国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

兩類一致膨脹圖的PI指數(shù)*

2022-05-10 00:51霞,衛(wèi)
關鍵詞:等距易知綜上

紅 霞,衛(wèi) 哲

(洛陽師范學院 數(shù)學科學學院,河南 洛陽 471022)

1 引言

拓撲指數(shù)能反映有機分子的某些結(jié)構(gòu)特征,并且對刻畫分子圖和建立分子結(jié)構(gòu)與特征之間的關系具有重要作用. 目前已有很多關于圖的頂點PI指數(shù)和邊PI指數(shù)的研究[1-9].最近,李星星等人確定了特殊圖的笛卡爾積圖的PI指數(shù)[9].本文研究圈圖和輪圖的一致膨脹圖,計算出了它們的PI指數(shù).

2 基本概念

本文中的圖均為簡單無向圖,相關術語可見文獻[4].設G是連通圖,用dG(u,v)表示G中從頂點u到頂點v的距離.對于邊e∈E(G),記NG(e)為e在G中的邊鄰域,NG[e]=NG(e)∪{e}為e在G中邊閉鄰域,dG(e)=|NG(e)|為e在G中的度.本文將dG(e)簡記為d(e).對n≥1,記Pn為含有n個頂點的路,F(xiàn)n+1為含有n+1個頂點的扇圖,即一個頂點與Pn的各頂點都相連的圖.對n≥3,記Cn為含有n個頂點的圈,Wn+1為含有n+1個頂點的輪圖,即一個頂點與圈Cn上每個頂點相連而成的圖.

定義1[8]對于圖G,設V(G)={v1,v2,…,vn},定義G的膨脹圖FG為:G的一個頂點vi對應到FG的一個頂點集Vi,V(FG)={vij|vij∈Vi,i=1,2,…,n,j=1,2,…ti,|Vi|=ti∈Z+},vijvkl∈E(FG),j=1,2,…,ti,l=1,2,…,ti當且僅當i=k或vivk∈E(G).顯然,當t1=t2=…=tn=1時FG=G.若t1=t2=…=tn,則稱FG為G的一致膨脹圖,記作UFG.

定義2[8]令圖G=(V,E)是簡單連通圖,圖G的PI指數(shù)定義為

這里邊e=uv,neu(e|G)表示G中到點u的距離比到點v的距離更近的邊的數(shù)目,nev(e|G)表示G中到點v的距離比到點u的距離更近的邊的數(shù)目.G中與點u和點v距離相等的邊不計入e的PI指數(shù).將neu(e|G)簡記為neu.

下文中將G中與點u和點v距離不相等的邊的數(shù)目記為ne.

引理1[8]對于扇圖Fn+1,有

引理2對于圈圖Cn,有

證明設V(Cn)={v1,v2,…,vn},E(Cn)={ei=viv(i+1)(modn)|i=1,2,…,n}.對于e∈uv且i=1,2,…,n,當n為偶數(shù)時有nei=n-2,所以PI(Cn)=n(n-2);當n為奇數(shù)時有nei=n-1,所以PI(Cn)=n(n-1).

引理3[2]對于輪圖Wn+1,有

3 主要結(jié)果

定理1對于圈圖Cn,有

證明對于e=uv且i=1,2,…,n,分以下兩種情況討論.

當n為偶數(shù)時,對于e∈[Vi,Vi],易知UFCn中不與e關聯(lián)的邊與點u和點v等距,即ne=d(e)=d(u)+d(v)-2.因此

對于e∈[Vi,V(i+1)(modn)],在UFCn中與e相關聯(lián)的邊均與點u和點v不等距,故

d(e)=2(3t-2)=6t-4.

在UFCn中不與e關聯(lián)且到點u和點v不等距的邊的數(shù)目為

綜上,有

當n為奇數(shù)時,對于e∈[Vi,Vi],與上述情況相同,有

對于e∈[Vi,V(i+1)(modn)],在UFCn中與e相關聯(lián)的邊均與點u和點v不等距,故

d(e)=2(3t-2)=6t-4.

在UFCn中不與e關聯(lián)且到點u和點v不等距的邊的數(shù)目為

綜上,有

定理2對于輪圖Wn+1,有

證明設V(Wn+1)={v0,v1,…,vn}.注意到UFW3+1為完全圖,此時易證結(jié)論成立.

設n=4,e∈uv且i=1,2,3,4.對于e∈[Vi,Vi],易知UFWn+1中不與e關聯(lián)的邊與點u和點v等距,即ne=d(e)=d(u)+d(v)-2.因此

對于e∈[V5,V5],易知UFWn+1中不與e關聯(lián)的邊與點u和點v等距,故ne=d(e)=2(5t-2)=10t-4.因此

對于e∈[Vi,V(i+1)(mod4)],在UFW4+1中與e相關聯(lián)的邊均與點u和點v不等距,故

d(e)=2(4t-2)=8t-4.

在UFW4+1中不與e關聯(lián)且到點u和點v不等距的邊的數(shù)目為

對于e∈[Vi,V5],在UFW4+1中與e相關聯(lián)的邊均與點u和點v不等距,故

d(e)=(4t-2)+(5t-2)=9t-4.

綜上,有

設n≥5,e∈uv且i=1,2,…,n.對于e∈[Vi,Vi],易知UFWn+1中不與e關聯(lián)的邊與點u和點v等距,故ne=d(e)=2(4t-2)=8t-4.因此

對于e∈[Vn+1,Vn+1],易知UFWn+1中不與e關聯(lián)的邊與點u和點v等距,從而ne=d(e)=2(n+1)-4.因此

對于e∈[Vi,V(i+1)(modn)],在UFWn+1中與e相關聯(lián)的邊均與點u和點v不等距,故

d(e)=2(4t-2)=8t-4.

在UFWn+1中不與e關聯(lián)且到點u和點v不等距的邊的數(shù)目為

對于e∈[Vi,Vn+1],在UFWn+1中與e相關聯(lián)的邊均與點u和點v不等距,故

d(e)=(4t-2)+((n+1)t-2)=(n+5)t-4.

在UFWn+1中不與e關聯(lián)且到點u和點v不等距的邊的數(shù)目為

綜上,有

4 總結(jié)

本文通過對一致膨脹圖的邊進行分類討論,確定了圈圖和輪圖的一致膨脹圖的PI指數(shù).該方法還可用于研究更多圖類的一致膨脹圖,如完全圖、完全多部圖、正則圖等.

猜你喜歡
等距易知綜上
序列(12+Q)(22+Q)…(n2+Q)中的完全平方數(shù)
平面等距變換及其矩陣表示
一個數(shù)論函數(shù)方程的可解性
擬凸Hartogs域到復空間形式的全純等距嵌入映射的存在性
多角度求解山東省高考21題
具有非齊次泊松到達的隊列 模型的穩(wěn)態(tài)分布
集合測試題B卷參考答案
Value of Texture Analysis on Gadoxetic Acid-enhanced MR for Detecting Liver Fibrosis in a Rat Model
從《曲律易知》看民國初年曲學理論的轉(zhuǎn)型
一道高考立體幾何題的多維度剖析
台北市| 大丰市| 阜平县| 凤山县| 昌邑市| 建阳市| 锡林郭勒盟| 永泰县| 疏勒县| 广宁县| 泰兴市| 盐源县| 高碑店市| 青神县| 夏河县| 常山县| 衡南县| 民丰县| 亳州市| 江门市| 安顺市| 综艺| 榆中县| 桐梓县| 信宜市| 崇仁县| 沭阳县| 安平县| 金阳县| 蒙城县| 子洲县| 成武县| 家居| 济宁市| 岗巴县| 无棣县| 松桃| 平原县| 远安县| 江北区| 岳阳县|