朱啟林 索龍 劉麗君 張雪彬 劉金霞 孟磊 何秋香 柯用春
摘 ?要:為探求熱帶地區(qū)生物質(zhì)在制備生物炭時(shí)對(duì)溫度的響應(yīng),以熱帶地區(qū)植物桉樹(shù)、橡膠樹(shù)和椰糠為原料,在300、500和700℃下制備成桉樹(shù)炭(E)、橡膠樹(shù)炭(RT)和椰糠炭(SC),利用元素分析儀、掃描電鏡(SEM)、X射線能譜分析儀(EDS)和傅立葉紅外光譜分析儀(FTIR)等研究不同裂解溫度對(duì)生物炭的酸堿度、結(jié)構(gòu)及元素組成和含量的影響。結(jié)果表明,隨裂解溫度升高,3種生物炭的灰分含量和pH均升高,其中300~500℃的增幅(17.60%~27.59%)要明顯高于500~700℃(4.97%~10.47%);3種材料生物炭對(duì)比,裂解溫度為300和500℃時(shí),pH值E>SC>RT,溫度為700℃時(shí)SC>E>RT。隨溫度升高,3種生物炭的產(chǎn)量降低,各溫度下,SC的產(chǎn)率明顯高于E和RT。C/N對(duì)比,各溫度條件下均為RT>E>SC。SC含有更多的元素,而E和RT的C含量更高。裂解溫度在300~500℃時(shí),E和RT的-OH振動(dòng)峰(3432 cm?1)隨溫度升高而升高,溫度升高至700℃,峰值出現(xiàn)降低;SC在300~700℃內(nèi),-OH振動(dòng)峰隨溫度升高而升高。波數(shù)在1659~1744 cm?1時(shí),E和RT的C=C振動(dòng)峰在300~500℃時(shí),隨溫度升高而升高,此時(shí),溫度再升高,峰值差異不大,SC在300~700℃內(nèi),峰值隨溫度升高而升高。2800~3000 cm?1,脂肪族的CH3和CH2基團(tuán)出現(xiàn),裂解溫度高于500℃時(shí),E的振動(dòng)峰與700℃基本持平,而RT的振動(dòng)峰在700℃出現(xiàn)了降低。785~880 cm?1波段的吸收峰為芳環(huán)C-H彎曲振動(dòng),裂解溫度高于500℃時(shí),隨溫度升高,3種原料所形成的振動(dòng)峰均降低。本研究結(jié)果顯示,椰糠制備的生物炭其元素組成、表面特征以及官能團(tuán)與桉樹(shù)和橡膠樹(shù)制備的生物炭存在較大差異性,且對(duì)裂解溫度的響應(yīng)更敏感。
關(guān)鍵詞:熱解溫度;灰分;不同材料;生物炭
中圖分類號(hào):TQ35 ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A
Effect of Pyrolysis Temperature on the Physicochemical Properties of Biochar from Different Materials in Hainan
ZHU Qilin1, 2, SUO Long3, LIU Lijun2, ZHANG Xuebin2, LIU Jinxia2, MENG Lei2, HE Qiuxiang2,
KE Yongchun1*
1. Agriculture and Rural Affairs Bureau of Sanya city, Sanya, Hainan 572000, China; 2. College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China; 3. Weinan Fruit Technology Promotion Center, Weinan, Shanxi 714000, China
Abstract: In order to explore the temperature response of biomass in the preparation of biochar in tropical areas, eucalyptus, rubber tree and coco bran were used as the raw materials to prepare eucalyptus charcoal (E) and rubber tree charcoal (RT) and coconut bran charcoal (SC) at 300, 500 and 700℃. Elemental analyzer, scanning electron microscope (SEM), X-ray energy spectrum analyzer (EDS) and Fourier infrared spectroscopy (FTIR) were used to study the pH, structure and element composition of biochar at different pyrolysis temperatures. With the increase of pyrolysis temperature, the ash content and pH of the three biochar increased, and the increase of 300?500℃ (17.60%?27.59%) was significantly higher than that of 500?700℃ (4.97%?10.47%). When the pyrolysis temperature was 300 and 500℃, the pH value was E > SC > RT, and when the temperature was 700℃, and that was SC > E > RT. With the increase of temperature, the yield of the three biochars decreased. At each temperature, the yield of SC was significantly higher than that of E and RT. C/N comparison showed that RT>E>SC under all temperature conditions. SC contained more elements, while E and RT had higher C content. When the pyrolysis temperature was 300?500℃, the -OH vibration peak (3432 cm?1) of E and RT increased with the increase of temperature, and the peak value decreased when the temperature increased to 700℃. SC was within 300?700℃, -OH vibration peak increased with increasing temperature. When the wavelength was 1659?1744 cm?1, when the C=C vibration peak of E and RT was 300?500℃, it increased with the temperature rise. At this time, the temperature rose again, the peak difference was not big, SC was 300?700℃, the peak value increased with increasing temperature. At 2800?3000 cm?1, aliphatic CH3 and CH2 groups appeared. When the cracking temperature was higher than 500℃, the vibration peak of E was basically the same as 700℃, while the vibration peak of RT decreased at 700℃. The absorption peak in the 785?880 cm?1 band was the aromatic ring C-H bending vibration. When the cracking temperature was higher than 500℃, the vibration peaks formed by the three raw materials all decreased with the increase of temperature. The results of this study show that the elemental composition, surface characteristics and functional groups of biochar prepared from coconut bran are quite different from those of biochar prepared from eucalyptus and rubber trees, and it is more sensitive to the pyrolysis temperature.
Keywords: pyrolysis temperature; ash contents; different materials; biochar
DOI: 10.3969/j.issn.1000-2561.2022.01.026
生物炭(biochar)是利用生物質(zhì)廢棄物在缺氧條件下,經(jīng)高溫?zé)崃呀猓ㄍǔ?lt;700℃)得到的難溶、穩(wěn)定且高度芳香化的富含碳素的固體產(chǎn)物[1-2]。生物炭豐富的孔隙結(jié)構(gòu)使其具有很好的吸附性[3],且脂肪族鏈狀結(jié)構(gòu)和高度芳香化結(jié)構(gòu)使其性質(zhì)穩(wěn)定[4],在去除環(huán)境污染物質(zhì)[5]、修復(fù)土壤環(huán)境[6]、改良土壤理化性質(zhì)[7]、提高作物產(chǎn)量[8]及環(huán)境全球氣候變暖趨勢(shì)[9-10]等領(lǐng)域均效果顯著。生物炭的性質(zhì)與其制備工藝關(guān)系密切,隨裂解溫度升高,生物炭經(jīng)歷脫水、裂解和芳香化等過(guò)程,這對(duì)生物炭性質(zhì)有著顯著影響[11];研究證實(shí),隨裂解溫度升高,生物炭的有機(jī)碳含量、陽(yáng)離子交換量降低,而灰分和比表面積會(huì)逐漸升高[12-14]。
生物炭制備原料豐富,致使相同的制備工藝,不同材料制備的生物炭理化性質(zhì)也存在一定差異,生物炭原料不同,會(huì)導(dǎo)致生物炭表面官能團(tuán)的種類和數(shù)目及表面化學(xué)性質(zhì)不同[15-16]。KEILUWEIT等[17]研究發(fā)現(xiàn),生物炭原料在結(jié)構(gòu)、內(nèi)含物等方面存在本質(zhì)差別,高溫裂解后,不同原料生物炭在結(jié)晶度、交聯(lián)和分支等結(jié)構(gòu)特征上差異顯著。竹子、椰子殼等木質(zhì)素含量高的生物質(zhì)炭化后大孔徑結(jié)構(gòu)增多,而作物秸稈等纖維素含量高的生物質(zhì)炭化后結(jié)構(gòu)以微孔為主[18],灰分含量、礦質(zhì)養(yǎng)分元素種類和pH方面,竹炭生物炭均高于木炭[19]。不同原料制備的生物炭碳含量也存在差異,一般秸稈生物炭碳含量為40%~ 80%,而木質(zhì)生物炭碳含量為60%~85%[20]。
生物炭作為土壤改良劑,其孔隙結(jié)構(gòu)、比表面積、化學(xué)穩(wěn)定性等可直接對(duì)土壤環(huán)境造成影響[21-23]。在制備過(guò)程中,了解不同材料生物炭在不同裂解溫度下的理化特征,有利于進(jìn)一步探究不同生物炭在改良土壤理化性質(zhì)方面的應(yīng)用前景。目前國(guó)內(nèi)外針對(duì)生物炭的研究主要集中于制備工藝(裂解溫度、裂解時(shí)間等)對(duì)生物炭理化性質(zhì)的影響[24-25],而針對(duì)不同材料生物炭在不同溫度下理化性質(zhì)的對(duì)比尚待探究。鑒于此,本研究選取3種海南廣泛存在的生物質(zhì)材料,分別在厭氧條件下300、500和700℃熱裂解制備生物炭,分析不同溫度下原料對(duì)生物炭元素含量及表面結(jié)構(gòu)特征等的影響,以期為生物炭在海南農(nóng)田土壤改良方面提供理論依據(jù)。
1 ?材料與方法
1.1 ?材料
試驗(yàn)中生物質(zhì)炭化采用限氧控溫炭化法,3種生物質(zhì)原料為海南典型木本植物桉樹(shù)和橡膠樹(shù)以及果實(shí)外殼椰糠,具體制備過(guò)程為:將生物質(zhì)材料干燥、粉碎,稱取相應(yīng)質(zhì)量置于鋁箔紙中,包裹好后用針頭在鋁箔紙表面均勻扎孔,然后置于KTF管式真空氣氛電阻爐(江蘇宜興市前錦爐業(yè)設(shè)備有限公司生產(chǎn))內(nèi),密封后抽真空,然后充氮?dú)猓兌取?9.99%)形成厭氧環(huán)境并加熱,達(dá)到預(yù)設(shè)溫度300、500和700℃后開(kāi)始計(jì)時(shí),2 h后切斷電源,持續(xù)通入氮?dú)饫鋮s至室溫,取出樣品稱重。所獲得的生物質(zhì)炭分別標(biāo)記為:?jiǎn)棠镜蔫駱?shù)枝條(eucalyptus,E)、橡膠樹(shù)枝條(rubber tree,RT)、作為培養(yǎng)基質(zhì)的椰絲(椰子果實(shí)粉碎,shredded coconut,SC)。
1.2 ?方法
1.2.1 ?pH測(cè)定 ?稱取1.00 g生物炭放入50 mL離心管內(nèi),加入20 mL無(wú)CO2蒸餾水密封,室溫180 r/min振蕩3 h,過(guò)濾,棄去初濾液5 mL,收集濾液,用pH計(jì)測(cè)定濾液pH。
1.2.2 ?產(chǎn)率測(cè)定 ?生物炭產(chǎn)率為炭化后與炭化前質(zhì)量比。
1.2.3 ?灰分和C、N含量測(cè)定 ?將30 mL瓷坩堝于650℃下置于高溫爐中灼燒至恒重,冷卻稱重,稱取生物炭1.00 g置于已灼燒至恒重的瓷坩堝中,將坩堝送入高溫電爐中,打開(kāi)坩堝蓋,逐漸升高溫度,在800℃灰化4 h,冷卻取出稱量[21]。稱取100 mg過(guò)100目篩生物質(zhì)炭樣品,用LECO CNS 2000儀(LECO公司,US)測(cè)定C、N含量,并計(jì)算生物炭C/N。
1.2.4 ?傅立葉變換紅外光譜分析(FTIR) ?用傅立葉變換紅外光譜儀(Nicolet 6700,美國(guó)尼高利)測(cè)定生物炭的紅外光譜[23]。將生物炭磨碎后過(guò)100目篩,烘干后,將樣品與KBr以質(zhì)量比1∶200混合,用瑪瑙研缽研磨后于壓片機(jī)上壓成均勻的薄片,紅外光譜儀測(cè)定范圍為400~ 4000 cm?1,分辨率為4 cm?1,通過(guò)波譜特征分析生物質(zhì)炭的表面特征。
1.2.5 ?掃描電鏡分析 ?采用掃描電子顯微鏡(S-3400 N,日本日立)觀測(cè)生物炭樣品形貌及表面特征。分析前將生物質(zhì)炭過(guò)篩烘干,隨機(jī)選取生物炭樣品外表面部位,放置在黑色背景膠板上,調(diào)整視野清晰度,選擇結(jié)構(gòu)完整的部位拍照,分析并保存。
1.2.6 ?X-射線能譜分析 ?稱取1 g生物質(zhì)炭樣品,用OCT化合物(Sakura Finetek,日本)涂片,立即置于液氮中冷卻,在?150℃低溫下測(cè)定表面形態(tài)及元素組成。
1.3 ?數(shù)據(jù)處理
試驗(yàn)結(jié)果為3次重復(fù)的平均值,采用Microsoft Excel 2016軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行整理,origin 2016作圖。通過(guò)DPS 16.05軟件分析文中各指標(biāo)的差異性和相關(guān)性,多重比較采用Least Significant Difference(LSD)法進(jìn)行差異顯著性檢驗(yàn),顯著性水平為P<0.05。
2 ?結(jié)果與分析
2.1 ?不同裂解溫度下3種生物炭產(chǎn)率對(duì)比
3種原料不同溫度下生物炭產(chǎn)率如圖1所示,相同材料制備的生物炭,隨溫度升高,產(chǎn)率降低,裂解溫度從300℃升高至700℃,桉樹(shù)炭(E)和橡膠樹(shù)炭(RT)產(chǎn)率分別從33.63%降至27.45%、44.65%降至26.71%;而椰糠炭(SC)產(chǎn)率從58.68%降至43.71%。3種原料制備的生物炭各溫度條件下均為SC產(chǎn)率最高,300、500和700℃分別為58.68%、46.13%和43.71%。300℃時(shí)E產(chǎn)率最低,裂解溫度為500℃和700℃時(shí),E和RT產(chǎn)率無(wú)差異。研究發(fā)現(xiàn),以椰子外殼為原料比橡膠樹(shù)和桉樹(shù)為原料制備生物炭的產(chǎn)率高,這可能與生物質(zhì)本身的木質(zhì)素與纖維素含量比例不同有關(guān)。
2.2 ?不同裂解溫度下3種生物炭灰分含量、灰分堿度和pH變化
3種生物炭灰分含量均隨溫度升高而增加(表1),當(dāng)裂解溫度從300℃升高至700℃,桉樹(shù)生物炭(E)灰分含量從13.30%升高至27.14%,橡膠樹(shù)生物炭(RT)灰分含量從16.87%升高至30.14%,椰糠炭從25.40%升高至35.10%;相同裂解溫度下,SC的灰分含量要高于E和RT。3種原料生物炭的pH均隨溫度升高而升高,當(dāng)裂解溫度低于500℃時(shí),隨溫度升高pH增幅更大。3種材料生物炭對(duì)比,裂解溫度為300℃和500℃時(shí),桉樹(shù)炭(E)pH明顯高于橡膠樹(shù)炭(RT)和椰糠炭(SC), pH值E>SC>RT,當(dāng)裂解溫度達(dá)到700℃時(shí),SC的pH最高,pH值SC>E>RT(表1)。
2.3 ?不同裂解溫度下3種生物炭C和N含量及C/N變化
3種材料生物炭不同裂解溫度下C和N含量及C/N如表2所示,不同溫度制備的生物炭其C和N含量及C/N存在差異,前期研究指出,生物炭的C含量大多在30%~90%之間,本研究中,3種材料制備的生物炭的C含量在57.21%~82.36%之間。3種材料生物炭的C含量均升高,這與多數(shù)研究結(jié)果一致。桉樹(shù)炭和椰糠炭的N含量均隨裂解溫度的升高而降低,而橡膠樹(shù)炭的N含量隨溫度升高而升高,這說(shuō)明不同材料生物炭的N含量隨溫度變化的響應(yīng)并不相同;3種材料生物炭的N含量對(duì)比,各溫度條件下,椰糠炭的N含量最高,其次為桉樹(shù)炭,橡膠樹(shù)炭的N含量最低。3種材料生物炭的C/N均隨溫度升高而降低,不同材料對(duì)比,各裂解溫度條件下排序?yàn)橄鹉z樹(shù)炭>桉樹(shù)炭>椰糠炭。
2.4 ?熱解溫度對(duì)生物炭外貌及元素組成的影響
2.4.1 ?掃描電鏡分析 ?不同裂解溫度下3種材料
制得的生物炭電鏡掃描存在較大差異(圖2)。裂解溫度為300℃時(shí),桉樹(shù)炭(E)孔隙結(jié)構(gòu)很少,表面形成了少量的絮狀物質(zhì),隨裂解溫度升高,達(dá)到500℃時(shí),此時(shí)生物炭表面開(kāi)始出現(xiàn)明顯的孔隙結(jié)構(gòu),當(dāng)裂解溫度為700℃時(shí),生物炭呈現(xiàn)規(guī)則的孔隙結(jié)構(gòu),且生物炭表面附著絮狀物質(zhì),孔隙大小均小于10 μm。對(duì)橡膠樹(shù)生物炭(RT)電鏡掃描圖分析發(fā)現(xiàn),裂解溫度為300℃時(shí),生物炭已經(jīng)形成了孔隙結(jié)構(gòu),此時(shí)孔隙結(jié)構(gòu)不規(guī)則,但均小于10 μm,當(dāng)裂解溫度達(dá)到500℃時(shí),孔徑結(jié)構(gòu)開(kāi)始慢慢變得規(guī)則,但孔隙小于10 μm,且表面附著細(xì)小的絮狀物質(zhì),裂解溫度為700℃時(shí),形成了規(guī)則的孔隙結(jié)構(gòu),孔隙結(jié)構(gòu)變大。以椰糠為材料制備的生物炭(SC),裂解溫度為300℃時(shí),基本保持了椰糠的組織結(jié)構(gòu),椰糠炭并未出現(xiàn)規(guī)則的孔隙結(jié)構(gòu),表面形成了不規(guī)則的絮狀物質(zhì),裂解溫度為500℃時(shí),生物炭開(kāi)始形成不規(guī)則的孔狀結(jié)構(gòu),表面伴隨形成了塊狀物質(zhì),且在生物炭表面附著有碎屑物質(zhì),裂解溫度達(dá)到700℃時(shí),生物炭表面的孔狀結(jié)構(gòu)變多,此時(shí)的表面積變大,附著的碎屑物質(zhì)消失,結(jié)構(gòu)相對(duì)規(guī)則。
2.4.2 ?X-射線能譜分析 ?不同裂解溫度下制備的生物炭的X-射線能譜見(jiàn)圖3,生物炭的元素組成和含量受裂解溫度的影響,裂解溫度為300℃時(shí)形成的桉樹(shù)炭,其主要成分為C元素,其次為K和O,裂解溫度達(dá)500℃時(shí),除C和K元素外,Cl和Ca元素開(kāi)始析出,且有金屬離子Cu出現(xiàn),當(dāng)裂解溫度為700℃時(shí),Al和P元素開(kāi)始出現(xiàn)。以橡膠樹(shù)為原料300℃制成生物炭后,C含量最高,其次為O,還含有Al、P、K和Ca元素,溫度升高至500℃時(shí),Mg和S元素開(kāi)始析出,當(dāng)溫度>700℃時(shí),Si和Cu元素析出。裂解溫度為300℃時(shí),椰糠制成的生物炭析出的元素較多,除去含量最高的C元素之外,還有O、Na、Al、Si、P、Cl、K和Ca元素,裂解溫度達(dá)到500℃時(shí),金屬元素Mg和Fe開(kāi)始析出,700℃椰糠炭中析出S和Cu元素。本研究結(jié)果顯示,椰糠炭含有更多的元素種類,原因在于其生物炭元素含量更容易析出,而橡膠樹(shù)和桉樹(shù)生物炭C含量更高。
2.4.3 ?傅立葉變換紅外光譜分析 ?以波數(shù)(4000~ 500 cm?1)為橫坐標(biāo),透光率(%)為縱坐標(biāo),繪制不同材料生物炭在不同溫度下的FTIR圖譜(圖4)。紅外光譜顯示,熱解溫度影響生物炭的碳結(jié)構(gòu),3種原料類型的生物炭熱序列相似。裂解溫度在300~500℃時(shí),桉樹(shù)炭(E)和橡膠樹(shù)炭(RT)-OH振動(dòng)峰(3432 cm?1)隨溫度升高而降低,溫度升高至700℃,峰值出現(xiàn)降低;而椰糠炭(SC)在300~700℃內(nèi),-OH振動(dòng)峰隨溫度升高而升高,說(shuō)明隨溫度升高,生物炭烷基基團(tuán)丟失,芳香化程度更高,同時(shí)此波段中有亞甲基振動(dòng),而隨溫度升高,逐漸被降解。波數(shù)在1659~1744 cm?1時(shí),E和RT的C=C振動(dòng)峰在300~500℃時(shí),隨溫度升而降低,此時(shí),溫度再升高,峰值差異不大,說(shuō)明裂解溫度為500℃時(shí),E和RT已經(jīng)形成了穩(wěn)定的芳香族化合物,而SC在300~700℃內(nèi),峰值隨溫度升高而升高,可以看出,不同原料制成的生物炭對(duì)溫度的響應(yīng)存在一定差異。2800~ 3000 cm?1,脂肪族的CH3和CH2基團(tuán)開(kāi)始出現(xiàn),可能是脫羧作用導(dǎo)致脂肪族碳?xì)浠衔锏男纬?,?dāng)裂解溫度高于500℃時(shí),E的振動(dòng)峰與700℃基本持平,而RT的振動(dòng)峰在700℃出現(xiàn)了降低。785~880 cm?1波段的吸收峰為芳環(huán)C-H彎曲振動(dòng),裂解溫度高于500℃時(shí),隨溫度升高,3種原料所形成的振動(dòng)峰均降低,說(shuō)明高溫條件下C-H鍵逐漸減弱消失,當(dāng)裂解溫度低于500℃時(shí),E和RT的振動(dòng)峰基本不變,但當(dāng)裂解溫度升高至700℃時(shí),峰值明顯降低,而SC則表現(xiàn)為隨裂解溫度升高峰值降低的特點(diǎn)。本研究結(jié)果顯示,椰糠制備的生物炭其官能團(tuán)與桉樹(shù)和橡膠樹(shù)制備的生物炭存在較大差異性,且對(duì)裂解溫度的響應(yīng)也存在一定差異。
3 ?討論
生物炭制備過(guò)程中,裂解溫度是一個(gè)包含脫水、裂解和炭化3個(gè)過(guò)程復(fù)雜的熱化學(xué)過(guò)程[22],溫度作為裂解反應(yīng)的最重要因素,與生物炭制炭率和理化性質(zhì)密切相關(guān)[23]。生物炭材料對(duì)其性質(zhì)也會(huì)產(chǎn)生一定影響,一般生物炭材料決定了表面官能團(tuán)種類和數(shù)量,以及生物炭表面化學(xué)性質(zhì)[24]。
3.1 ?裂解溫度對(duì)生物炭理化性質(zhì)的影響
對(duì)于生物炭的碳含量變化,袁帥等[20]研究表明,生物炭碳含量大多在30%~90%之間,隨裂解溫度升高,生物炭碳含量呈降低趨勢(shì),這與本研究結(jié)果一致。本研究中,3種生物炭產(chǎn)率均隨溫度升高而降低,產(chǎn)率在25%~60%之間,裂解溫度達(dá)到500℃后,降低趨勢(shì)逐漸減緩,主要原因在于生物質(zhì)炭成分主要為纖維素、半纖維素和木質(zhì)素等,在較低溫度下,原料中的纖維素和半纖維素等首先開(kāi)始分解,造成生物炭產(chǎn)率的急速下降,導(dǎo)致低溫環(huán)境的制炭率變化較大,而當(dāng)溫度達(dá)到500℃左右,分解成分主要為木質(zhì)素,到達(dá)此溫度后,生物質(zhì)基本熱解完全,所以產(chǎn)量變化趨于平緩[25-26]。
生物炭的pH與灰分之間存在一定的關(guān)系,簡(jiǎn)敏菲等[26]對(duì)不同溫度下水稻秸稈生物炭分析發(fā)現(xiàn),生物炭灰分和pH之間呈極顯著的正相關(guān)關(guān)系(P<0.01)。本研究中,同一材料制備的生物炭,其pH隨制備溫度升高而升高,主要原因在于制備溫度較低時(shí),生物炭表面通常含有豐富的-COO-和-O-等有機(jī)陰離子含氧官能團(tuán),形成的酸性物質(zhì)會(huì)有部分殘留在生物炭中[27];而當(dāng)熱解溫度升高時(shí),一方面高溫條件下,酸性物質(zhì)會(huì)逐漸揮發(fā),所以pH會(huì)有所升高[28],另一方面,高溫制備生物炭時(shí),會(huì)析出堿金屬,堿金屬含量會(huì)隨溫度升高而增加,所以導(dǎo)致生物炭pH隨溫度升高而增加[29]。本研究中,隨溫度升高,剩余灰分占生物質(zhì)初始灰分的質(zhì)量分?jǐn)?shù)下降,300℃的灰分含量顯著高于500℃和700℃,當(dāng)溫度在500~ 700℃時(shí),溫度升高灰分含量下降趨勢(shì)減緩,而對(duì)應(yīng)的pH趨勢(shì)也呈現(xiàn)出此規(guī)律,這與先前諸多研究結(jié)果一致。
研究指出[25],溫度達(dá)到500℃時(shí),生物炭芳香化程度增強(qiáng),AHMAD等[30]以花生殼為原料制成生物炭后分析發(fā)現(xiàn),在300℃時(shí),生物炭?jī)?nèi)仍保留CH2基團(tuán),當(dāng)溫度升高,達(dá)到700℃時(shí),CH2全部消失,形成難降解的芳香族結(jié)構(gòu)。本研究中,當(dāng)溫度升至500℃后,C-H和O-H鍵的吸收振動(dòng)峰逐漸降低,而C=C和C=O鍵吸收振動(dòng)峰增強(qiáng),說(shuō)明隨溫度升高,纖維素和木質(zhì)素等被降解,芳香化程度增強(qiáng),熱穩(wěn)定性和生物化學(xué)穩(wěn)定性增強(qiáng)。
3.2 ?不同生物炭理化性質(zhì)的差異對(duì)比
熱解過(guò)程中,生物炭原材料決定了生物炭的基本結(jié)構(gòu),對(duì)其理化性質(zhì)具有決定性影響。本研究中,裂解溫度在300~500℃內(nèi),RT和SC生物炭質(zhì)量損失最高,500~700℃內(nèi)產(chǎn)率降低幅度變緩,這與李飛躍等[31]以核桃殼為原料在200~ 700℃制備生物炭的結(jié)果一致,原因在于,生物質(zhì)在低溫條件下(300℃)分解主要以纖維素和半纖維素為主,所以生物炭產(chǎn)率隨溫度升高迅速降低,500℃時(shí)生物質(zhì)分解以木質(zhì)素為主,溫度再升高,原料熱解趨于完全,產(chǎn)率變化較為平緩[25],各溫度下,椰糠炭的產(chǎn)量均顯著高于桉樹(shù)炭和橡膠樹(shù)炭,原因可能是由于桉樹(shù)和橡膠樹(shù)木質(zhì)素含量較高,高溫導(dǎo)致木質(zhì)素?zé)峤馔耆援a(chǎn)率相對(duì)較低。CANTRELL等[32]研究指出,可以制備pH介于4~12之間的生物炭。本研究中pH均隨溫度升高而升高,其中裂解溫度為300℃時(shí),3種生物炭pH呈中性,當(dāng)溫度高于500℃時(shí),pH均為堿性。700℃椰糠生物炭pH最高,可能原因是隨溫度升高,椰糠炭化析出堿金屬,一定溫度范圍內(nèi),析出量與溫度呈正比。同時(shí)本研究數(shù)據(jù)表明,椰糠生物炭中含有大量的金屬元素,這可能是椰糠炭pH高的重要原因。生物炭制備過(guò)程中,溫度是裂解反應(yīng)最重要的因素,一般情況下,溫度越高,碳含量越高。3種材料對(duì)比發(fā)現(xiàn),各裂解溫度下,碳含量最低的均為椰糠炭,而桉樹(shù)炭和橡膠樹(shù)炭的碳含量無(wú)差異,說(shuō)明果實(shí)外殼制備的生物炭的碳含量要顯著低于喬木制備的生物炭。
參考文獻(xiàn)
[1] ZHANG Z K, ZHU Z Y, SHEN B X, LIU L. Insights into biochar and hydrochar production and applications: a review[J]. Energy, 2019, 171(15): 581-598.
[2] LEHMANNA J, RILLIG M C, THIES J, MASIELLO C A, HOCKADAYD W C, David C. Biochar effects on soil biota-a review[J]. Soil Biology and Biochemistry, 2011, 43(9): 1812-1836.
[3] LI F Y, ZIMMERMAN A R, HU X, GAO B. Removal of aqueous Cr(VI) by Zn- and Al-modified hydrochar[J]. Chemosphere, 2020, 260: 127610.
[4] KIM H B, Kim J G, Kim T, ALESSI D S, BAEK K. Interaction of biochar stability and abiotic aging: Influences of pyrolysis reaction medium and temperature[J]. Chemical Engineering Journal, 2021, 411(7): 128441.
[5] GUPTA S, SIREESHA S, SREEDHAR I, PATEL C M, ANITHA K L. Latest trends in heavy metal removal from wastewater by biochar based sorbents[J]. Journal of Water Process Engineering, 2020, 38: 101561.
[6] TENG F Y, ZHANG Y X, WANG D Q, SHEN M, HU D F. Iron-modified rice husk hydrochar and its immobilization effect for Pb and Sb in contaminated soil[J]. Journal of Hazardous Materials, 2020, 398: 122977.
[7] 季雅嵐, 索 ?龍, 解 ?鈺, 王小淇, 方雅各, 楊 ?霖, 趙伶茹, 孟 ?磊. 不同生物質(zhì)炭對(duì)海南磚紅壤性質(zhì)及N2O排放的影響[J]. 土壤, 2017, 49(6): 1172-1178.
JI Y L, SUO L, XIE Y, WANG X Q, FANG Y G, YANG L, ZHAO L R, MENG L. Effect of different biochars on Hainan latosol properties and N2O emission[J]. Soils, 2017, 49(6): 1172-1178. (in Chinese)
[8] 盧慧宇, 杜文婷, 張弘弢, 徐佳星, 韓 ?燕, 鄭景瑞, 王仁杰, 楊學(xué)云, 張樹(shù)蘭. 水肥管理及生物炭施用對(duì)作物產(chǎn)量和磷效率及磷淋失的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2021, 29(1): 187-196.
LU H Y, DU W T, ZHANG H T, XU J X, HAN Y, ZHENG J R, WANG R J, YANG X Y, ZHANG S L. Effect of water and nutrient management and biochar application on crop yield, phosphorus use efficiency, and phosphorus leaching[J]. Chinese Journal of Eco-Agriculture, 2021, 29(1): 187-196. (in Chinese)
[9] 趙 ?穎, 張金波, 蔡祖聰. 添加硝化抑制劑、秸稈及生物炭對(duì)亞熱帶農(nóng)田土壤N2O排放的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2018, 37(5): 1023-1034.
ZHAO Y, ZHANG J B, CAI Z C. Effect of nitrification inhibitor, crop residues, and biochar applications on N2O emissions by subtropical agricultural soils[J]. Journal of Agro- Environment Science, 2018, 37(5): 1023-1034. (in Chinese)
[10] 潘鳳娥, 胡俊鵬, 索 ?龍, 王小淇, 季雅嵐, 孟 ?磊. 添加玉米秸稈及其生物質(zhì)炭對(duì)磚紅壤N2O排放的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2016, 35(2): 396-402.
PANG F E, HU J P, SUO L, WANG X Q, JI Y L, MENG L. Effect of cron stalk and its biochar on N2O emissions from latosol soil[J]. Journal of Agro-Environment Science, 2016, 35(2): 396-402. (in Chinese)
[11] LI F Y, WU X, JI W C, GUI X Y, CHEN Y H, ZHANG J R, ZHOU C H, REN T B. Effects of pyrolysis temperature on properties of swine manure biochar and its environmental risks of heavy metals[J]. Journal of Analytical and Applied Pyrolysis, 2020, 152: 104945.
[12] 姚紅宇, 唐光木, 葛春輝, 賈洪濤,徐萬(wàn)里. 炭化溫度和時(shí)間與棉稈炭特性及元素組成的相關(guān)關(guān)系[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2013, 29(7): 199-206. (in Chinese)
YAO H Y, TANG G M, GE C H, JIA H T, XU W L. Characteristics and elementary composition of catton stalk-char in different carbonization temperature and time[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(7): 199-206.
[13] ZHANG B P, ZHOU S F, ZHOU L H, WEN J L, YUAN Y. Pyrolysis temperature-dependent electron transfer capacities of dissolved organic matters derived from wheat straw biochar[J]. Science of The Total Environment, 2019, 696:133895.
[14] ADHIKARI S, GASCO G, MENDEZ A, SURAPANENI A, JEGATHEESAN V, SHAH K, PAZ-FERREIRO J. Influence of pyrolysis parameters on phosphorus fractions of biosolids derived biochar[J]. Science of The Total Environment, 2019, 695:133846.
[15] TASKIN E, BUENO C C, ALLEGRETTA I, TERZANO R, ROSA A H, LOFFREDO E. Multianalytical characterization of biochar and hydrochar produced from waste biomasses for environmental and agricultural applications[J]. Chemosphere, 2019, 233: 422-430.
[16] TSECHANSKY L, GRABER E R. Methodological limitations to determining acidic groups at biochar surfaces via the Boehm titration[J]. Carbon, 2014, 66(1): 730-733.
[17] KEILUWEIT M, NICO P S, JOHNSON M G, KLEBER M. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environ Sci Technol, 2010, 44: 1247-1253.
[18] JOSEPH S D, DOWNIE A, MUNROE P, CROSKY A. Biochar for carbon sequestration, reduction of greenhouse gas emissions and enhancement of soil fertility: a review of the materials science[J]. Rend Circ Mat Palermo Suppl, 2007, 48: 101-106.
[19] 高海英, 何緒生, 陳心想, 張 ?雯,耿增超. 生物炭及炭基硝酸銨肥料對(duì)土壤化學(xué)性質(zhì)及作物產(chǎn)量的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2012, 31(10): 1948-1955.
GAO H Y, HE X S, CHEN X X, ZHANG W, GENG Z C. Effect of biochar and biochar-based ammonium nitrate fertilizers on soil chemical properties and crop yield[J]. Journal of Agro-Environment Science, 2012, 31(10): 1948-1955. (in Chinese)
[20] 袁 ?帥, 趙立欣, 孟海波, 沈玉君. 生物炭主要類型、理化性質(zhì)及其研究展望[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2016, 22(5): 1402-1417.
YUAN S, ZHAO L X, MENG H B, SHEN Y J. The main types of biochar and their properties and expectative researches[J]. Journal of Plant Nutrition and Fertilizer2016, 22(5): 1402-1417. (in Chinese)
[21] KARIMI A, MOEZZI A, CHOROM M, ENAYATIZAMIR N. Application of biochar changed the status of nutrients and biological activity in a calcareous soil[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(2): 450-459.
[22] HOSSAIN M K, VLADIMIR S, CHAN Y, ZIOLKOWSKI A, NELSONA P F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J]. Journal of Environmental Management, 2011, 92(1): 223-228.
[23] ZHAO B, O'CONNOR D, ZHANG J L, PENG T Y, SHEN Z T, TSANG D C W, HOU D Y. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar[J]. Journal of Cleaner Production, 2018, 174: 977-987.
[24] WANG X B, ZHOU W, LIANG G Q, SONG D L, ZHANG X Y. Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil[J]. Science of the Total Environment, 2015, 538: 137-144.
[25] 葉協(xié)鋒, 周涵君, 于曉娜, 張曉帆, 李志鵬, 付仲毅, 孟 ?琦. 熱解溫度對(duì)玉米秸稈炭產(chǎn)率及理化特性的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2017, 23(5): 1268-1275.
YE X F, ZHOU H J, YU X N, ZHANG X F, LI Z P, FU Z Y, MENG Q. Physiochemical properties and yields of corn- stalk-biochar under different pyrolyzed temperatures[J]. Plant Nutrition and Fertilizer Science, 2017, 23(5): 1268- 1275. (in Chinese)
[26] 簡(jiǎn)敏菲, 高凱芳, 余厚平. 不同裂解溫度對(duì)水稻秸稈制備生物炭及其特性的影響[J]. 環(huán)境科學(xué)學(xué)報(bào), 2016, 36(5): 1757-1765.
JIAN M F, GAO K F, YU H P. Effects of different pyrolysis temperatures on the preparation and characteristics of bio- char from rice straw[J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1757-1765. (in Chinese)
[27] YUAN J H, XU R K, ZHANG H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3): 3488-3497.
[28] FIDEL R B, LAIRD D A, THOMPSON M L, LAWRINENKO M. Characterization and quantification of biochar alkalinity[J]. Chemosphere, 2017, 167: 367-373.
[29] 于曉娜, 張曉帆, 李志鵬, 周涵君, 付仲毅, 孟 ?琦, 葉協(xié)鋒. 熱解溫度對(duì)花生殼生物炭產(chǎn)率及部分理化特性的影響[J]. 河南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2017, 51(1): 108-114.
YU X N, ZHANG X F, LI Z P, ZHOU H J, FU Z Y, MENG Q, YE X F. Pyrolysis temperature on the peanut-shell-bio?c?har production rate and some physical and chemical properties[J]. Journal of Henan Agricultural University, 2017, 51(1): 108-114. (in Chinese)
[30] AHMAD M, LEE S S, DOU X M, MOHAN, SUNG J K, YANG J E. Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water[J]. Bioresource Technology, 2012, 118: 536-544.
[31] 李飛躍, 汪建飛, 謝 ?越, 李 ?賀, 李孝良, 李粉茹. 熱解溫度對(duì)生物質(zhì)炭碳保留量及穩(wěn)定性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2015, 31(4): 266-271.
LI F Y, WANG J F, XIE Y, LI H, LI X L, LI F R. Effects of pyrolysis temperature on carbon retention and stability of biochar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(4): 266-271. (in Chinese)
[32] CANTRELL K B, HUNT P G, UCHIMIYA M, NOVAK J M,RO K S. Impact of pyrolysis temperature and manuresource on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107: 419-428.