減弱,導(dǎo)致機(jī)體抗氧化性能降低[24];過多的鐵也會降低錳和鋅在腸道的吸收[25-26];以二價(jià)銅離子(Cu2+)為輔助因子的鐵離子轉(zhuǎn)運(yùn)蛋白具有銅離子依賴性,銅離子缺乏時(shí)也會導(dǎo)致機(jī)體缺鐵[18]。因此導(dǎo)致微量元素利用率較低,大量微量元素隨糞便排出體外,造成資源浪費(fèi)和環(huán)境污染[27-29]。近些年對高效微量元素源的研究已成為熱點(diǎn)?!厩叭搜芯窟M(jìn)展】有研究結(jié)果顯示有機(jī)微量元素(organic trace elements,OTE)的生物學(xué)利用率高于無機(jī)微量元素(inorganic trace elements,ITE)[30-31],且在飼糧中補(bǔ)充低濃度OTE,對家禽生產(chǎn)性能沒有不良影響并可以降低糞便中TE排出量[32],緩解資源浪費(fèi)和環(huán)境污染問題[27, 33]。【本研究切入點(diǎn)】目前的研究多集中在單一微量元素,對微量元素的不同添加模式,尤其是硒與銅、鐵、鋅、錳共同添加對肉仔雞胴體性能和肉品質(zhì)的影響還鮮有報(bào)道。另外,肉雞對微量元素的需要量仍采用NRC(1994)推薦量[34],其中一些推薦量是基于20世紀(jì)50年代試驗(yàn)數(shù)據(jù)制定的[35]。而當(dāng)今肉雞品種不斷優(yōu)化,商業(yè)生產(chǎn)體系不斷革新,一些推薦量可能不再適用。因此探究既有利于改善肉仔雞生長性能、胴體性能及肌肉品質(zhì),又有利于微量元素高效利用的微量元素添加模式是非常有必要的?!緮M解決的關(guān)鍵問題】本試驗(yàn)旨在研究微量元素不同添加模式對肉仔雞生長性能、胴體性能和肌肉品質(zhì)的影響,探尋肉仔雞飼糧中微量元素平衡模式,為飼糧中合理添加微量元素提供試驗(yàn)依據(jù)。

1 材料與方法

1.1 試驗(yàn)設(shè)計(jì)與處理

本試驗(yàn)采用單因子完全隨機(jī)設(shè)計(jì)。試驗(yàn)共設(shè)置5個(gè)處理組,分別為按照NRC(1994)肉雞微量元素推薦量添加的無機(jī)微量元素組(T1)、按照中國雞飼養(yǎng)標(biāo)準(zhǔn)(農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)NY/T 33—2004)[36]中肉雞微量元素推薦量添加的無機(jī)微量元素組(T2)、按照中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所礦物元素營養(yǎng)研究室前期微量元素需要量研究結(jié)果添加的無機(jī)微量元素組(T3)、按照前期試驗(yàn)結(jié)果減量添加的有機(jī)微量元素組(T4)和按照NY/T 33—2004中肉雞微量元素推薦量添加的有機(jī)微量元素組(T5)。

1.2 動物與飼糧

試驗(yàn)于2019年3—4月在中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所昌平基地進(jìn)行。選用240只1日齡AA肉公雞,按體重隨機(jī)分為5個(gè)處理組,每組6個(gè)重復(fù),每個(gè)重復(fù)8只雞,飼養(yǎng)于不銹鋼鍍塑雞籠內(nèi),試驗(yàn)期42 d。肉仔雞每天光照24 h,自由采食和飲水。試驗(yàn)雞飼養(yǎng)管理和常規(guī)免疫按《AA肉仔雞飼養(yǎng)管理手冊》進(jìn)行。試驗(yàn)過程中,每日觀察并記錄雞只健康狀況,記錄死亡數(shù)。如有雞只發(fā)病或死亡,立即解剖,觀察分析病理死因,并結(jié)料。分別于試驗(yàn)第21和42天以重復(fù)(籠)為單元稱雞空腹體重和剩料量,計(jì)算平均日采食量(ADFI)、平均日增重(ADG)、料重比(F/G)。

參照美國NRC(1994)和中國雞飼養(yǎng)標(biāo)準(zhǔn)(2004)的1—21日齡和22—42日齡肉仔雞營養(yǎng)推薦量配制兩階段玉米-豆粕型基礎(chǔ)飼糧(未添加銅、鐵、錳、鋅和硒)(表1),并按以上處理在基礎(chǔ)飼糧中添加不同比例和形式的銅、鐵、錳、鋅和硒(各處理組飼糧添加水平和實(shí)測水平見表2)。無機(jī)微量元素源分別為飼料級五水硫酸銅、一水硫酸亞鐵、一水硫酸錳、一水硫酸鋅和亞硒酸鈉;有機(jī)微量元素源分別為飼料級蛋氨酸銅、甘氨酸鐵、蛋氨酸錳、甘氨酸鋅和酵母硒。飼糧以粉料形式飼喂。

表1 基礎(chǔ)飼糧的組成及營養(yǎng)水平(飼喂基礎(chǔ))

1)飼料級Feed grade;

2)每千克飼糧中添加:1-21日齡:VA 15 000 IU, VD34 500 IU, VE 24 IU, VK33 mg, VB13 mg, VB29.6 mg, VB63 mg, VB120.018 mg, Pantothenic acid calcium 15 mg, Niacin 39 mg, Folic acid 1.5 mg, Biotin 0.15 mg, Choline 700 mg, I (as potassium iodide) 0.35 mg. 22-42日齡:VA 10 000 IU, VD33 000 IU, VE 16 IU, VK32 mg, VB12 mg, VB26.4 mg, VB62 mg, VB120.012 mg, Pantothenic acid calcium 10 mg, Niacin 26 mg, Folic acid 1 mg, Biotin 0.1 mg, Choline 500 mg,I (as potassium iodide) 0.35 mg;

3)計(jì)算值Calculated values;

4)實(shí)測值A(chǔ)nalyzed values

表2 試驗(yàn)飼糧中微量元素的添加水平和實(shí)測水平

1)飼糧實(shí)測水平包含了基礎(chǔ)飼糧中微量元素含量和微量元素添加量;數(shù)值為3個(gè)平行測定值的平均值

1)The analyzed levels include the trace element concentrations in the basal diet and added amount; values are the means of triplicate determinations

1.3 胴體性能和肉品質(zhì)測定

于43日齡早上稱重后,每個(gè)重復(fù)選取2只接近平均體重的雞采血后屠宰,分離胸肌、腿肌和腹脂,按全國家禽育種委員會的(NY/T823-2004)《家禽生產(chǎn)性能名詞術(shù)語和度量統(tǒng)計(jì)方法》[37]計(jì)算屠宰率、全凈膛率、胸肌率、腿肌率和腹脂率。屠宰測定之后,取左側(cè)胸肌、腿肌樣品,用TC-PⅡG型全自動色差儀立即測定胸、腿肌肉色L*值、a*值和b*值;屠宰后45 min,用pH-211型pH計(jì)測定胸、腿肌pH;4℃保存24 h后,測定胸、腿肌pH、滴水損失和剪切力。肉品質(zhì)各指標(biāo)測定方法均采用胡新旭等[38]報(bào)道的方法。

1.4 統(tǒng)計(jì)分析

使用SAS 9.0系統(tǒng)中的一般線性模型(GLM)程序?qū)λ脭?shù)據(jù)進(jìn)行單因子方差(One-way ANOVA)分析;方差分析顯著者,以最小顯著差異(LSD)法比較各平均數(shù)間的差異顯著性。以重復(fù)作為一個(gè)試驗(yàn)單元。以≤0.05作為差異顯著性檢驗(yàn)水平。

2 結(jié)果

2.1 微量元素添加模式對肉仔雞生長性能的影響

由表3可見,微量元素添加模式對試驗(yàn)前期(1—21日齡)、試驗(yàn)后期(22—42日齡)和試驗(yàn)全期(1—42日齡)肉仔雞的ADFI、ADG均無顯著影響(>0.05),但對試驗(yàn)后期和試驗(yàn)全期肉仔雞的F/G有顯著影響(<0.05)。從試驗(yàn)后期來看,T2組的F/G顯著高于T1、T4和T5組(<0.05),而與T3組之間無顯著差異(>0.05),且T1、T4和T5組之間也無顯著差異(>0.05);從試驗(yàn)全期來看,T2組的F/G顯著高于其他處理組(<0.05),而其他處理組之間無顯著差異(>0.05)。

2.2 微量元素添加模式對肉仔雞胴體性能的影響

由表4可見,微量元素添加模式對肉仔雞屠宰率、全凈膛率、胸肌率、腿肌率和腹脂率均無顯著影響(0.05)。

2.3 微量元素添加模式對肉仔雞胸肌和腿肌肉品質(zhì)的影響

由表5可見,微量元素添加模式對42日齡肉仔雞胸肌pH、L*值、a*值、剪切力和滴水損失均無顯著影響(>0.05),但對胸肌b*值有顯著影響(<0.05)。與T1和T3組相比,T5組的b*值顯著增高(<0.05),但T5組和T2、T4組無顯著差異(>0.05),T1、T2、T3和T4組之間也無顯著差異(>0.05)。

表3 微量元素添加模式對肉仔雞生長性能的影響1)

1)數(shù)值表示6個(gè)重復(fù)籠(n=6)的平均值。a,b同列數(shù)值具有不同字母肩標(biāo)表示差異顯著(<0.05),相同或無字母表示差異不顯著。下同

1)Data represent the means of 6 cages (= 6). a,b Values with different superscript letters in the same column mean significant difference (<0.05), while with the same or no superscript letters mean no significant difference (>0.05). The same as below

表4 微量元素添加模式對肉仔雞胴體性能的影響

由表6可見,微量元素添加模式對腿肌pH、L*值、a*值、b*值和滴水損失無顯著影響(>0.05),但顯著影響腿肌剪切力(<0.05)。T4的剪切力顯著低于T1和T5(<0.05),但與T2、T3之間無顯著差異(>0.05),T1、T2和T3之間的腿肌剪切力也無顯著差異(>0.05)。

表5 微量元素添加模式對胸肌肉品質(zhì)的影響

表6 微量元素添加模式對腿肌肉品質(zhì)的影響

3 討論

3.1 對肉仔雞生長性能的影響

關(guān)于微量元素添加模式對肉仔雞生長性能影響的研究,已有相關(guān)報(bào)道。濮振宇等[39]的研究表明,分別按照NRC(1994)和中國雞飼養(yǎng)標(biāo)準(zhǔn)(NY/T 33-2004)中肉雞推薦量在飼糧中添加無機(jī)銅、鐵、錳和鋅,肉雞的前期、后期及全期ADG、ADFI和F/G均無明顯差異。田佳等[28]研究也發(fā)現(xiàn),飼糧無機(jī)微量元素銅、鐵、鋅、錳含量在NRC推薦量至2倍NRC推薦量范圍內(nèi)時(shí),對22—42日齡肉雞的ADG和F/G無顯著影響。但本試驗(yàn)結(jié)果發(fā)現(xiàn),我國農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)(行標(biāo))無機(jī)組(T2)肉雞22—42日齡和1—42日齡的F/G均顯著高于NRC(1994)推薦量組。本試驗(yàn)結(jié)果與以上兩個(gè)試驗(yàn)結(jié)果不一致的原因可能是本試驗(yàn)微量元素添加模式中除了銅、鐵、錳、鋅的添加量有變化外,硒添加量也有變化,而這兩個(gè)試驗(yàn)的硒添加量均無變化。

近年來,人們對不同形態(tài)微量元素的生物學(xué)利用率研究較多,并發(fā)現(xiàn)動物對OTE的生物學(xué)利用率高于ITE[40-42]。BAO等[35]研究發(fā)現(xiàn),減量添加OTE(Cu 4 mg·kg-1、Fe 40 mg·kg-1、Mn 40 mg·kg-1和Zn 40 mg·kg-1)與高水平添加ITE(Cu 5 mg·kg-1、Fe 70 mg·kg-1、Mn 80 mg·kg-1和Zn 50 mg·kg-1)相比,對肉雞ADFI和ADG的影響均無顯著差異,但顯著降低了肉雞F/G。M'SADEQ等[43]證實(shí),飼糧減量添加OTE比高水平添加ITE能更好地提高肉雞的飼料轉(zhuǎn)化效率。VIEIRA等[33]也發(fā)現(xiàn),有機(jī)微量元素組的肉仔雞比無機(jī)微量元素組的肉仔雞有更好的飼料轉(zhuǎn)化率、更高的體增重(3.941 kg OTE3.881 kg ITE;<0.05)和更好的成活率(95.8 % OTE vs. 93.6 % ITE;<0.05)。以上研究結(jié)果與本試驗(yàn)結(jié)果一致,說明有機(jī)微量元素的生物學(xué)利用率更高,可以更好地改善肉雞生長性能。ZHU等[44]研究了飼糧添加商業(yè)推薦水平的30 %的無機(jī)或有機(jī)微量元素(Cu、Fe、Mn和Zn)對羅斯肉雞生產(chǎn)性能的影響,發(fā)現(xiàn)與商業(yè)推薦水平組相比,30 % OTE組對肉雞生長性能沒有顯著影響,而30 % ITE組體增重顯著降低,料重比顯著增加。表明同等添加水平下OTE的吸收和利用率更高,可以更好地滿足肉仔雞生理功能的需要。本試驗(yàn)中OTE組(T5)的F/G顯著低于同等添加水平的ITE組(T2)也再次驗(yàn)證了這一觀點(diǎn)。另外有研究報(bào)道,有機(jī)螯合微量元素的雜環(huán)結(jié)構(gòu)可以中和無機(jī)金屬離子的正電荷,防止微量元素在胃腸道內(nèi)與其他營養(yǎng)物質(zhì)發(fā)生拮抗作用而提高微量元素及其他營養(yǎng)物質(zhì)的吸收和利用率[45],表明有機(jī)微量元素可以減弱或克服微量元素與其他營養(yǎng)物質(zhì)之間的拮抗作用,這也可能是有機(jī)微量元素生物學(xué)利用率高于無機(jī)微量元素的原因之一。微量元素在畜禽的生長性能、胴體性能等方面均發(fā)揮著重要的作用,其吸收和利用率的提高可進(jìn)一步改善動物體各項(xiàng)機(jī)能。

3.2 對肉仔雞胴體性能和肌肉品質(zhì)的影響

SIRRI等[46]發(fā)現(xiàn),飼糧中添加不同水平和形式的銅、鋅和錳對肉雞的屠宰率、胸肌率和腿肌率均無顯著影響。王一冰等[47]的研究結(jié)果也表明,與NRC推薦量組相比,高于NRC推薦量添加鐵、銅、錳、鋅和硒對肉雞的屠宰率、全凈膛率、胸肌率、腿肌率和腹脂率均無顯著影響。以上研究結(jié)果與本試驗(yàn)結(jié)果相一致,說明不同微量元素添加模式對肉雞胴體性能的影響較小。肌肉品質(zhì)可以通過測定肉色、pH,剪切力(嫩度)、滴水損失等多種指標(biāo)進(jìn)行評價(jià)。肉色是肌肉通過生理、生化和微生物反應(yīng)而顯現(xiàn)出來的一種易于識別的外部表現(xiàn)[48],是消費(fèi)者了解肉品質(zhì)的表觀特征。肌肉a*值與肌肉肌紅蛋白和血紅素含量呈正相關(guān)[49];肌肉L*值表示肉質(zhì)的蒼白程度,它與滴水損失、pH等存在一定的相關(guān)性;肌肉b*值與肌內(nèi)脂肪含量呈正相關(guān)[50]。在本試驗(yàn)條件下,微量元素添加模式對胸肌和腿肌的L*值、a*值、pH和滴水損失均無顯著影響。減量有機(jī)組T4肉雞的胸肌b*值與行標(biāo)有機(jī)組T5相比差異不顯著,而行標(biāo)有機(jī)組T5與NRC無機(jī)組T1和之前期結(jié)果無機(jī)組T3相比,胸肌b*值顯著增加。但Aksu等[51]研究發(fā)現(xiàn),與無機(jī)微量元素組(8 mg·kg-1Cu、40 mg·kg-1Zn、60 mg·kg-1Mn)相比,復(fù)合有機(jī)微量元素組(Cu、Zn和Mn的添加水平是無機(jī)組的1/3、2/3或等量添加)ROSS肉雞胸肌a*值顯著降低,胸肌L*值顯著增加,而各處理組的胸肌b*值差異不顯著。造成這種差異的原因可能是試驗(yàn)使用肉雞品種和微量元素添加水平與比例不同。肌肉剪切力是評價(jià)肌肉嫩度的一個(gè)重要指標(biāo),剪切力越小嫩度越好,肉質(zhì)越細(xì)膩[52]。剪切力與肌肉蛋白水解酶相關(guān),Goll等[53]發(fā)現(xiàn),骨骼肌蛋白水解酶主要成分鈣蛋白酶可以降解肌絲蛋白,使剪切力降低,肌肉嫩度改善。鈣蛋白酶是Ca2+依賴蛋白,Ca2+有效水平是該酶發(fā)揮作用的關(guān)鍵。前期結(jié)果減量有機(jī)組T4腿肌剪切力最小,可能是由于該組有機(jī)微量元素的添加水平和比例較為適宜,有利于微量元素間協(xié)同作用的發(fā)揮而使肉仔雞對飼糧中Ca2+的吸收和利用提高,增強(qiáng)鈣蛋白酶的活性。此外,Ca2+還可以通過非酶機(jī)制增大蛋白質(zhì)分子間的靜電作用促進(jìn)肌球蛋白的展開,提高溶解性而改善肌肉嫩度。但當(dāng)有效Ca2+濃度過高時(shí),會導(dǎo)致肌球蛋白結(jié)構(gòu)失衡,疏水基團(tuán)大量暴露,蛋白質(zhì)通過疏水作用聚集,溶解度降低,系水力降低,蒸煮損失增加,嫩度降低[54]。這可能是行標(biāo)有機(jī)組T5腿肌剪切力高于T4的原因,但具體原因還不太清楚,需要進(jìn)一步的試驗(yàn)證實(shí)。

4 結(jié)論

綜合看來,本試驗(yàn)條件下,在玉米-豆粕型飼糧中減量添加有機(jī)微量元素(T4, 1—21日齡銅、鐵、錳、鋅和硒添加量分別為2、30、80、40和0.25 mg·kg-1;22—42日齡添加量分別為0、15、50、30和0.25 mg·kg-1)對肉仔雞生長性能和肌肉品質(zhì)的作用效果較好。

[1] SAMANTA B, GHOSH P R, BISWAS A, DAS SK. The effects of copper supplementation on the performance and hematological parameters of broiler chickens. Asian Australasian Journal of Animal Sciences, 2011, 24(7):1001-1006. doi: 10.5713/ajas.2011.10394.

[2] 吳信, 孟田田, 萬丹, 謝春艷, 印遇龍. 硒在畜禽養(yǎng)殖中的應(yīng)用研究進(jìn)展. 生物技術(shù)進(jìn)展, 2017, 7(5): 428-432. doi:10.19586/j.2095- 2341.2017.0092.

WU X, MENG T T, WAN D, XIE C Y, YIN Y L. Advance on application of selenium in livestock and poultry.Progress in Biotechnology, 2017, 7(5): 428-432. doi:10.19586/j.2095-2341.2017. 0092. (in Chinese)

[3] ROYCHOUDHURY S, NATH S, MASSANYI P, STAWARZ R, KACANIOVA M, KOLESAROVA A. Copper-induced changes in reproductive functions:andeffects. Physiological Research, 2016, 65(1): 11-22. doi:10.33549/physiolres.933063.

[4] 吳小玲, 石建凱, 張攀, 吳徳, 徐盛玉. 硒對母豬繁殖性能的影響及其作用機(jī)制. 動物營養(yǎng)學(xué)報(bào), 2018, 30(2): 444-450. doi: 10.3969/j. issn.1006-267x.2018.02.006.

WU X L, SHI J K, ZHANG P, WU D, XU S Y. Effects of Selenium on reproductive performance of sows and its mechanism.Chinese Journal of Animal Nutrition, 2018, 30(2): 444-450. doi: 10.3969/j.issn.1006- 267x.2018.02.006. (in Chinese)

[5] OGNIK K, SEMBRATOWICZ I, CHOLEWI?SKA E, JANKOWSKI J, KOZ?OWSKI K, JU?KIEWICZ J, ZDU?CZYK Z. The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of the blood. Animal Science Journal, 2018, 89(3): 579-588. doi:10.1111/asj.12956.

[6] LINDER M C. Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics, 2016, 8(9): 887-905. doi:10.1039/c6mt00103c.

[7] YAMADA H, YASUNOBU K T. Monoamine oxidase. II. Copper, one of the prosthetic groups of plasma monoamine oxidase.Journal of Biological Chemistry, 1962, 237(10): 3077-3082.

[8] WANG W, DI X, D'AGOSTINO R B, TORTI S V, TORTI F M. Excess capacity of the iron regulatory protein system. The Journal of Biological Chemistry, 2007, 282(34): 24650-24659. doi:10.1074/jbc. m703167200.

[9] CRICHTON R R, CHARLOTEAUX W M. Iron transport and storage. European Jounal of Biochemity, 1987, 164 (3), 485-506. doi:10. 1146/annurev.bi.49.070180.002041.

[10] COLEMAN J E. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Canada Communicable Disease Report, 1992, 61: 897-946. doi:10.1146/annurev.bi.61.070192. 004341.

[11] 李琳, 丁峰, 潘介春, 張樹偉, 黃幸, 王金英, 王穎, 李浩然, 徐炯志, 彭宏祥, 何新華. 植物鋅指蛋白轉(zhuǎn)錄因子家族研究進(jìn)展. 熱帶農(nóng)業(yè)科學(xué), 2020, 40(2): 65-75. doi:10.12008/j.issn.1009-2196.2020. 02.011.

LI L, DING F, PAN J C, ZHANG S W, HUANG X, WANG J Y, WANG Y, LI H R, XU J Z, PENG H X, HE X H. Research progress on family of plant zinc-finger protein transcription factors. Chinese Journal of Tropical Agriculture, 2020, 40(2): 65-75. doi:10.12008/ j.issn.1009-2196.2020.02.011 (in Chinese)

[12] BOGENHAGEN D F, WORMINGTON W M, BROWN D D. Stable transcription complexes of5S RNA genes: a means to maintain the differentiated state. Molecular Plant Pathology, 1982, 28(2): 413-421. doi:10.1016/0092-8674(82)90359-2.

[13] LABUNSKYY V M, HATFIELD D L, GLADYSHEV V N. Selenoproteins: Molecular pathways and physiological roles. Physiological Reviews, 2014, 94(3): 739-777. doi: 10.1152/physrev. 00039.2013.

[14] 雷新根, 趙華, 周繼昌. 哺乳動物硒蛋白研究進(jìn)展//中國畜牧獸醫(yī)學(xué)會動物營養(yǎng)學(xué)分會學(xué)術(shù)研討會, 2008: 23-32. doi: 0.19586/j.2095- 2341.2017.0092.

LEI X G, ZHAO H, ZHOU J C. Research advances on mammalian selenoproteins//Animal Nutrition Branch of China Institute of Animal Husbandry and Veterinary Medicine, 2008: 23-32. doi: 0.19586/j. 2095-2341.2017.0092. (in Chinese)

[15] 湯小朋, 陳磊, 熊康寧, 杭紅濤. 硒蛋白—哺乳動物谷胱甘肽過氧化物酶家族研究進(jìn)展. 生命的化學(xué), 2019(6): 1076-1081. doi: 10.13488/j.smhx.20190168.

TANG X P, CHEN L, XIONG K N, HANG H T. Research progress of selenoprotein-mammalian glutathione peroxidases family. Chemistry of Life, 2019(6): 1076-1081. doi: 10.13488/j.smhx.20190168. (in Chinese)

[16] 任孝軍, 劉若蘭, 牛歡, 李艷純, 譚國強(qiáng), 呂建新. 鋅的生物學(xué)功能及高濃度鋅對鐵硫蛋白的影響. 中國細(xì)胞生物學(xué)學(xué)報(bào), 2017(5): 639-648.

REN X J, LIU R L, NIU H, LI Y C, TAN G Q, (Lü/LV/LU/LYU) J X. Biological functions of zinc and the impact of high zinc levels on iron-sulfur proteins. Chinese Journal of Cell Biology, 2017(5): 639-648. (in Chinese)

[17] 高慶, 張克英, 陳代文. 日糧微量元素對基因表達(dá)的影響. 中國畜牧獸醫(yī), 2004, 31(3): 12-15. doi:10.3969/j.issn.1671-7236.2004.03. 005.

GAO Q, ZHANG K Y, CHEN D W. Influence of trace minerals in ration on gene expression. China Animal Husbandry & Veterinary Medicine, 2004, 31(3): 12-15. doi:10.3969/j.issn.1671-7236.2004.03. 005. (in Chinese)

[18] 朱志兀, 姚琳. 銅離子穩(wěn)態(tài)平衡分子機(jī)理研究進(jìn)展. 生命科學(xué), 2012(8): 847-857. doi: 10.13376/j.cbls/2012.08.022.

ZHU Z W, YAO L. Research progress in investigating the molecular mechanism of copper homeostasis. Chinese Bulletin of Life Sciences, 2012(8): 847-857. doi: 10.13376/j.cbls/2012.08.022. (in Chinese)

[19] NACAMULLI D, MIAN C, PETRICCA D, LAZZAROTTO F, BAROLLO S, POZZA D, MASIERO S, FAGGIAN D, PLEBANI M, GIRELLI M E, MANTERO F, BETTERLE C. Influence of physiologicaldietary selenium supplementation on the natural course of autoimmune thyroiditis. Clinical Endocrinology, 2010, 73(4): 535-539.

[20] ZHAO C Y, TAN S X, XIAO X Y, QIU X S, PAN J Q, TANG Z X. Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biological Trace Element Research, 2014, 160(3): 361-367. doi:10.1007/s12011-014-0052-2.

[21] 薛梅, 昝林森. 日糧中鋅含量和來源對肉雞生產(chǎn)性能、氧化還原和免疫狀態(tài)的影響. 中國飼料, 2019(20): 75-80. doi:10.15906/j.cnki. cn11-2975/s.20192017.

XUE M, ZAN L S. Effects of dietary zinc contents and sources on growth performance, oxidation-reduction and immune status of broilers. China Feed, 2019(20): 75-80. doi:10.15906/j.cnki.cn11-2975/ s.20192017. (in Chinese)

[22] DOZIER W A, DAVIS A J, FREEMAN M E, WARD T L. Early growth and environmental implications of dietary zinc and copper concentrations and sources of broiler chicks. British Poultry Science, 2003, 44(5): 726-731. doi:10.1080/00071660310001643714.

[23] BURRELL A L, DOZIER W A, DAVIS A J, COMPTON M M, FREEMAN M E, VENDRELL P F, WARD T L. Responses of broilers to dietary zinc concentrations and sources in relation to environmental implications. British Poultry Science, 2004, 45(2): 255-263. doi:10. 1080/00071660410001715867.

[24] 符臻鳴, 楊海明, 顧海洋, 劉金河. 鋅在蛋雞生產(chǎn)中的研究進(jìn)展. 家畜生態(tài)學(xué)報(bào), 2019(11): 6-11, 44. doi:10.3969/j.issn.1673-1182. 2019.11.002.

FU Z M, YANG H M, GU H Y, LIU J H. Research progress on zinc in laying hens production. Journal of Domestic Animal Ecology, 2019(11): 6-11, 44. doi:10.3969/j.issn.1673-1182. 2019.11.002. (in Chinese)

[25] STANDISH J F, AMMERMAN C B, PALMER A Z, SIMPSON C F. Influence of dietary iron and phosphorus on performance, tissue mineral composition and mineral absorption in steers. Journal of Animal Science, 1971, 33(1): 171-178. doi:10.2527/jas1971. 331171x.

[26] 方升林. 過量鐵對機(jī)體損傷效應(yīng)及其誘導(dǎo)細(xì)胞死亡的機(jī)制研究[D]. 杭州: 浙江大學(xué), 2018.

FANG S L. The damage effects of excessive Iron and the mechanism of iron-induced cell death [D]. Hangzhou: Zhejiang University, 2018. (in Chinese)

[27] WANG Z N, CERRATE S, YAN F L, SACAKLI P, WALDROUP P. Comparison of different concentrations of inorganic trace minerals in broiler diets on live performance and mineral excretion.International Journal of Poultry Science,2008, 7(7): 625-629.

[28] 田佳, 劉國華, 蔡輝益, 常文環(huán), 張姝, 劉偉. 22~42日齡肉雞銅、鐵、鋅、錳不同用量組合的研究. 動物營養(yǎng)學(xué)報(bào), 2016, 28(11): 3660-3668. doi:10.3969/j.issn.1006-267x.2016.11.036.

TIAN J, LIU G H, CAI H Y, CHANG W H, ZHANG S, LIU W. Research on different combination contents of Cu, Fe, Zn and Mn for boilers aged from 22 to 42 days. Chinese Journal of Animal Nutrition, 2016, 28(11): 3660-3668. doi:10.3969/j.issn.1006-267x.2016.11.036. (in Chinese)

[29] ZHOU D M, HAO X Z, WANG Y J, DONG Y H, CANG L. Copper and Zn uptake by radish and pakchoi as affected by application of livestock and poultry manures. Chemosphere, 2005, 59(2): 167-175. doi:10.1016/j.chemosphere.2004.11.008.

[30] ZHUO Z, FANG S L, HU Q L,HUANG D, FENG J. Digital gene expression profiling analysis of duodenum transcriptomes in SD rats administered ferrous sulfate or ferrous glycine chelate by gavage. Scientific Reports, 2016, 6: 37923.doi: 10.1038/srep37923.

[31] 沐建煜.鐵在動物生產(chǎn)中的應(yīng)用進(jìn)展.飼料研究,2020,43(2):119-123. doi: 10.13557/j.cnki.issn1002-2813.2020.02.030.

Mu J Y. Application progress of iron in animal production.Feed Research, 2020,43(2):119-123.doi: 10.13557/j.cnki.issn1002-2813.2020.02.030.(in Chinese)

[32] XIE C, ELWAN H A M, ELNESR S S, DONG X, FENG J, ZOU X T. Effects of ironchelate on laying performance, antioxidant activities, serum biochemical indices, iron concentrations and transferrin mRNA expression in laying hens. Journal of Animal Physiology and Animal Nutrition, 2019, 103(2): 547-554. doi:10.1111/jpn.13061.

[33] VIEIRA R, FERKET P, MALHEIROS R, HANNAS M, CRIWELLARI R, MORAES V, ELLIOTT S. Feeding low dietary levels of organic trace minerals improves broiler performance and reduces excretion of minerals in litter.British Poultry Science, 2020, undefined: 1-9.doi: 10.1080/00071668.2020.1764908.

[34] NRC. Nutrient requirements of poultry (9th Ed). Washington, DC:National Academy Press, 1994.

[35] BAO Y M, CHOCT P, BRUERTON K I. Effect of organically complexed copper, iron, manganese, and zinc on broiler performance, mineral excretion, and accumulation in tissues. Journal of Applied Poultry Research, 2007, 16:448–455. doi: 10.1093/japr/16.3.448.

[36] 中華人民共和國農(nóng)業(yè)部.雞飼養(yǎng)標(biāo)準(zhǔn)(NY/T 33-2004). 北京: 中國農(nóng)業(yè)出版社, 2004.

The Ministry of Agriculture of the People's Republic of China. Breeding standard of chicken (NY/T 33-2004). Beijing: China Agriculture Press, 2004. (in Chinese)

[37] 中華人民共和國農(nóng)業(yè)部. 中華人民共和國農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)NY/T823-2004《家禽生產(chǎn)性能名詞術(shù)語和度量統(tǒng)計(jì)方法》. 中國禽業(yè)導(dǎo)刊, 2006, 23(15):45-46.

The Ministry of Agriculture of the People's Republic of China. Agricultural standards of the People's Republic of China. Terms and methods of measurement and statistics for poultry production performance (NY/T823-2004). Beijing: China Agriculture Press, 2005. (in Chinese)

[38] 胡新旭, 范仕苓, 張建云, 陳文雅, 馬秋剛, 計(jì)成. 生長前后期日糧添加肌肽對肉仔雞生產(chǎn)性能、屠宰性能、肉品質(zhì)和抗氧化性能的影響. 第十四屆全國家禽科學(xué)學(xué)術(shù)討論會論文集, 北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社, 2009, 876-886.

HU X X, FAN S L, ZHANG J Y, CHEN W Y, MA Q G, JI C. Effect of dietary supplement of carnosine on the production performance, carcass traits, meat quality and antioxidative property of broiler chicks during the starter and grower period. Proceedings of the 14th National Symposium on Poultry Science. Beijing: China Agricultural Science and Technology Press, 2009, 876-886. (in Chinese)

[39] 濮振宇, 辛洪亮, 余超, 王碭碭, 雷新宇, 姚軍虎, 楊小軍. 微量元素添加模式對肉雞生長性能、微量元素代謝和血漿抗氧化性能的影響. 動物營養(yǎng)學(xué)報(bào), 2016, 28(8): 2367-2377. doi:10.3969/j.issn. 1006-267x.2016.08.007.

PU Z Y, XIN H L, YU C, WANG D D, LEI X Y, YAO J H, YANG X J. Effects of supplemental patterns of trace minerals on growth performance, trace mineral metabolism and plasma antioxidant ability in broilers. Chinese Journal of Animal Nutrition, 2016, 28(8): 2367-2377. doi:10.3969/j.issn.1006-267x.2016.08.007. (in Chinese)

[40] LI S, LUO X, LIU B, YU S, KUANG X, SHAO X, CRENSHAW T D. Use of chemical characteristics to predict the relative bioavailability of supplemental organic manganese sources for broilers. Journal of Animal Science, 2004, 82: 2352-2363. doi:10.2527/2004.8282352x.

[41] GUO R, HENRY P R, HOLWERDA R A, CAO J, LITTELL R C, MILES R D, AMMERMAN C B. Chemical characteristics and relative bioavailability of supplemental organic copper sources for poultry. Journal of Animal Science, 2001, 79(5): 1132-1141. doi:10. 2527/2001.7951132x.

[42] CAO J, HENRY P R, GUO R, HOLWERDA R A, TOTH J P, LITTELL R C, MILES R D, AMMERMAN C B. Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. Journal of Animal Science, 2000, 78(8): 2039-2054. doi:10.2527/2000.7882039x.

[43] M'SADEQ S A, WU S B, CHOCT M, SWICK R A. Influence of trace mineral sources on broiler performance, lymphoid organ weights, apparent digestibility, and bone mineralization. Poultry Science, 2018, 97(9): 3176-3182. doi:10.3382/ps/pey197.

[44] ZHU Z, YAN L, HU S, AN S, LV Z, WANG Z, WU Y, ZHU Y, ZHAO M, GU C, ZHANG A. Effects of the different levels of dietary trace elements from organic or inorganic sources on growth performance, carcass traits, meat quality, and faecal mineral excretion of broilers. Archives of Animal Nutrition, 2019, 73(4): 324-337. doi:10.1080/ 1745039x.2019.1620050.

[45] MILES R D, HENRY P R. Relative trace mineral bioavailability. Ciência Animal Brasileira, 2006, 1(2): 73-93.

[46] SIRRI F, MAIORANO G, TAVANIELLO S, CHEN J, PETRACCI M, MELUZZI A. Effect of different levels of dietary zinc, manganese, and copper from organic or inorganic sources on performance, bacterial chondronecrosis, intramuscular collagen characteristics, and occurrence of meat quality defects of broiler chickens. Poultry Science, 2016, 95(8): 1813-1824. doi:10.3382/ps/pew064.

[47] 王一冰, 王薇薇, 茍鐘勇, 李龍, 林廈菁, 范秋麗, 葉金玲, 崔小燕, 蔣守群. 飼糧微量元素不同用量組合對黃羽肉雞生產(chǎn)性能、胴體指標(biāo)及肉品質(zhì)的影響. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào), 2020,25(3): 60-70.

WANG Y B, WANG W W, GOU Z Y, LI L, LIN X J, FAN Q L, YE J L, CUI X Y, JIANG S Q. Effects of different combinations of dietary trace elements on the growth performance, carcass trait and meat quality of yellow-feathered broilers. Journal of China Agricultural University, 2020,25(3): 60-70. (in Chinese)

[48] 李菁菁, 鄧中勇, 楊朝武, 任鵬, 蔣小松, 王也, 劉益平. 舊院黑雞屠宰性能及肉品質(zhì)測定. 四川農(nóng)業(yè)大學(xué)學(xué)報(bào), 2017, 35(2): 256-259. doi:10.16036/j.issn.1000-2650.2017.02.018.

LI J J, DENG Z Y, YANG C W, REN P, JIANG X S, WANG Y, LIU Y P. The slaughtering performance and meat quality of Jiuyuan black fowls. Journal of Sichuan Agricultural University, 2017, 35(2): 256-259. doi:10.16036/j.issn.1000-2650.2017.02.018. (in Chinese)

[49] FANATICO A C, PILLAI P B, EMMERT J L, OWENS C M. Meat quality of slow-and fast-growing chicken genotypes fed low-nutrient or standard diets and raised indoors or with outdoor access. Poultry Science, 2007, 86(10): 2245-2255. doi:10.1093/ps/86.10.2245.

[50] BARBUT S. Problem of pale soft exudative meat in broiler chickens. British Poultry Science, 1997, 38(4): 355-358. doi:10.1080/ 00071669708418002.

[51] AKSU T, AKSU M ?, YORUK M A, KARAOGLU M. Effects of organically-complexed minerals on meat quality in chickens. British Poultry Science, 2011, 52(5): 558-563. doi:10.1080/00071668.2011. 606800.

[52] 徐日峰, 張煜, 胡建民, 楊建成. 影響雞肉品質(zhì)因素的研究進(jìn)展. 江蘇農(nóng)業(yè)科學(xué), 2013, 41(2): 183-184, 189. doi:10.3969/j.issn.1002- 1302.2013.02.071.

XU R F, ZHANG Y, HU J M, YANG J C. Research progress of factors affecting meat quality. Jiangsu Agricultural Sciences, 2013, 41(2): 183-184, 189. doi:10.3969/j.issn.1002-1302.2013.02.071. (in Chinese)

[53] GOLL D E, OTSUKA Y, NAGAINIS P A, SHANNON J D, SATHE S K. Role of muscle proteinases in maintenance of muscle integrity and mass. Food Biochemistry, 1983, 7(3):137-177. doi: 10.1111/j.1745- 4514.1983.tb00795.x.

[54] 李明奇, 賀稚非, 李少博, 李冉冉, 李洪軍. 氯化鈣-無花果蛋白酶-獼猴桃蛋白酶復(fù)合嫩化劑體系改善兔肉嫩度和保水性的工藝優(yōu)化. 食品與發(fā)酵工業(yè), 2019, 45(18): 120-129. doi:10.13995/j.cnki. 11-1802/ts.021040.

LI M Q, HE Z F, LI S B, LI R R, LI H J. Optimization of calcium chloride, ficin and kiwifruit protease tenderization system to improve the tenderness and water holding capability of rabbit meat. Food and Fermentation Industries, 2019, 45(18): 120-129. doi:10.13995/j.cnki. 11-1802/ts.021040. (in Chinese)

Effects of Dietary Supplemental Pattern of Trace Eloments on the Growth Performance, Carcass Traits and Meat Quality of Broilers

ZHANG Lan1, WANG LiangZhi1,2, HUANG YanLing1, LIAO XiuDong2, ZHANG LiYang2, Lü Lin2, LUO XuGang3

1Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization of Ministry of Education Southwest Minzu University, Chengdu 610041;2Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193;3Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, Jiangsu

【Objective】This experiment was conducted to determine the effects of dietary supplemental pattern of trace elements on growth performance, carcass traits and meat quality of broiler chicks, so as to provide the experimental basis for the reasonable addition of trace elements to broiler diets.【Method】A single-factor completely randomized design was adopted in this experiment. A total of 240 one-day-old Arbor Acres (AA) broiler chicks were randomly allotted by body weight to 1 of 5 treatments with 6 replicate cages of 8 birds per cage. The trace elements were added to the corn-soybean basal diet as follows: the inorganic trace elements according to NRC (1994) recommendation for broiler chicks (T1: the added levels of copper (Cu), Iron (Fe), manganese (Mn), zine (Zn) and selenium (Se) were 8 , 80, 60, 40 and 0.15 mg·kg-1during 1-42 days, respectively), the inorganic trace elements according to the recommendation for broiler chicks in Chinese Feeding Standard of Chicken (NY/T 33-2004) (T2: the added levels of Cu, Fe, Mn, Zn and Se were 8, 100, 120, 100 and 0.3 mg·kg-1for 1-21 days old, respectively; and 8, 80, 120, 80 and 0.3 mg·kg-1for 22-42 days old, respectively), the inorganic trace elements according to the previous results of trace elements requirements from our lab (T3: the added levels of Cu, Fe, Mn, Zn and Se were 4, 40, 110, 60 and 0.35 mg·kg-1during 1-21 days, respectively; and 0, 30, 80, 40 and 0.35 mg·kg-1during 22-42 days, respectively), the decrement levels of organic trace elements according to the previous results of from our lab (T4: the added levels of Cu, Fe, Mn, Zn and Se were 2, 30, 80, 40 and 0.25 mg·kg-1during 1-21 days, respectively; and 0, 30, 80, 40 and 0.25 mg·kg-1during 22-42 days, respectively), and the organic trace elements according to the recommendation for broiler chicks in NY/T 33-2004 (T5: the added levels of Cu, Fe, Mn, Zn and Se during 1-21 and 22-42 days were the same as those in T2), respectively. The inorganic trace element sources (feed grade) were Cu sulfate pentahydrate, Fe sulfate monohydrate, Mn sulfate monohydrate, Zn sulphate monohydrate and sodium selenite, and the organic trace element sources (feed grade) were Cu mothionine, Fe glycine, Mn methionine, Zn glycinate and Se yeast, respectively. The experiment lasted for 42 days.【Result】The results showed that those different supplemental patterns of trace elements had no significant effects (0.05) on the average daily feed intake and average daily gain. Broilers from T2 had higher (<0.05) feed to gain ratio during 22-42 days than those from T1, T4 and T5, and no difference was detected between T2 and T3 (0.05). Broilers from T2 had higher (<0.05) feed to gain ratio during 1-42 days than those from other groups, and there were no differences (>0.05) among other groups. The different supplemental patterns of trace elements had no significant effects on (>0.05) the carcass traits, L* and a* values, pH values and drip losses of breast and thigh muscles. The breast muscle b* value of broilers from T5 was higher (<0.05) than that of broilers from T1 and T3, and no difference was observed (>0.05) between T5 and T4. The shear force of thigh muscle from T4 was lower (<0.05) than that from T1 or T5, and the muscle tenderness was relatively well. 【Conclusion】Under this experimental conditions, the group with decrement supplement of organic trace elements based on our previous results (T4: the added levels of Cu, Fe, Mn, Zn and Se were 2, 30, 80, 40 and 0.25 mg·kg-1during 1-21 days, and 0, 30, 80, 40 and 0.25 mg·kg-1during 22-42 days, respectively) was better than other groups in improving the growth performance and meat quality of broiler chicks.

dietary supplemental pattern of trace elements; growth performance; carcass traits; meat quality; broiler

2020-10-13;

2021-04-12

國家重點(diǎn)研發(fā)計(jì)劃(2017YFD0500501)、國家自然科學(xué)基金(31501977)、青藏高原動物遺傳資源保護(hù)與利用重點(diǎn)實(shí)驗(yàn)室、西南民族大學(xué)中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)(2021PTJS20)、國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系崗位專家專項(xiàng)(CARS-41)、中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程專項(xiàng)(AST1P-IAS08)

張?zhí)m,Tel:18437987790;E-mail:1820528476@qq.com。通信作者黃艷玲,E-mail:swunylh@163.com。通信作者呂林,E-mail:lvlin1225@163.com

(責(zé)任編輯 林鑒非)

猜你喜歡
仔雞胴體飼糧
豬胴體冷卻降溫特性及耗能分析
高粱型飼糧添加乳化劑和脂肪酶對良鳳花肉雞生長性能和屠宰性能的影響
飼糧粗蛋白質(zhì)水平對肉雞消化酶活性及能量、蛋白質(zhì)代謝的影響
不同飼糧蛋白水平對臺灣鰻鰍幼魚生長性能的影響
肉仔雞腹水的誘發(fā)因素與防治
飼糧鐵水平對肉仔雞生長性能、胴體性能及肉品質(zhì)的影響
飼糧與飲水添加酸化劑在肉雞生產(chǎn)中使用效果研究
胴體原本沒那么美
味精與高脂日糧對生長豬胴體性狀與組成的影響
高致病性禽流感免疫程序?qū)θ庾须u接種試驗(yàn)
随州市| 台中县| 淮滨县| 奉节县| 宜春市| 平顺县| 英超| 济宁市| 城市| 微山县| 小金县| 平乐县| 沙雅县| 缙云县| 延津县| 长宁县| 彭阳县| 梅河口市| 巨野县| 桑植县| 双峰县| 万州区| 南丰县| 蚌埠市| 阜平县| 恭城| 湘潭市| 女性| 邵武市| 元谋县| 德清县| 夏河县| 鄂州市| 贵南县| 衡山县| 韩城市| 漳平市| 安义县| 固阳县| 章丘市| 吴江市|