張安妮 曹紅星 陳萍 金龍飛
摘 ?要:油棕是世界上產油效率最高的熱帶木本油料作物,其棕櫚油產量與合子胚發(fā)育密切相關。油棕的合子胚發(fā)育是一個系統(tǒng)且復雜的生物過程,其中涉及許多基因的精確調控。MicroRNAs(miRNAs)是重要的信號分子,調節(jié)植物的各種發(fā)育過程。一些miRNAs已經被整合到基因調控網絡中協(xié)調植物胚發(fā)育的可塑性,但對于其在油棕合子胚發(fā)育過程中的作用知之甚少。本研究采用小RNA測序對油棕S1(早期)、S2(中期)和S3(晚期)的合子胚進行高通量測序分析,鑒定了6個已存在的和334個已知的miRNAs,并預測到376個新的miRNAs。其中97、102和19個miRNAs在S1與S2、S1與S3、S2與S3之間差異表達;從S1到S3共有7個miRNAs持續(xù)差異表達。另外,miRNAs在調控胚胎早期和晚期的發(fā)育差異明顯,即與S1相比,S2有36個miRNAs上調和61個miRNAs下調,但與S2相比,S3只有12個miRNAs上調和7個miRNAs下調。依據表達量的變化將135個miRNAs劃分為4種趨勢,并將對應的938個靶基因與轉錄組數據進行關聯分析,檢測到71個miRNA靶基因對。GO富集分析顯示7個miRNAs的9個靶基因富集到152個生物過程,且與生長發(fā)育相關的基因被鑒定為miRNAs的靶標,表明miRNAs可能在調控油棕胚發(fā)育的激素信號、生殖生長等生物學過程中發(fā)揮作用。另外,KEGG分析表明miRNAs通過調控次生代謝途徑相關基因影響合子胚的成熟。進一步篩選出4個miRNAs家族參與植物激素的合成和信號傳導調控:miR159-MYB調控赤霉素和脫落酸來維持胚的發(fā)生潛力以及誘導胚成熟,miR164-NAC調控乙烯和生長素參與胚細胞擴增,miR172-AP2調控乙烯和脫落酸誘導胚成熟,novel-m004-SPL調控赤霉素來誘導胚的形態(tài)建成。本研究初步鑒定了參與油棕合子胚發(fā)育相關的miRNAs,為后續(xù)研究miRNAs調控合子胚發(fā)育的分子機制奠定基礎。
關鍵詞:油棕;胚發(fā)育;miRNAs;激素
中圖分類號:S565.9 ? ? ?文獻標識碼:A
sRNA Sequencing Reveals the Role of miRNAs During Zygotic Embryo Development in Oil Palm (Elaeis guineensis Jacq.)
ZHANG Anni1, CAO Hongxing2, CHEN Ping1*, JIN Longfei2*
1. College of Horticulture, Hainan University / Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Haikou, Hainan 570228, China; 2. Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences / Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan 571339, China
Abstract: Oil palm is the most efficient oil-producing tropical woody oil crop in the world. There is a direct correlation between palm oil production and the development of zygotic embryos. The development of zygotic embryos of oil palm is a systematic and complex biological process, which involves the precise regulation of substantial genes. MicroRNAs (miRNAs) are important signal molecules in regulating various developmental processes of plants. Some miRNAs have been integrated into gene regulatory networks to coordinate the plasticity of plant embryo development, but little is known about the roles in the development of zygotic embryos of oil palm. In this study, the high-throughput sequencing analysis was performed from embryos at S1 (early stage), S2 (middle stage), and S3 (late stage) by small RNA sequencing, and 6 exist miRNAs and 334 known miRNAs were identified, and 376 new miRNAs were predicted. There were 97, 102, and 19 miRNAs differentially expressed in S1 vs S2, S1 vs S3, and S2 vs S3, and a total of 7 miRNAs were continuously differentially expressed from S1 to S3. In addition, miRNAs have significant differences in regulating early and late embryonic development. Compared with S1, S2 has 36 miRNAs up-regulated and 61 miRNAs down-regulated. However, compared with S2, S3 has only 12 miRNAs up-regulated and 7 miRNAs down-regulated. According to changes in expression levels, 135 miRNAs were divided into 4 trends. The correlation analysis between corresponding 938 target genes and transcriptome data detected 71 miRNA target gene pairs. GO enrichment analysis showed that 9 target genes of 7 miRNAs were enriched to 152 biological processes, and genes related to growth and development were identified as miRNAs targets, indicating that miRNAs may play a role in regulating hormone signaling and reproductive growth of oil palm embryos. Moreover, KEGG analysis showed that miRNAs affected the maturation of zygotic embryos by regulating genes related to secondary metabolic pathways. A total of 4 miRNAs families were further screened to be involved in the synthesis and signal transduction regulation of plant hormones: miR159-MYB regulates gibberellin and abscisic acid to maintain embryogenic potential and induce embryonic maturation, miR164-NAC regulates ethylene and auxin to participate in embryonic cell expansion, miR172-AP2 regulates ethylene and abscisic acid to induce embryo maturation, and novel-m004-SPL regulates gibberellin to induce embryonic morphogenesis. This study preliminarily identified miRNAs involved in the development of oil palm zygotic embryos, which laid the foundation for further study on the molecular mechanism of miRNAs regulating the development of zygotic embryos.
Keywords: Elaeis guineensis; embryonic development; miRNAs; phytohormone
DOI: 10.3969/j.issn.1000-2561.2022.01.003
油棕(Elaeis guineensis Jacq.)是世界上產油效率最高的熱帶木本油料作物之一,產生的棕櫚油占全球食用油的33%[1]。隨著全球對棕櫚油需求的不斷加大,油棕種植面積持續(xù)增加,威脅著熱帶雨林的生物多樣性[2]。提高油棕單產是維持棕櫚油的需求與油棕種植園擴張之間的動態(tài)平衡的重要途徑。目前生產上通常采用厚殼種和薄殼種雜交培育高產的薄殼種油棕。果實發(fā)育決定油棕的產油量,而果實的生長與合子胚的發(fā)育密切相關。
MicroRNAs(miRNAs)是一類小的(19~24 nt)非編碼RNAs,通過剪切或抑制靶基因的翻譯來調節(jié)基因的表達[3]。在擬南芥的早期胚發(fā)育過程中,miR156通過負調控Squamosa啟動子結合類蛋白(squamosa promoter-binding-like protein 10/ 11, SPL10/11)防止種子過早成熟,保證合子胚的正常發(fā)育[4]。而在胚發(fā)育后期,這些miRNAs的表達量降低從而促進合子胚的成熟[5]。植物激素響應途徑在合子胚形態(tài)發(fā)育和成熟過程中起著一定作用[6]。例如干擾miR160的表達導致靶基因生長素響應因子17(Auxin response factor17, ARF17)的表達量增加,進而導致生長素偶聯蛋白的大量積累,產生畸形胚[7]。起剪切加工miRNAs前體功能的Dicer-like1(DCL1)核酸酶基因突變會改變生長素的轉錄反應,產生形狀不規(guī)則的胚[8]。在大麥中的研究發(fā)現,過表達miR393導致靶基因TIR1/AFBs生長素受體的表達降低,增加了種子的長寬比[9]。目前油棕miRNAs的研究主要集中在花發(fā)育和脂肪酸合成等方面[10-11],而在調控合子胚發(fā)育中的研究還少見報道。隨著油棕基因組測序的完成[12],利用高通量測序挖掘重要的miRNAs成為可能。本研究使用高通量測序對油棕合子胚發(fā)育前、中和后3個時期的miRNAs進行表達譜分析,并結合mRNAs測序數據預測miRNAs靶基因對在胚發(fā)育過程中的作用,初步鑒定了4個可能參與合子胚發(fā)育的miRNAs家族,為后續(xù)研究miRNAs調控油棕合子胚發(fā)育的分子機制提供基礎理論。
1 ?材料與方法
1.1 ?材料
本實驗的油棕(Elaeis guineensis Jacq.)品種為‘熱油4號’。取油棕花后120 d(S1)、140 d(S2)和160 d(S3)的果實的合子胚,液氮速凍后,–80℃保存。
1.2 ?方法
1.2.1 ?sRNA文庫構建和深度測序 ?總RNA采用Trizol試劑(美國英杰生命技術有限公司)抽提,每個樣品設置3個生物學重復。小RNA文庫構建由廣州基迪奧生物技術公司完成,并采用Illumina HiSeqTM 2500測序儀進行高通量測序,原始數據上傳到SRA數據庫(登錄號:SRP265708)。
1.2.2 ?miRNAs的鑒定和分組間差異表達分析 ?原始數據先去掉接頭和低質量序列得到純凈序列,然后與GenBank、Rfam數據庫進行比對,去除rRNA、scRNA、snoRNA、snRNA、tRNA。與油棕參考基因組比對,去除外顯子、內含子和重復序列片段。將剩下的序列與miRBase數據庫進行比對,鑒定已存在的和已知的miRNAs。基于miRNA前體序列,利用MiRdeep2軟件預測新的miRNAs。miRNAs的表達量采用TPM(tags per million)法進行計算。對差異表達的miRNAs(differentially expressed miRNAs, DEMs)采用edgeR軟件進行鑒定,篩選標準為表達量變化2倍以上(Fold change≥2,FC≥2),且P值小于0.05。3個發(fā)育時期合子胚的miRNAs表達趨勢采用ShortTime-series Expression Miner軟件分析。
1.2.3 ?miRNAs的靶基因預測和分析 ?miRNAs的靶基因采用patmatch_v1.2軟件預測,以miRNA的TPM值大于20為標準并與前期的轉錄組測序結果(SRA數據庫,登錄號:SRP265717)進行關聯分析,找出與miRNAs表達趨勢相反的靶基
因。將靶基因映射到GO(gene ontology)數據庫(http://www.geneontology.org/)的各術語,并計算每個術語的基因數目。應用超幾何檢驗,找出與整個基因組背景相比顯著富集的GO條目。以KEGG(kyoto encyclopedia of genes and genomes)(http://www.kegg.jp/kegg/pathway.html)通路為單位,應用超幾何檢驗,確定與整個基因組背景相比,在基因中顯著富集的途徑。
2 ?結果與分析
2.1 ?油棕miRNAs測序的標準數據分析
原始數據過濾后得到9 185 842~15 458 765個純凈序列(表1)。與GenBank、Rfam數據庫以及參考基因組比對后,47.15%~59.49%的序列被成功定位到參考基因組上。外顯子比率變化范圍為0.5%~1.0%。比對miRBase數據庫后,從3個sRNA文庫中共鑒定到438個已存在的miRNAs、7 773 939個已知的miRNAs和129 689個新的miRNAs序列。miRNA序列的長度范圍為18~25 nt,其中,24 nt的序列豐度最高,其次是21 nt的序列(圖1)。
2.2 ?DEMs的鑒定
根據與miRBase數據庫的比對結果,本研究在3個文庫中共鑒定到6個已存在的miRNAs和334個已知的miRNAs,分別屬于276個miRNAs家族。另外,還預測到376個新的miRNAs。以FC≥2且P<0.05為標準,在3對成對比較中各篩選出97(S1 vs S2)、102(S1 vs S3)和19(S2 vs S3)個DEMs(圖2)。其中,從S1到S3共有7個DEMs,包含4個在S1 vs S2、S2 vs S3和S1 vs S3中均差異表達的miRNAs(圖2A)。與S1相比,S2有36個miRNAs上調和61個miRNAs下調,但S3與S2相比只有12個miRNAs上調和7個miRNAs下調,表明在胚胎發(fā)育的早期和晚期miRNAs調控的差異明顯(圖2B)。利用Short Time-series Expression Miner軟件將篩選出的135個DEMs的表達趨勢劃分為4種:從S1到S3,有49個miRNAs的表達量呈上升趨勢,76個miRNAs的表達量呈下降趨勢,10個miRNAs的表達量在S2達到峰值或最小值。
2.3 ?DEMs靶基因的預測與功能分析
將135個DEMs的938個靶基因與之前的轉錄組測序數據聯合分析。以miRNAs的TPM值大于20為標準篩選出71個miRNA靶基因對,其中包含4個表達量升高的miRNAs和14個表達量下降的miRNAs(表2)。在GO富集分析中,7個miRNAs的9個靶基因富集到152個生物過程。將GO分析用有向無環(huán)圖展示并屏蔽無意義的節(jié)點(圖3),結果表明:在生物過程中,靶基因注釋到“對內源性刺激的反應”“對激素
的反應”“細胞對激素刺激的反應”“激素介導的信號通路”“類固醇激素介導的信號通路”“單一有機體生殖過程”“有性生殖”和“受精”等GO術語。12個靶基因通過KEGG分析富集在“植物病原菌互作”“內吞作用”“苯丙烷生物合成途徑”和“類黃酮生物合成途徑”等代謝途徑中(圖4)。
3 ?討論
對影響miRNAs生物發(fā)生的等位基因的突變體表型進行研究發(fā)現,miRNAs促進胚的形態(tài)建成和成熟進程[8, 13]。與胚發(fā)育相關的miRNAs及其預測的靶基因已經在擬南芥[4]、水稻[14]、菊花[15]、花生[3]等植物中得到了系統(tǒng)的鑒定。miRNAs調控油棕合子胚發(fā)育的分子機制還不明晰。本研究從3個sRNA文庫中鑒定到6個已存在的miRNAs、334個已知的miRNAs和376個新的miRNAs。在GO富集分析中,“植物激素信號傳導”“類固醇激素介導的信號通路”“有性生殖”“受精”等與生長發(fā)育相關的基因也被鑒定為miRNAs的靶標,表明miRNAs可能在調控油棕胚發(fā)育的激素信號、生殖生長等生物學過程中發(fā)揮作用。另外,基于KEGG分析,與苯丙烷、類黃酮、芪類、泛醌等次級代謝產物相關的生物合成途徑也被富集,暗示了miRNAs通過調控次生代謝途徑相關基因影響油棕胚的成熟。
本研究共鑒定到4個上調的miRNAs。例如,novel-m0004-5p的靶基因屬于SPL家族。在胚的形態(tài)發(fā)生階段,SPL10和SPL11的轉錄水平降低會抑制早熟相關基因的表達[4]。另外,赤霉素通過間接激活SPL促進開花[16]。在油棕胚發(fā)育過程中,novel-m0004-5p的表達量上升,而SPL的表達量下降。結果表明,SPL的低表達可能誘導胚的形態(tài)建成,該過程依賴低水平的赤霉素。在水稻中也發(fā)現在胚成熟期間有低水平的赤霉素合成[17]。
表達量下調的miRNAs有14個。靶基因為MYB101的miR159-y和miR159-z屬于miRNA159家族。miR159通過影響MYB33的活性來調節(jié)赤霉素介導的花發(fā)育過程[18]。另外,脫落酸也可以誘導miR159控制擬南芥種子萌發(fā)過程中MYB101和MYB33的轉錄水平[19]。在本研究中,miR159-y和miR159-z的表達量下降,而MYB101的表達量增加。與LI等[20]的發(fā)現一致,即胚發(fā)生潛力的維持以及體胚的成熟與miR159對MYB33轉錄后的調控有關。這可能是響應赤霉素或者脫落酸信號的結果,因為單個miRNA可能對不同的激素信號有反應[19]。miR164-x的靶基因NAC098編碼的CUP-SHAPED COTYLEDON 2(CUC2)蛋白屬于NAC轉錄因子家族NAM亞家族。在本研究中,與miR164-x的表達降低相比,NAC098特異性mRNA水平有所增加。以往研究表明,CUC1/ CUC2/CUC3在胚發(fā)生過程中參與莖尖分生組織的形成和子葉的分離[21]。在擬南芥中,乙烯通過抑制miR164調控NAM亞家族成員RhNAC100的表達進而控制花瓣的細胞擴增[22]。miR164也可以通過剪切NAC1的mRNA來負調控側根發(fā)育過程中生長素信號的傳遞[23]。結果表明,NAC098可能在介導乙烯信號調節(jié)油棕胚細胞擴增的過程中起重要作用。另外,本研究中egu-miR172a靶定APETALA2(AP2)轉錄因子。在油棕中,EgAP2-1的轉錄本在合子胚的分生組織中積累最多[24]。在番茄和水稻中,AP2通過乙烯或脫落酸的介導參與調節(jié)果實成熟和植物衰老[25-26]。在本研究中,AP2的表達量上升,這可能是egu- miR172a通過乙烯或脫落酸途徑介導的誘導胚成熟的機制之一。
綜上所述,本研究共篩選出4個miRNAs家族,即novel-m0004、miR172、miR159和miR164均可能通過植物激素調控途徑參與油棕合子胚的發(fā)育(圖5),為進一步探索miRNAs調控油棕胚發(fā)育的分子機制奠定基礎。
參考文獻
[1] LEE F, ONG-ABDULLAH M, OOI S, HO C, NAMASIVAYAM P. Cloning and characterization of somatic embryogenesis receptor Kinase I (EgSERK I) and its association with callus initiation in oil palm[J]. In Vitro Cellular & Developmental Biology-Plant, 2019, 55(2): 153-164.
[2] CARLSON K M, HEILMAYR R, GIBBS H K, NOOJIPADY P, BURNS D N, MORTON D C, WALKER N F, PAOLI G D, KREMEN C. Effect of oil palm sustainability certification on deforestation and fire in Indonesia[J]. Proceedings of the National Academy of Sciences, 2018, 115(1): 121-126.
[3] MA X, ZHANG X, ZHAO K, LI F, LI K, NING L, HE J, XIN Z, YIN D. Small RNA and degradome deep sequencing reveals the roles of microRNAs in seed expansion in peanut (Arachis hypogaea L.)[J]. Frontiers in Plant Science, 2018, 9: 1-15.
[4] NODINE M D, BARTEL D P. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis[J]. Genes & Development, 2010, 24(23): 2678-2692.
[5] WILLMANN M R, MEHALICK A J, PACKER R L, JENIK P D. MicroRNAs regulate the timing of embryo maturation in Arabidopsis[J]. Plant Physiology, 2011, 155(4): 1871- 1884.
[6] MERINO I, ABRAHAMSSON M, STERCK L, CRAVEN- BARTLE B, CANOVAS F, ARNOLD S. Transcript profiling for early stages during embryo development in Scots pine[J]. BMC Plant Biology, 2016, 16(1): 255.
[7] MALLORY A C, BARTEL D P, BARTEL B. MicroRNA- directed regulation of Arabidopsis auxin response factor17 is essential for proper development and modulates expression of early auxin response genes[J]. The Plant Cell, 2005, 17(5): 1360-1375.
[8] ARMENTA-MEDINA A, LEPE-SOLTERO D, XIANG D, DATLA R, ABREU-GOODGER C, GILLMOR C S. Arabidopsis thaliana miRNAs promote embryo pattern formation beginning in the zygote[J]. Developmental Biology, 2017, 431(2): 145-151.
[9] BAI B, SHI B, HOU N, CAO Y, MENG Y, BIAN H, ZHU M, HAN N. microRNAs participate in gene expression regulation and phytohormone cross-talk in barley embryo during seed development and germination[J]. BMC Plant Biology, 2017, 17(1): 150.
[10] GAO L, WANG Y, ZHU Z, CHEN H, SUN H, ZHENG Y, LI D. EgmiR5179 from the mesocarp of oil palm (Elaeis guineensis Jacq.) regulates oil accumulation by targeting NAD transporter 1[J]. Industrial Crops and Products, 2019, 137: 126-136.
[11] HO H, GUDIMELLA R, ONG-ABDULLAH M, HARIKRISHNA J A. Expression of microRNAs during female inflorescence development in African oil palm (Elaeis guineensis Jacq.)[J]. Tree Genetics & Genomes, 2017, 13(2): 35.
[12] SINGH R, ONG-ABDULLAH M, LOW E L, MANAF M A A, ROSLI R, NOOKIAH R, OOI L C, OOI S, CHAN K, HALIM M A, AZIZI N, NAGAPPAN J, BACHER B, LAKEY N, SMITH S W, HE D, HOGAN M, BUDIMAN M A, LEE E K, DESALLE R, KUDRNA D, GOICOECHEA J L, WING R A, WILSON R K, FULTON R S, ORDWAY J M, MARTIENSSEN R A, SAMBANTHAMURTHI R. Oil palm genome sequence reveals divergence of interfertile species in old and new worlds[J]. Nature, 2013, 500(7462): 335-339.
[13] SEEFRIED W F, WILLMANN M R, CLAUSEN R L, JENIK P D. Global regulation of embryonic patterning in Arabidopsis by microRNAs[J]. Plant Physiology, 2014, 165(2): 670-687.
[14] XUE L, ZHANG J, XUE H. Characterization and expression profiles of miRNAs in rice seeds[J]. Nucleic Acids Research, 2009, 37(3): 916-930.
[15] YANG Y, GUO J, CHENG J, JIANG Z, XU N, AN X, CHEN Z, HAO J, YANG S, XU Z, SHEN C, XU M. Identification of UV-B radiation responsive microRNAs and their target genes in chrysanthemum (Chrysanthemum morifolium Ramat) using high-throughput sequencing[J]. Industrial Crops and Products, 2020, 151: 112484.
[16] YU S, GALV?O V C, ZHANG Y, HORRER D, ZHANG T, HAO Y, FENG Y, WANG S, SCHMID M, WANG J. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING– LIKE transcription factors[J]. The Plant Cell, 2012, 24(8): 3320-3332.
[17] HU Y, SONG S, WENG X, YOU A, XING Y. The heading-date gene Ghd7 inhibits seed germination by modulating the balance between abscisic acid and gibberellins[J]. The Crop Journal, 2021, 9(2): 297-304.
[18] ACHARD P, HERR A, BAULCOMBE D C, HARBERD N P. Modulation of floral development by a gibberellin-regu?lated microRNA[J]. Development, 2004, 131(14): 3357- 3365.
[19] REYES J L, CHUA N. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination[J]. The Plant Journal, 2007, 49(4): 592- 606.
[20] LI W, ZHANG S, HAN S, WU T, ZHANG J, QI L. Regulation of LaMYB33 by miR159 during maintenance of embryogenic potential and somatic embryo maturation in Larix kaempferi (Lamb.) Carr.[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2013, 113(1): 131-136.
[21] OLSEN A N, ERNST H A, LEGGIO L L, SKRIVER K. NAC transcription factors: structurally distinct, functionally diverse[J]. Trends in Plant Science, 2005, 10(2): 79-87.
[22] PEI H, MA N, TIAN J, LUO J, CHEN J, LI J, ZHENG Y, CHEN X, FEI Z, GAO J. An NAC transcription factor controls ethylene-regulated cell expansion in flower petals[J]. Plant Physiology, 2013, 163(2): 775-791.
[23] GUO H, XIE Q, FEI J, CHUA N. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development[J]. The Plant Cell, 2005, 17(5): 1376-1386.
[24] MORCILLO F, GALLARD A, PILLOT M, JOUANNIC S, ABERLENC-BERTOSSI F, COLLIN M, VERDEIL J L, TREGEAR J W. EgAP2-1, an AINTEGUMENTA-like (AIL) gene expressed in meristematic and proliferating tissues of embryos in oil palm[J]. Planta, 2007, 226(6): 1353-1362.
[25] KARLOVA R, ROSIN F M, BUSSCHER-LANGE J, PARAPUNOVA V, DO P T, FERNIE A R, FRASER P D, BAXTER C, ANGENENT G C, MAAGD A. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening[J]. The Plant Cell, 2011, 23(3): 923-941.
[26] XU X, BAI H, LIU C, CHEN E, CHEN Q, ZHUANG J, SHEN B. Genome-wide analysis of microRNAs and their target genes related to leaf senescence of rice[J]. PLoS One, 2014, 9(12): e114313.