郭雨萱,嚴(yán)順平,王應(yīng)祥
綜 述
重組酶RAD51和DMC1功能保守和分化研究進展
郭雨萱1,嚴(yán)順平2,王應(yīng)祥1
1. 復(fù)旦大學(xué)生命科學(xué)學(xué)院,植物科學(xué)研究所,上海 200438 2. 華中農(nóng)業(yè)大學(xué)生命科學(xué)技術(shù)學(xué)院,武漢 430070
減數(shù)分裂(meiosis)是有性生殖細(xì)胞中發(fā)生的特殊分裂方式,在這個過程中DNA復(fù)制一次,細(xì)胞核分裂兩次,最終產(chǎn)生單倍體的配子。雌雄配子融合后基因組又恢復(fù)到二倍體水平,不僅保證了有性生殖過程中世代間基因組的穩(wěn)定性,還導(dǎo)致后代的遺傳多樣性。減數(shù)分裂同源重組(homologous recombination, HR)是其前期I的核心事件之一,它不僅保證了后續(xù)同源染色體的正確分離,而且允許同源染色體之間遺傳信息發(fā)生交換,增加了后代的遺傳多樣性。RAD51 (RADiation sensitive 51)和DMC1 (disruption Meiotic cDNA 1)是HR過程中必需的重組酶,二者有一定的共性和特性。本文從起源、進化、結(jié)構(gòu)和功能等方面總結(jié)并比較了它們間的保守和分化,并對未來的研究方向提出了展望,為進一步深入研究減數(shù)分裂的重組機制提供了借鑒。
減數(shù)分裂;同源重組;RAD51;DMC1
減數(shù)分裂包括減數(shù)分裂I和減數(shù)分裂II兩個時期,分別涉及同源染色體和姐妹染色單體的分離。減數(shù)分裂與有絲分裂不同之處在于減數(shù)第一次分裂存在特別的前期I,又分為細(xì)線期、偶線期、粗線期、雙線期和終變期。在減數(shù)分裂I過程中同源染色體之間發(fā)生了多個重要事件,比如配對、聯(lián)會、重組和分離[1]。減數(shù)分裂重組是前期I核心事件之一,為生物變異提供了重要的物質(zhì)基礎(chǔ)。研究減數(shù)分裂重組的機制對作物改良和育種有十分重要的意義[2,3]。
已有的研究表明,減數(shù)分裂重組過程在物種間相對保守(圖1),其起始于DNA 雙鏈斷裂(double strand break, DSB)的形成,DSB由高度保守的拓?fù)洚悩?gòu)酶SPO11 (sporulation 11)蛋白和其他關(guān)鍵蛋白共同作用產(chǎn)生。DSB形成后,末端被MRN復(fù)合體進一步加工成單鏈DNA (single-stranded DNA, ssDNA),不同物種中參與該過程的蛋白不完全相同。在釀酒酵母()中主要由RED50 (radiation sensitive 50)、MER2 (meiotic recombination 2)、MEI4 (meiosis defective4)、MRE11 (meiotic reco-mbination 11)、REC102 (recombination-deficient 102)、REC104 (recombination-deficient 104)、REC114 (re-combination-deficient 114)、SKI8 (superkiller 8)和XRS2 (X-ray sensitive 2)這9個蛋白形成的復(fù)合物參與[4,5]。而在擬南芥()中,主要由MRE11、RAD50(RAD50 double strand break repair protein)和NBS1(nijmegen breakage syndrome 1)蛋白參與[6,7]。復(fù)制蛋白A復(fù)合體(replication protein A, RPA)與ssDNA 3′端結(jié)合,保護末端以避免形成DNA的二級結(jié)構(gòu),促進重組酶的裝載。隨后,RecA/RAD51及DMC1取代RPA與ssDNA結(jié)合形成核蛋白絲,核蛋白絲在同源雙螺旋鏈上搜索匹配序列并進行鏈入侵形成D環(huán)結(jié)構(gòu)(D-loop)[8]。由于RPA與ssDNA具有更強的結(jié)合能力,會抑制重組酶的裝載,因此需要BRCA2 (breast cancer 2)等其他RAD51同源物介導(dǎo)重組酶結(jié)合到ssDNA上[9]。在體外實驗中,BRCA2可以自主執(zhí)行這一功能,但在細(xì)胞中,該過程則需要它的“伴侶”——PALB2 (partner and localizer of BRCA2)[10]。最后,DNA聚合酶替代RAD51/DMC1啟動DNA的合成[11]。減數(shù)分裂DSB修復(fù)途徑有3種:一種是在ZMMs (ZIP-MSH-MER)蛋白作用下進行DNA合成、DSB的第二端捕獲和連接,形成dHJ (double holliday junction)中間體,并最終產(chǎn)生干涉敏感型(I型)交叉[12];第二種是在MUS81 (methyl methane sulfonate and ultraviolet sensitive 81)和FANCD2 (FA complementation group D2)蛋白質(zhì)作用下產(chǎn)生干涉不敏感型(II型)交叉,現(xiàn)階段在裂殖酵母()中發(fā)現(xiàn)該過程中存在sHJ(single holliday junction)中間體,但在動植物中該途徑的中間體還不清楚[13,14];第三種途徑是由解旋酶處理D-loop,通過合成依賴鏈退火途徑(synthesis-dependent strand annealing, SDSA)產(chǎn)生非交叉重組(圖1)。
基因家族不僅在減數(shù)分裂同源重組過程中發(fā)揮重要作用,在DNA修復(fù)和基因組穩(wěn)定方面也至關(guān)重要[15,16]。對動植物的進化分析表明,除了RAD51,還有6個RAD51同源物,分別是RAD51B、RAD51C、RAD51D、XRCC2、XRCC3和DMC1。其中,DMC1只在減數(shù)分裂過程中發(fā)揮作用,而其他RAD51蛋白在有絲分裂和減數(shù)分裂DSB修復(fù)過程中都發(fā)揮作用[8],并且傾向于以異源復(fù)合體的形式存在于細(xì)胞中,如異源四聚體BCDX2 (RAD51B/ C/D/XRCC2)、異源三聚體BDX2 (RAD51B/D/XRCC2)、CDX3 (RAD51C/D/XRCC3)和異源二聚體CX3 (RAD51C/XRCC3)等。不同的蛋白復(fù)合物參與不同的DSB修復(fù)途徑。體細(xì)胞中DSB修復(fù)的兩種主要途徑是SDSA和單鏈退火(single-strand annealing, SSA)。在水稻()中,CDX3 (RAD51C/D/ XRCC3)復(fù)合物在SDSA途徑中發(fā)揮作用,而BCDX2復(fù)合物在SSA途徑中發(fā)揮作用[17]。在減數(shù)分裂中,擬南芥CX3復(fù)合體通過介導(dǎo)RAD51在染色體上的定位保證其在減數(shù)分裂重組中的正常作用,RAD51B和XRCC2可能參與了減數(shù)分裂重組的抑制[18,19]。擬南芥DMC1在著絲粒配對中起重要作用且在同源染色體間的同源重組過程中不可或缺,而RAD51、RAD51C和XRCC3在同源染色體臂配對中起重要作用,RAD51則更多地參與姐妹間的重組[20,21]。在減數(shù)分裂中同源染色體的搜索和鏈交換被認(rèn)為是由減數(shù)分裂特異DMC1完成的,RAD51只起輔助作用,然而在減數(shù)分裂過程中缺乏RAD51會產(chǎn)生染色體碎片[22,23]。因此,認(rèn)識減數(shù)分裂重組中RAD51和DMC1之間的保守性和分化性對于探索二者在減數(shù)分裂重組中的具體分工和減數(shù)分裂重組修復(fù)機制具有重要意義。
圖1 減數(shù)分裂重組模型
黑色和橙色線條分別描繪了兩條父母親本雙鏈DNA。減數(shù)分裂重組起始于SPO11及相關(guān)蛋白誘導(dǎo)的DSB (double strand break)形成,接著MRN復(fù)合體在DSB末端進行5'→3'剪切,形成3'ssDNA。RPA結(jié)合ssDNA保護其不被降解。RAD51和DMC1在BRCA2等蛋白作用下加載到ssDNA上,形成纏繞在ssDNA周圍的DMC1/RAD51螺旋狀細(xì)絲,侵入同源雙鏈DNA形成D-loop。D-loop可以形成dHJ,通過ZMMs途徑形成I型交叉;也可以通過MUS81和FANCD2兩種途徑形成II型交叉,絕大多數(shù)通過SDSA途徑形成非交叉。
基因家族起源于細(xì)胞生物祖先,由它分化為真細(xì)菌和古生菌與真核生物祖先兩支(圖2)[24]。在古生菌和真核生物分化之前由于基因復(fù)制產(chǎn)生了兩個譜系——和,但是在真細(xì)菌中仍然是一個單拷貝基因(圖2)。古生菌中有和兩個基因拷貝,且古生菌比細(xì)菌與RAD51和DMC1的序列同源性更高[25]。在真核生物中,和基因都經(jīng)歷了多次復(fù)制事件,最終產(chǎn)生基因家族。在酵母中存在4個基因拷貝:、和;而在植物和動物中有7個拷貝,分別是、、、、、和。Lin等[24]將RAD51/RecA家族分為RADα、RADβ和RecA三個亞群,RADα亞群包括功能高度保守的初級重組酶RAD51和DMC1;RADβ亞群包括功能相對分化的RAD51B、RAD51C、RAD51D、XRCC2和XRCC3;而RecA亞群在真細(xì)菌和真核生物細(xì)胞器中發(fā)揮功能[24]。與RADα亞群相比,RADβ亞群基因快速進化,序列同源性較低,形成高度分化且呈現(xiàn)出豐富的基因多樣性。RAD51、DMC1、RAD51C、XRCC3、RAD51B和RAD51D在進化樹上非常接近,而XRCC2的進化距離很遠(yuǎn),其表達(dá)譜也與其他基因不同,說明XRCC2可能與其他RAD51重組酶的分化較遠(yuǎn)[24]。
和在古生菌和真核生物分化之前由基因復(fù)制產(chǎn)生[26]。該基因復(fù)制事件使減數(shù)分裂同源重組得以實現(xiàn),所以基因復(fù)制可能與減數(shù)分裂和有性生殖同時出現(xiàn),或者允許了減數(shù)分裂和有性生殖的發(fā)生。不同生物減數(shù)分裂重組存在差異,這可能與這些生物體中的快速進化和的缺失有關(guān)[24]。研究表明,只有而沒有的生物體可能基因組中存在,但在進化過程中逐漸丟失[27]。同時在基因缺失的生物中,RAD51的某些氨基酸被DMC1相對應(yīng)的氨基酸所替代。
和在人體內(nèi)處于嚴(yán)格的負(fù)選擇狀態(tài),即突變的等位基因是有害的,在自然選擇中處于劣勢。而其他RAD51蛋白在人體內(nèi)處于寬松的負(fù)選擇狀態(tài),它們的表達(dá)譜與其所處環(huán)境的進化壓力相關(guān)[16]?;驈?fù)制和垂直基因轉(zhuǎn)移(vertical gene transfer)在驅(qū)動RAD51蛋白進化過程中發(fā)揮了重要作用。
圖2 RAD51/RecA家族進化模型
RAD51/RecA家族由細(xì)胞生物的祖先分化而來。古生菌和真核生物的祖先通過基因復(fù)制產(chǎn)生了兩個譜系和。在真核生物中,和基因經(jīng)歷多次復(fù)制事件產(chǎn)生RAD51基因家族,在古生菌中它們?nèi)匀皇菃慰截惢?。大括號表示分化的方向,箭頭表示基因復(fù)制事件。紅色星號表示減數(shù)分裂特異基因。根據(jù)參考文獻[24]修改繪制。
RAD51和DMC1與其他水解ATP的蛋白相似,含有α/β ATP酶核心結(jié)構(gòu)域,位于蛋白的N端,由Walker A (也稱為NTP結(jié)合位點,XXXXGKT/S)和Walker B (也稱為Mg2+螯合位點,R/K-XX-G-XX- LHHHD)組成(圖3,A和B)。相比之下,C端氨基酸殘基的保守性較差。研究表明,人RAD51 (HsRAD51) C端與HsRAD52的結(jié)合可以促進ssDNA與dsDNA的同源配對,且與HsRAD51或HsRAD52單獨存在時相比,HsRAD51和HsRAD52同時存在時能夠觀察到更高的同源配對活性[28]。最近在裂殖酵母中發(fā)現(xiàn),Rad51第205位谷氨酸(E205)、206位谷氨酸(E206)和209位天冬氨酸(D209)共同形成突出的酸性區(qū)域(protruding acidic patch, PAP)是促進與輔助因子相互作用的基本基序,因為將206位谷氨酸(E206)突變后,裂殖酵母Rad51與Rad55-Rad57不能相互作用[29]。PAP可能在釀酒酵母和人中發(fā)揮相似的作用,裂殖酵母第205位谷氨酸(E205)、206位谷氨酸(E206)和209位天冬氨酸(D209)對應(yīng)于釀酒酵母Rad51的239位天冬氨酸(D239)、241位天冬氨酸(D241)和242位天冬氨酸(D242),及人RAD51的184位天冬氨酸(D184)和187位天冬氨酸(D187) (圖3,B和D)。RAD51還含有一個“FXXA”基序(圖3B),苯丙氨酸(F)和丙氨酸(A)在其中高度保守[30]。通過該基序可以與其他RAD51分子結(jié)合,同時再與DNA結(jié)合,形成更高階的絲狀結(jié)構(gòu)。然而,在DMC1中沒有發(fā)現(xiàn)在RAD51中類似的結(jié)構(gòu)域。
在成核(nucleation)以及同源搜索和鏈交換的動態(tài)性質(zhì)的相關(guān)研究中,取得了很大的進展,如最小成核大小(約6個重組酶)對穩(wěn)定的核蛋白絲形成的重要性、堿基三聯(lián)體(base triplet)在穩(wěn)定的RecA/ Rad51/Dmc1-ssDNA結(jié)合模式中的重要性,以及鏈交換過程中8核苷酸大小的微同源性搜索等[31,32]。重組酶介導(dǎo)鏈入侵是以堿基三聯(lián)體的步驟進行的,雖然RecA、RAD51和DMC1都能允許錯配,但是只有DMC1能穩(wěn)定異位雙鏈DNA結(jié)合中單、雙、三堿基位點,甚至穩(wěn)定包含堿基內(nèi)部三聯(lián)體的錯配[33]。RAD51和DMC1錯配耐受性的差異主要是由Loop1和Loop2結(jié)構(gòu)域決定的(圖3C)。在里氏木霉() RAD51介導(dǎo)的同源性搜索過程中,Loop1和Loop2共同作用從而獲得錯配耐受性[34]。最新的研究也表明Loop1區(qū)域并不是獨立工作的,Loop2通過與Loop1相互作用在鏈交換過程中行使校對檢查點的功能[35]。對HsDMC1前聯(lián)會(presy-napsis)和后聯(lián)會(postsynapsis)復(fù)合物的結(jié)構(gòu)分析表明,Loop1中244位谷氨酰胺 Gln244 (在RAD51中為243位甲硫氨酸Met243)可能有助于穩(wěn)定DNA主干,而Loop2 中274位脯氨酸Pro274和275位甘氨酸Gly275 (在RAD51中為273位纈氨酸Val273和274位天冬氨酸Asp274)可能提供了一個開放的錯配耐受性“三聯(lián)門”(圖3C,圖4)。一個緊密的門和一個松散的主干支持有助于RAD51的高保真度,而一個松散的門和一個緊密的主干支持有助于DMC1的錯配耐受性[36]。將二者相對應(yīng)的氨基酸位點突變發(fā)現(xiàn)含有DMC1 Loop1譜系特異性氨基酸(lineage-specific amino acids)的RAD51嵌合體能夠穩(wěn)定不匹配的堿基三聯(lián)體,而含有RAD51 Loop1譜系特異性氨基酸的DMC1嵌合體則喪失了這種能力[37]。DMC1這種穩(wěn)定不完全配對重組中間體的能力可能反映了兩種真核生物重組酶的內(nèi)在差異,暗示了DMC1介導(dǎo)的減數(shù)分裂重組能產(chǎn)生更多的遺傳變異。此外,同源配對后,RAD51會迅速被一些蛋白質(zhì)從重組位點上移除,而DMC1則不是。已知有幾種蛋白質(zhì)可以分解重組中間體,包括釀酒酵母解旋酶Srs2 (silver-russell syndrome 2)和Sgs1 (salivary gland secretion 1)。Srs2被認(rèn)為是一種典型的反重組酶,它能拆除含有Rad51的重組中間體。Srs2通過分解Rad51-ssDNA和D-loop中間體發(fā)揮作用,從而引導(dǎo)重組中間體通過合成依賴鏈退火(SDSA)途徑產(chǎn)生非交叉[37~41]。Dmc1則能抑制Srs2的ATP酶活性,這可能有助于促進減數(shù)分裂過程產(chǎn)生I型或II型交叉[42]。有假設(shè)認(rèn)為含有堿基錯配的中間體可能以某種方式改變核蛋白復(fù)合物的結(jié)構(gòu),從而使它們更容易受到解旋酶的破壞。這些酶或其他酶可能識別一些明顯的錯配依賴相關(guān)結(jié)構(gòu)特征,使它們更容易作用于Rad51結(jié)合的中間體,而Dmc1可以保護不匹配的中間體免受這些酶的影響[37]。RAD51和DMC1對堿基錯配容忍度的差異可能是由于在體細(xì)胞中RAD51介導(dǎo)的同源重組必須有一定的保真度,以免細(xì)胞基因突變對生物個體生存造成極大的損傷,而在減數(shù)分裂細(xì)胞中,DMC1這種對錯配堿基的容忍度為生物體進化和變異提供物質(zhì)基礎(chǔ),產(chǎn)生新的基因型以適應(yīng)環(huán)境的變化。
圖3 代表物種RAD51和DMC1結(jié)構(gòu)域的定位和序列
A:RAD51和DMC1蛋白結(jié)構(gòu)域定位;B:代表物種RAD51的FXXA、Walker A、PAP和Walker B與DMC1的Walker A和Walker B同源序列對比;C:在代表物種中RAD51和DMC1的Loop1和Loop2同源序列對比;D:B圖中PAP motif的放大圖。At:擬南芥;Hs:人;Mm:小鼠;Sc:釀酒酵母;Sp:裂殖酵母。圖中擬南芥對應(yīng)的TAIR號為RAD51:AT5G20850.1,DMC1:AT3G22880.1。人、小鼠和酵母的蛋白序列在https://www.uniprot.org/網(wǎng)站下載,序列號分別為Hs RAD51 (Q06609)、Mm RAD51 (Q08297)、Sc RAD51 (P25454)、Hs DMC1 (Q14565)、Mm DMC1 (Q61880)和Sc DMC1 (P25453)。
圖4 人和擬南芥RAD51和DMC1晶體結(jié)構(gòu)
A:人RAD51晶體結(jié)構(gòu);B:擬南芥RAD51晶體結(jié)構(gòu);C:人DMC1晶體結(jié)構(gòu);D:擬南芥DMC1晶體結(jié)構(gòu)。圖中紫色代表Walker A結(jié)構(gòu),橙色代表Walker B結(jié)構(gòu),綠色代表Loop1 (L1)結(jié)構(gòu),藍(lán)色代表Loop2 (L2)結(jié)構(gòu)。藍(lán)色框代表Loop1中關(guān)鍵性譜系特異性氨基酸殘基,紅色框代表Loop2中關(guān)鍵性譜系特異性氨基酸殘基。影響RAD51和DMC1對堿基錯配耐受性的關(guān)鍵性殘基分別用藍(lán)色和紅色標(biāo)出。圖中所用模型來自 AlphaFold 蛋白質(zhì)結(jié)構(gòu)數(shù)據(jù)庫(Protein Structure Database) https://alphafold.ebi.ac.uk/,結(jié)構(gòu)展示軟件為PyMOL (version 2.5)。
總之,無論是RAD51和DMC1對堿基錯配的容忍度,還是DMC1能抑制反重組酶的ATP酶活性免于重組中間體被分解的作用,都證明減數(shù)分裂特異性重組酶DMC1的存在是為了保證生物體通過減數(shù)分裂重組產(chǎn)生更豐富的多樣性。
為了探究人和擬南芥RAD51及DMC1蛋白質(zhì)結(jié)構(gòu)的保守性與差異性,利用AlphaFold蛋白質(zhì)結(jié)構(gòu)數(shù)據(jù)庫[43,44]獲得它們的晶體結(jié)構(gòu)(圖4)。人與擬南芥中RAD51和DMC1的晶體結(jié)構(gòu)非常相似,尤其是參與ATP結(jié)合和水解的Walker A和Walker B等保守結(jié)構(gòu)域(圖4,紫色和橙色顯示)。此外,人和擬南芥RAD51的Loop2中纈氨酸(Val)和天冬氨酸(Asp)形成的構(gòu)象十分相似(圖4,放大顯示)。雖然人和擬南芥DMC1 Loop2中脯氨酸(Pro)和甘氨酸(Gly)所形成的構(gòu)象也十分相似,但是這種構(gòu)象與RAD51明顯不同。這種不同暗示著DMC1能允許新合成的DNA序列的堿基較為靈活,因而錯配耐受性提高,保真度降低(圖4,放大顯示)。Xu等[35]最新研究為RAD51和DMC1的差異提供了新的解釋,人RAD51的Loop2中273位纈氨酸(V273)和274位天冬氨酸(D274),對應(yīng)于DMC1的274位脯氨酸(P274)和275位甘氨酸(G275),在DNA結(jié)合中起著至關(guān)重要的作用(圖4)。此外,人RAD51的273位纈氨酸(V273)和238位亮氨酸(L238)可以形成一個V273:L238疏水/空間門(hydrophobic/steric gate),274位天冬氨酸(D274)和235位精氨酸(R235)可以形成一個D274:R235鹽橋。它們共同作用可以“鎖住”鄰近的三堿基對,導(dǎo)致低容錯性和高保真度;而在DMC1中,疏水/空間效應(yīng)較小,沒有鹽橋,這可以“放松”對三堿基對的控制,使堿基對具有一定的構(gòu)象靈活性,導(dǎo)致高容錯性和低保真度[36]。
雖然RAD51和DMC1都是減數(shù)分裂重組所必需的,但是它們與DNA結(jié)合所形成的結(jié)構(gòu)并不完全相同。在沒有DNA的條件下,RAD51以由6個單體組成的環(huán)的形式存在,而DMC1形成八聚體環(huán)[45]。當(dāng)DNA存在時,RAD51形成螺旋狀細(xì)絲,DMC1也形成螺旋狀細(xì)絲或堆疊的八聚體環(huán)[46]。釀酒酵母和裂殖酵母Dmc1蛋白也有與八聚體環(huán)相似的結(jié)構(gòu)[31,47],這說明DMC1的環(huán)狀結(jié)構(gòu)從酵母到人類相對保守,但是RAD51卻不以環(huán)的方式與DNA結(jié)合,只有螺旋狀細(xì)絲的形式存在。
細(xì)菌RecA、酵母和人RAD51的結(jié)構(gòu)通過x射線晶體學(xué)和冷凍電子顯微鏡進行了解析,這些結(jié)構(gòu)表明,利用一個RAD51/RecA/DMC1和3個核苷酸的比例與ssDNA結(jié)合,ssDNA局部類似于B型DNA,因此可以與互補鏈進行堿基配對[48]。近年來對Rad51晶體結(jié)構(gòu)的研究表明,Rad51-DNA相互作用調(diào)節(jié)了在核蛋白絲中組裝的Rad51前聚合物的螺旋旋轉(zhuǎn)和上升,這有助于解釋Rad51突變影響核蛋白絲組裝的機制[49]。釀酒酵母Dmc1 (ScDmc1)核蛋白絲在動力學(xué)上大大減少了成核步驟,比Rad51核蛋白絲更不穩(wěn)定。與ScRad51相比,ScDmc1的成核速率較低是因為其與ssDNA親和力較低。ScDmc1的成核主要在含有單鏈和雙鏈DNA連接的DNA結(jié)構(gòu)上發(fā)生,允許在5′到3′極性上延伸,而ScRad51的成核強烈依賴于ssDNA的長度。在哺乳動物中,RAD51和DMC1也保留了這種成核傾向。DMC1的成核可以通過結(jié)構(gòu)組成(如DNA連接和蛋白質(zhì)相互作用)和DNA極性促進[50]。另外,有研究發(fā)現(xiàn)RAD51-ssDNA復(fù)合物能有效地與核小體結(jié)合,但是核小體可能會阻礙RAD51-ssDNA復(fù)合物接近同源染色體,并且在沒有核小體重塑因子RAD54的情況下無法克服這一阻礙[51]。相比之下,DMC1-ssDNA復(fù)合物與核小體的結(jié)合活性較低,表明DMC1-ssDNA復(fù)合物更易接近同源染色體,因而DMC1-ssDNA復(fù)合物優(yōu)先靶向核小體缺失的區(qū)域,即減數(shù)分裂重組的熱點區(qū)域[51]。這可能是減數(shù)分裂重組中主要由DMC1介導(dǎo)同源重組而不是RAD51介導(dǎo)的原因之一。
RAD51和DMC1廣泛存在于絕大多數(shù)真核生物中,其功能有共性也有特性。RAD51主要介導(dǎo)姐妹染色單體為模板的DSB修復(fù),DMC1則介導(dǎo)同源染色體為模板的DSB修復(fù)。有絲分裂DSB主要以姐妹染色單體為模板進行修復(fù),而在減數(shù)分裂期間,姐妹和非姐妹染色單體都能夠作為修復(fù)的模板[52]。這可能是RAD51同時參與有絲分裂和減數(shù)分裂而DMC1是減數(shù)分裂特異的原因之一。
如前所述,RAD51和DMC1都是在ssDNA上結(jié)合3個核苷酸,并將DNA擴展到大約1.5倍,以ATP依賴的方式形成一個右手螺旋絲[31,52,53]。同源重組的機制在細(xì)菌中的研究較為深入,包括核蛋白絲形成和鏈入侵兩個關(guān)鍵步驟。為了確保其準(zhǔn)確性并避免潛在的有害后果,這兩個過程是可逆的并受到精確調(diào)控[54,55]。其中鏈交換反應(yīng)以同源重組為中心,通過RecA核蛋白絲的組裝、重排和拆卸催化DNA鏈的協(xié)調(diào)來進行。在連續(xù)進行鏈交換的同時,鏈入侵和蛋白質(zhì)分離的速率相似,會導(dǎo)致一個恒定長度的DNA合成區(qū)域(80bp左右)沿著同源區(qū)域移動[56]。最新研究發(fā)現(xiàn),RecA以降維的方式搜索找到同源DNA,因為這種搜索不是在三維立體空間,而發(fā)生在二維層面,這大大加快了搜索的速度。RecA- ssDNA絲狀結(jié)構(gòu)以降維的方式,將至少一個ssDNA片段定位在其同源染色體附近,這樣同源dsDNA片段可以使用快速、短距離的搜索找到ssDNA片段。雖然是以降維的方式搜索同源DNA,但只要核蛋白絲長度隨DNA數(shù)量的增加而變化,搜索時間就不受DNA數(shù)量增加的影響[57]。下面將從功能定位、生物學(xué)功能和分子機制3個方面介紹真核生物中RAD51和DMC1的功能的異同點。
RAD51和DMC1定位可以利用免疫熒光使用共聚焦顯微鏡評估二者位點在細(xì)胞核中的總體分布,也可以使用結(jié)構(gòu)照明顯微鏡(structured illumination microscopy, SIM)和直接隨機光學(xué)重建顯微鏡(direct stochastic optical reconstruction microscopy, dSTORM)相結(jié)合的方法,對減數(shù)分裂前期細(xì)胞核中RAD51和DMC1位點的納米細(xì)節(jié)進行可視化。DMC1和RAD51在ssDNA絲上的定位已有報道。對釀酒酵母的研究表明,Rad51和Dmc1在切除的DSB末端存在并排定位[58]。釀酒酵母Dmc1和Rad51的體外實驗表明,Dmc1和Rad51可以自發(fā)地在ssDNA上分離成離散的同源聚合物絲。RAD51和DMC1具有形成空間上不同的絲狀體的能力,表明其他輔助因子可能不需要直接分離RAD51和DMC1絲狀體[59]。在釀酒酵母突變體中,Dmc1核蛋白絲的形成發(fā)生改變,但在突變體中,Rad51定位正常。在擬南芥中,幾乎沒有發(fā)現(xiàn)RAD51和DMC1共同定位,RAD51的定位也不受RAD51B、XRCC2和DMC1的影響,但依賴于SWI1[60,61]。最近對小鼠()的研究表明,在同源搜索過程中DMC1在DNA斷裂位點附近,而RAD51遠(yuǎn)離DNA斷裂點,也就是說DMC1優(yōu)先加載在ssDNA的剪切端,而RAD51優(yōu)先加載在相對端,且ssDNA結(jié)合的DMC1數(shù)量多于RAD51[62]。這可能是因為在減數(shù)分裂重組過程中鏈交換是由DMC1介導(dǎo)而不是由RAD51介導(dǎo),所以DMC1結(jié)合在剪切位點以便介導(dǎo)同源染色體DNA雙螺旋鏈的搜索和交換。對小鼠的研究表明,與DMC1相比,RAD51蛋白位點會隨著減數(shù)分裂前期的進展而變化,并且定位在更接近于介導(dǎo)同源染色體間物理連接(聯(lián)會)的蛋白軸上[63]。
在裂殖酵母中,Rad51的缺失強烈影響減數(shù)分裂重組,導(dǎo)致DSB無法修復(fù)和細(xì)胞周期阻滯。Dmc1的缺失會導(dǎo)致類似的表型,但能產(chǎn)生少量可育孢子,突變體中的缺陷可以通過Rad51的過表達(dá)實現(xiàn)部分恢復(fù)[52,64,65]。在擬南芥中,RAD51的缺失導(dǎo)致染色體配對和聯(lián)會存在缺陷,并伴隨大量的染色體碎裂[20,66],而在玉米()中RAD51位點缺失與配對缺陷相關(guān)[67]。這揭示了RAD51對減數(shù)分裂重組的多重影響。擬南芥突變體的同源染色體雖然也不能配對和聯(lián)會,但是沒有明顯染色體碎片[68,69]。在單子葉植物大麥(L)突變體中,減數(shù)分裂過程中染色體異常,在后期和末期能夠觀察到染色體碎片和染色體橋[70]。與RAD51在植物中不影響營養(yǎng)生長而嚴(yán)重影響減數(shù)分裂進程截然不同的是[31],脊椎動物中突變體是致死性的。小鼠敲除突變體完全不育,出現(xiàn)同源染色體配對、聯(lián)會和DSB修復(fù)缺陷[71,72]。同時突變兩個重組酶會導(dǎo)致比任何一個單一的突變更為嚴(yán)重的表型[73,74],這說明二者功能存在部分冗余。
RAD51和DMC1在減數(shù)分裂過程中的必要性是不同的,比如催化活性較差的酵母突變體雖然缺乏催化鏈交換活性但對重組沒有特別大的影響,在擬南芥中也有類似的結(jié)果[75]。表明在減數(shù)分裂重組中需要的是RAD51蛋白本身而不是其鏈交換活性,而失去鏈交換活性的突變體與缺失突變體具有相同的減數(shù)分裂前期阻滯[23,76]。這說明RAD51在有絲分裂和減數(shù)分裂過程中在主要功能上有差異,RAD51和DMC1同時存在時,DMC1在減數(shù)分裂重組中發(fā)揮鏈交換的功能。RAD51蛋白作為DMC1的輔助因子促進DMC1前聯(lián)會核蛋白絲的組裝,當(dāng)DMC1缺失時,RAD51可以以姐妹單體為模板的DSB修復(fù),最終產(chǎn)生非交叉[77]。
綜上所述,RAD51和DMC1在功能上存在部分冗余和相對特異性。在減數(shù)分裂重組過程中,參與同源染色體間重組和鏈交換主要由DMC1介導(dǎo)并形成交叉,而RAD51輔助DMC1并介導(dǎo)姐妹染色單體間重組導(dǎo)致非交叉。
減數(shù)分裂重組通常傾向于使用同源染色體而不是姐妹染色單體,以便在第一次減數(shù)分裂中形成使染色體精確分離所必需的交叉,這種現(xiàn)象被稱為“IH (inter homolog)偏愛”[78]。擬南芥ASY1 (meiotic asynaptic mutant 1)、ASY3 (meiotic asynaptic mutant 3)、HOP2 (homeodomain-only protein)和植物特異性蛋白SDS (SOLO DANCERS)促進DMC1介導(dǎo)的IH修復(fù)而不是RAD51介導(dǎo)IS (inter sister)修復(fù)[79~82],而ATM可能通過擬南芥IS重組促進RAD51介導(dǎo)的減數(shù)分裂DSB修復(fù)[83]。雖然有研究認(rèn)為在DMC1介導(dǎo)同源染色體間重組的同時,也發(fā)生姐妹染色單體的重組[15],但是在此期間RAD51活性不高[84,85]。如果RAD51被過早激活也可以介導(dǎo)同源染色體間的重組,但是不如DMC1效率高[86,87]。這恰好解釋了突變體中RAD51過表達(dá)可以部分回復(fù)異常,可能是由于RAD51被提前激活。
3.3.1 RAD51和DMC1可以與同一個輔助因子的不同區(qū)域相互作用
RAD51和DMC1都可以與BRCA2相互作用,促進同源交換和重組的穩(wěn)定性。然而,人BRCA2的PhePP結(jié)構(gòu)域只能特異結(jié)合DMC1,而BRC重復(fù)序列可以同時結(jié)合RAD51和DMC1[88]。在擬南芥中,BRCA2可以存在于一個三伴侶復(fù)合物中,與DSS1 (decreased sperm survival 1)和RAD51同時相互作用或與DSS1和DMC1同時相互作用[89]。RAD51和DMC1分別與BRCA2不同結(jié)構(gòu)域相互作用,這可能與二者在同源重組中的功能特異性有關(guān)。此外,擬南芥FIGL1 (fidgetin-like protein 1)和FLIP (fidgetin- like 1 interacting protein)與BRCA2對RAD51/DMC1依賴的DNA動態(tài)交換具有拮抗作用,從而維持同源重組(homologous recombination, HR)的準(zhǔn)確修復(fù)[90],且FIGL1比FLIP發(fā)揮更核心的作用[91](圖5)。
3.3.2 RAD51和DMC1與不同的輔助因子相互作用
生化研究表明,酵母Dmc1主要與Rdh54/Tid互作,而Rad51主要與Rad54互作,與Dmc1的減數(shù)分裂特異性不同,Rdh54/Tid在體細(xì)胞中也有表達(dá)[92]。Rdh54/Tid1和Rad54共同存在與只有Rad54存在時相比,D-loop的形成和長度都受到抑制,可能是Rdh54/Tid1和Rad54在Rad51核蛋白絲中競爭潛在的結(jié)合位點。Rdh54/Tid1作為RAD54物理屏障,限制了D-loop的形成和長度[93]。遺傳學(xué)研究表明,在擬南芥DMC1缺失的情況下,RAD54是RAD51修復(fù)減數(shù)分裂雙鏈斷裂所必需的[94]。人RAD54蛋白還可以將RAD51從dsDNA中分離出來,而不是ssDNA[95]。對真核生物減數(shù)分裂研究表明,在前聯(lián)會復(fù)合物中加入Rad54和存在較少Rdh54的條件下,可以提高同源搜索率[96]。在釀酒酵母中,減數(shù)分裂特異蛋白Hed1與Rad51相互作用,可以阻斷Rad54與Rad51的相互作用[97]。減數(shù)分裂特異蛋白Hed1對Rad51的限制作用會下調(diào)其活性,不利于以姐妹染色單體作為模板進行DNA合成,從而有利于Dmc1介導(dǎo)的同源染色體間重組發(fā)生[16,98]。在植物中還沒有發(fā)現(xiàn)Hed1的同源物,但是可能存在相似的機制。ATR (serine/threonine kinase)在調(diào)控擬南芥DMC1絲形成方面非常重要,擬南芥雙突變體允許DMC1組裝和隨后的聯(lián)會、減數(shù)分裂中DSB的修復(fù)發(fā)生和交叉形成。
圖5 重組酶RAD51和DMC1在植物中參與減數(shù)分裂重組的機制
藍(lán)色和紅色線條分別描繪了兩條父母親本雙鏈DNA。重組酶DMC1和RAD51結(jié)合到ssDNA上由BRCA2和DSS1介導(dǎo),RAD51C和XRCC3與RAD51結(jié)合可能改變了RAD51結(jié)構(gòu)有助于RAD51的裝載。SMC5/6復(fù)合物與RAD51和DMC1三者之間結(jié)合相互平衡,RAD51能抑制SMC5/6復(fù)合物與DMC1的結(jié)合,有助于DMC1進行同源重組。而FIGL1-FLIP與BRCA2拮抗作用,抑制RAD51和DMC1的裝載。Hop2-Mnd1與RAD51和DMC1結(jié)合促進鏈交換。RAD54不僅參與了促進鏈交換同時也參與RAD51在dsDNA上的去除,但DMC1的降解機制還有待探索。
3.3.3 RAD51和DMC1與輔助因子相互作用所需要的條件不同
Hop2-Mnd1與RAD51和DMC1重組酶的相互作用是非常重要的,但Hop2-Mnd1與RAD51的結(jié)合依賴于ATP的催化,而Hop2-Mnd1與DMC1的結(jié)合不依賴于ATP的催化[99,100]。在機制上,裂殖酵母Swi5-Sfr1 (釀酒酵母Mei5-Sae3蛋白復(fù)合物)促進DMC1核蛋白絲的建立,參與成核或絲的延長[101,102],同時Mei5-Sae3和RAD51對DMC1絲形成的促進作用是相互獨立的[103~105]。而Hop2-Mnd1定義了啟動鏈交換的關(guān)鍵限速步驟。在執(zhí)行這一功能之后,Swi5-Sfr1與Hop2-Mnd1隨后促進了鏈交換[106]。Mnd1 (meiotic nuclear divisions 1)是DMC1的一種附屬蛋白,在DMC1核蛋白絲形成后,DMC1的正?;钚孕枰狹nd1,Mnd1也可能參與了DMC1的移除。例如,在沒有Mnd1的情況下,DMC1核蛋白絲積累的時間更長[8]。同樣,在擬南芥突變背景下,DMC1位點變多會導(dǎo)致不能完成DSB的修復(fù)[94]。
3.3.4 RAD51和DMC1與相同的輔助因子相互作用影響不同
在裂殖酵母中,Rad22 (釀酒酵母Rad52的同源物)激活Rad51 (也稱為Rhp51),但抑制Dmc1[107]。最近的研究表明,擬南芥RAD51能通過抑制減數(shù)分裂過程中的SMC5/6復(fù)合物來促進DMC1在同源重組中的作用[108](圖5)。
在具有DMC1的生物體中,染色體配對是通過重組依賴機制啟動的[77,109],而不具有DMC1的生物體如秀麗隱桿線蟲()在減數(shù)分裂過程中鏈交換功能由RAD51行使[110~112]。這說明基因可能不是有性生殖生物所必須的,但DMC1蛋白的功能在減數(shù)分裂中是必須的。然而,在RAD51和DMC1之間幾乎沒有其他差異,這可能有助于解釋在有絲分裂和減數(shù)分裂中使用不同重組酶的可能起源或潛在的進化優(yōu)勢。
重組酶是DNA損傷修復(fù)和減數(shù)分裂重組所必需的酶,而RAD51與DMC1是真核生物中相對保守的重組酶,其功能的相似性和特異性在不同物種中均已報道。同時對RAD51和DMC1的研究也是DSB修復(fù)領(lǐng)域熱點,比如RAD51可以作為癌癥治療的靶點,DMC1則成為生殖發(fā)育中配子形成和遺傳多樣性產(chǎn)生的關(guān)鍵點。二者對基因組完整性的維持都十分重要。
基因組完整性對于有絲分裂和減數(shù)分裂都至關(guān)重要。在有絲分裂中,基因突變與植物的發(fā)育和抗逆性,以及人類的癌癥等密切相關(guān)。而有性生殖生物減數(shù)分裂過程中同源染色體的重組和分離對維持染色體數(shù)目恒定至關(guān)重要。在體細(xì)胞DSB修復(fù)過程中,SDSA和SSA是兩個主要的 HR途徑。減數(shù)分裂重組途徑更加多樣性,涉及到DSB產(chǎn)生后選擇同源染色體或姐妹染色單體作為模板進行修復(fù)。盡管RAD51和DMC1重組酶具有共同祖先,在蛋白質(zhì)序列和結(jié)構(gòu)上都非常相似,但是在有絲分裂和減數(shù)分裂重組中的功能卻大相徑庭。其中RAD51保證嚴(yán)格的基因組穩(wěn)定性,不允許堿基的錯配;相比之下DMC1對堿基錯配的包容性更高,大大提高了后代的遺傳多樣性,對物種的進化具有重要意義。
目前通過遺傳學(xué)、生物化學(xué)、分子生物學(xué)、結(jié)構(gòu)生物學(xué)等手段對RAD51和DMC1在同源重組中的功能和作用機制有了一定的認(rèn)識,但對其調(diào)控機制和作用網(wǎng)絡(luò)還不夠清晰,例如RAD51和DMC1蛋白質(zhì)的降解機制是什么?RAD51和DMC1蛋白質(zhì)的修飾及與其功能之間的關(guān)系?RAD51和DMC1在細(xì)胞內(nèi)的穩(wěn)態(tài)平衡及與DNA結(jié)合能力?RAD51和DMC1及與其互作蛋白形成復(fù)合體的結(jié)構(gòu)是什么?這些問題都有待深入研究。隨著技術(shù)方法的發(fā)展,更多的新技術(shù)應(yīng)用于生命科學(xué)研究中,例如原子力顯微鏡(atomic force microscopy, AFM)在研究DNA和蛋白質(zhì)相互作用領(lǐng)域具有廣泛的應(yīng)用[113]。AFM可在空氣和液體中對靜態(tài)的DNA-蛋白復(fù)合體進行成像,也可在液體中實時觀察DNA和蛋白質(zhì)的反應(yīng)過程,而且AFM還可獲得DNA和蛋白分子間作用力的信息。AFM已揭示了許多基因調(diào)控的機制,也將在生命科學(xué)的研究中起到越來越重要的作用。除此之外,單細(xì)胞測序[114]、活細(xì)胞成像技術(shù)[115]及多組學(xué)技術(shù)的結(jié)合,未來能幫助人們更加深入的認(rèn)識RAD51和DMC1功能的共性和特性。
[1] Osman K, Higgins JD, Sanchez-Moran E, Armstrong SJ, Franklin FC. Pathways to meiotic recombination in.2011, 190(3): 523– 544.
[2] Kuo P, Da Ines O, Lambing C. Rewiring meiosis for crop improvement.2021, 12: 708948.
[3] Taagen E, Bogdanove AJ, Sorrells ME. Counting on crossovers: controlled recombination for plant breeding.2020, 25(5): 455–465.
[4] Shim EY, Chung WH, Nicolette ML, Zhang Y, Davis M, Zhu Z, Paull TT, Ira G, Lee SE.Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks.,2010, 29(19):3370–3380.
[5] Ghosal G, Muniyappa K. The characterization ofMre11/Rad50/Xrs2 complex reveals that Rad50 negatively regulates Mre11 endonucleolytic but not the exonucleolytic activity.2007, 372(4): 864–882.
[6] Waterworth WM, Altun C, Armstrong SJ, Roberts N, Dean PJ, Young K, Weil CF, Bray CM, West CE. NBS1 is involved in DNA repair and plays a synergistic role with ATM in mediating meiotic homologous recombina-tion in plants.2007, 52(1): 41–52.
[7] Puizina J, Siroky J, Mokros P, Schweizer D, Riha K. Mre11 deficiency inis associated with chromosomal instability in somatic cells and Spo11- dependent genome fragmentation during meiosis., 2004, 16(8): 1968–1978.
[8] Wang YX, Copenhaver GP. Meiotic recombination: mixing it up in plants., 2018, 69: 577–609.
[9] Ma CJ, Gibb B, Kwon Y, Sung P, Greene EC. Protein dynamics of human RPA and RAD51 on ssDNA during assembly and disassembly of the RAD51 filament., 2017, 45(2): 749–761.
[10] Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu JM, Christ N, Liu XG, Jasin M, Couch FJ, Livingston DM. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2.2006, 22(6): 719–729.
[11] Vasianovich Y, Altmannova V, Kotenko O, Newton MD, Krejci L, Makovets S. Unloading of homologous recombination factors is required for restoring double- stranded DNA at damage repair loci., 2017, 36(2): 213–231.
[12] Lambing C, Franklin FCH, Wang CR. Understanding and manipulating meiotic recombination in plants., 2017, 173(3): 1530–1542.
[13] Li X, Zhang J, Huang JY, Xu J, Chen ZY, Copenhaver GP, Wang YX. Regulation of interference-sensitive crossover distribution ensures crossover assurance in.2021, 118(47): e2107543118.
[14] Cromie GA, Hyppa RW, Taylor AF, Zakharyevich K, Hunter N, Smith GR. Single holliday junctions are intermediates of meiotic recombination., 2006, 127(6): 1167–1178.
[15] Bonilla B, Hengel SR, Grundy MK, Bernstein KA. RAD51 gene family structure and function., 2020, 54: 25–46.
[16] Jiang S, Lin T, Xie QJ, Wang LJ. Network analysis of RAD51 proteins inand the evolutionary relationships with their archaeal homologs.2018, 9: 383.
[17] Xu Z, Zhang JX, Xu M, Ji W, Yu MM, Tao YJ, Gong ZY, Gu MH, Yu HX. Rice RAD51 paralogs play essential roles in somatic homologous recombination for DNA repair.2018, 95(2): 282–295.
[18] Su H, Cheng ZH, Huang JY, Lin J, Copenhaver GP, Ma H, Wang YX.RAD51, RAD51C and XRCC3 proteins form a complex and facilitate RAD51 localization on chromosomes for meiotic recombination., 2017, 13(5): e1006827
[19] Da Ines O, Degroote F, Amiard S, Goubely C, Gallego ME, White CI. Effects of XRCC2 and RAD51B mutations on somatic and meiotic recombination in., 2013, 74(6): 959–970.
[20] Da Ines O, Abe K, Goubely C, Gallego ME, White CI. Differing requirements for RAD51 and DMC1 in meiotic pairing of centromeres and chromosome arms in., 2012, 8(4): e1002636.
[21] Pradillo M, López E, Linacero R, Romero C, Cu?ado N, Sánchez-Morán E, Santos JL. Together yes, but not coupled: new insights into the roles of RAD51 and DMC1 in plant meiotic recombination., 2012, 69(6): 921–933.
[22] Hong S, Sung YJ, Yu M, Lee M, Kleckner N, Kim KP. The logic and mechanism of homologous recombination partner choice., 2013, 51(4): 440–453.
[23] Da Ines O, Degroote F, Goubely C, Amiard S, Gallego ME, White CI. Meiotic recombination inis catalysed by DMC1, with RAD51 playing a supporting role., 2013, 9(9): e1003787.
[24] Lin ZG, Kong HZ, Nei M, Ma H. Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer., 2006, 103(27): 10328–10333
[25] Prentiss M, Prévost C, Danilowicz C. Structure/function relationships in RecA protein-mediated homology recognition and strand exchange., 2015, 50(6): 453–476.
[26] Chintapalli SV, Bhardwaj G, Babu J, Hadjiyianni L, Hong YJ, Todd GK, Boosalis CA, Zhang ZH, Zhou XF, Ma H, Anishkin A, van Rossum DB, Patterson RL. Reevaluation of the evolutionary events within recA/ RAD51 phylogeny2013, 14: 240.
[27] Ramesh MA, Malik SB, Logsdon JM, Jr. A phyloge-nomic inventory of meiotic genes; evidence for sex inand an early eukaryotic origin of meiosis., 2005, 15(2): 185–191.
[28] Kurumizaka H, Aihara H, Kagawa W, Shibata T, Yokoyama S. Human Rad51 amino acid residues required for Rad52 binding.1999, 291(3): 537–548.
[29] Afshar N, Argunhan B, Palihati M, Taniguchi G, Tsubouchi H, Iwasaki H. A novel motif of Rad51 serves as an interaction hub for recombination auxiliary factors., 2021, 10: e64131.
[30] Scott DE, Marsh M, Blundell TL, Abell C, Hyv?nen M. Structure-activity relationship of the peptide binding- motif mediating the BRCA2:RAD51 protein-protein interaction.2016, 590(8): 1094–1102.
[31] Lee JY, Terakawa T, Qi Z, Steinfeld JB, Redding S, Kwon Y, Gaines WA, Zhao WX, Sung P, Greene EC. DNA recombination. base triplet stepping by the Rad51/ RecA family of recombinases.015, 349(6251): 977–981.
[32] Qi Z, Redding S, Lee JY, Gibb B, Kwon Y, Niu H, Gaines WA, Sung P, Greene EC. DNA sequence align-ment by microhomology sampling during homologous recombination., 2015, 160(5): 856–869.
[33] Lee JY, Steinfeld JB, Qi Z, Kwon Y, Sung P, Greene EC. Sequence imperfections and base triplet recognition by the Rad51/RecA family of recombinases., 2017, 292(26): 11125–11135.
[34] Li WC, Lee CY, Lan WH, Woo TT, Liu HC, Yeh HY, Chang HY, Chuang YC, Chen CY, Chuang CN, Chen CL, Hsueh YP, Li HW, Chi P, Wang TF.Rad51 tolerates mismatches in hybrid meiosis with diverse genome sequences., 2021, 118(8): e2007192118.
[35] Xu JF, Zhao LY, Peng SJ, Chu HY, Liang R, Tian M, Connell PP, Li GH, Chen CL, Wang HW. Mechanisms of distinctive mismatch tolerance between Rad51 and Dmc1 in homologous recombination., 2021, 49(22): 13135–13149.
[36] Luo SC, Yeh HY, Lan WH, Wu YM, Yang CH, Chang HY, Su GC, Lee CY, Wu WJ, Li HW, Ho MC, Chi P, Tsai MD. Identification of fidelity-governing factors in human recombinases DMC1 and RAD51 from cryo-EM structures., 2021, 12(1): 115.
[37] Steinfeld JB, Beláň O, Kwon Y, Terakawa T, Al-Zain A, Smith MJ, Crickard JB, Qi Z, Zhao WX, Rothstein R, Symington LS, Sung P, Boulton SJ, Greene EC. Defining the influence of Rad51 and Dmc1 lineage-specific amino acids on genetic recombination., 2019, 33(17–18): 1191–1207.
[38] Bugreev DV, Pezza RJ, Mazina OM, Voloshin ON, Camerini-Otero RD, Mazin AV. The resistance of DMC1 D-loops to dissociation may account for the DMC1 requirement in meiosis., 2011, 18(1): 56–60.
[39] Lorenz A. Modulation of meiotic homologous recombination by DNA helicases.2017, 34(5): 195–203.
[40] Branzei D, Szakal B. Building up and breaking down: mechanisms controlling recombination during replication., 2017, 52(4): 381–394.
[41] Spell RM, Jinks-Robertson S. Examination of the roles of Sgs1 and Srs2 helicases in the enforcement of recombination fidelity in., 2004, 168(4): 1855–1865.
[42] Crickard JB, Kaniecki K, Kwon Y, Sung P, Greene EC. Meiosis-specific recombinase Dmc1 is a potent inhibitor of the Srs2 antirecombinase.2018, 115(43): E10041–E10048.
[43] Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, ?ídek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models., 2022, 50(D1): D439–D444.
[44] Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, ?ídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold., 2021, 596(7873): 583–589.
[45] Kinebuchi T, Kagawa W, Enomoto R, Tanaka K, Miyagawa K, Shibata T, Kurumizaka H, Yokoyama S. Structural basis for octameric ring formation and DNA interaction of the human homologous-pairing protein Dmc1., 2004, 14(3): 363–374.
[46] Shin DS, Pellegrini L, Daniels DS, Yelent B, Craig L, Bates D, Yu DS, Shivji MK, Hitomi C, Arvai AS, Volkmann N, Tsuruta H, Blundell TL, Venkitaraman AR, Tainer JA. Full-length archaeal Rad51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2., 2003, 22(17): 4566–4576.
[47] Sauvageau S, Stasiak AZ, Banville I, Ploquin M, Stasiak A, Masson JY. Fission yeast rad51 and dmc1, two efficient DNA recombinases forming helical nucleoprotein filaments.2005, 25(11): 4377–4387.
[48] Xu JF, Zhao LY, Xu YY, Zhao WX, Sung P, Wang HW. Cryo-EM structures of human RAD51 recombinase filaments during catalysis of DNA-strand exchange., 2017, 24(1): 40–46.
[49] Short JM, Liu Y, Chen SX, Soni N, Madhusudhan MS, Shivji MKK, Venkitaraman AR. High-resolution structure of the presynaptic RAD51 filament on single-stranded DNA by electron cryo-microscopy., 2016, 44(19): 9017–9030.
[50] Lan WH, Lin SY, Kao CY, Chang WH, Yeh HY, Chang HY, Chi P, Li HW. Rad51 facilitates filament assembly of meiosis-specific Dmc1 recombinase., 2020, 117(21): 11257–11264.
[51] Kobayashi W, Takaku M, Machida S, Tachiwana H, Maehara K, Ohkawa Y, Kurumizaka H. Chromatin architecture may dictate the target site for DMC1, but not for RAD51, during homologous pairing., 2016, 6: 24228.
[52] Hyppa RW, Smith GR. Crossover invariance determined by partner choice for meiotic DNA break repair., 2010, 142(2): 243–255.
[53] Bishop DK, Park D, Xu L, Kleckner N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression., 1992, 69(3): 439–456.
[54] Sehorn MG, Sigurdsson S, Bussen W, Unger VM, Sung P. Human meiotic recombinase Dmc1 promotes ATP-dependent homologous DNA strand exchange., 2004, 429(6990): 433–437.
[55] Heyer WD. Regulation of recombination and genomic maintenance., 2015, 7(8): a016501.
[56] van der Heijden T, Modesti M, Hage S, Kanaar R, Wyman C, Dekker C. Homologous recombination in real time: DNA strand exchange by RecA., 2008, 30(4): 530–538.
[57] Wiktor J, Gynn? AH, Leroy P, Larsson J, Coceano G, Testa I, Elf J. RecA finds homologous DNA by reduced dimensionality search., 2021, 597(7876): 426–429.
[58] Brown MS, Grubb J, Zhang AN, Rust MJ, Bishop DK. Small Rad51 and Dmc1 complexes often co-occupy both ends of a meiotic DNA double strand break, 2015, 11(12): e1005653.
[59] Crickard JB, Kaniecki K, Kwon Y, Sung P, Greene EC. Spontaneous self-segregation of Rad51 and Dmc1 DNA recombinases within mixed recombinase filaments., 2018, 293(11): 4191–4200.
[60] Kurzbauer MT, Uanschou C, Chen D, Schl?gelhofer P. The recombinases DMC1 and RAD51 are functionally and spatially separated during meiosis in.2012, 24(5): 2058–2070.
[61] Mercier R, Armstrong SJ, Horlow C, Jackson NP, Makaroff CA, Vezon D, Pelletier G, Jones GH, Franklin FCH. The meiotic protein SWI1 is required for axial element formation and recombination initiation in.2003, 130(14): 3309–3318.
[62] Hinch AG, Becker PW, Li T, Moralli D, Zhang G, Bycroft C, Green C, Keeney S, Shi QH, Davies B, Donnelly P. The configuration of RPA, RAD51, and DMC1 binding in meiosis reveals the nature of critical recombination intermediates., 2020, 79(4): 689–701.e610.
[63] Slotman JA, Paul MW, Carofiglio F, de Gruiter HM, Vergroesen T, Koornneef L, van Cappellen WA, Houtsmuller AB, Baarends WM. Super-resolution imaging of RAD51 and DMC1 in DNA repair foci reveals dynamic distribution patterns in meiotic prophase., 2020, 16(6): e1008595.
[64] Rockmill B, Sym M, Scherthan H, Roeder GS. Roles for two RecA homologs in promoting meiotic chromosome synapsis.1995, 9(21): 2684–2695.
[65] Tsubouchi H, Roeder GS. The importance of genetic recombination for fidelity of chromosome pairing in meiosis., 2003, 5(6): 915–925.
[66] Li WX, Chen CB, Markmann-Mulisch U, Timofejeva L, Schmelzer E, Ma H, Reiss B. TheAtRAD51 gene is dispensable for vegetative development but required for meiosis., 2004, 101(29): 10596–10601.
[67] Franklin AE, Golubovskaya IN, Bass HW, Cande WZ. Improper chromosome synapsis is associated with elongated RAD51 structures in the maize desynaptic2 mutant.2003, 112(1): 17–25.
[68] Crismani W, Portemer V, Froger N, Chelysheva L, Horlow C, Vrielynck N, Mercier R. MCM8 is required for a pathway of meiotic double-strand break repair independent of DMC1 in., 2013, 9(1): e1003165.
[69] Couteau F, Belzile F, Horlow C, Grandjean O, Vezon D, Doutriaux MP. Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmc1 mutant of., 1999, 11(9): 1623–1634.
[70] Szurman-Zubrzycka M, Baran B, Stolarek-Januszkiewicz M, Kwa?niewska J, Szarejko I, Gruszka D. The dmc1 mutant allows an insight into the DNA double-strand break repair during meiosis in barley ()., 2019, 10: 761.
[71] Pittman DL, Cobb J, Schimenti KJ, Wilson LA, Cooper DM, Brignull E, Handel MA, Schimenti JC. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog.1998, 1(5): 697–705.
[72] Yoshida K, Kondoh G, Matsuda Y, Habu T, Nishimune Y, Morita T. The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis., 1998, 1(5): 707–718.
[73] Bishop DK. RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis., 1994, 79(6): 1081–1092.
[74] Shinohara A, Gasior S, Ogawa T, Kleckner N, Bishop DK.recA homologues RAD51 and DMC1 have both distinct and overlapping roles in meiotic recombination., 1997, 2(10): 615–629.
[75] Singh G, Da Ines O, Gallego ME, White CI. Analysis of the impact of the absence of RAD51 strand exchange activity inmeiosis., 2017, 12(8): e0183006.
[76] Cloud V, Chan YL, Grubb J, Budke B, Bishop DK. Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis.2012, 337(6099): 1222–1225.
[77] Brown MS, Bishop DK. DNA strand exchange and RecA homologs in meiosis., 2014, 7(1): a016659.
[78] Marsolier-Kergoat MC, Khan MM, Schott J, Zhu X, Llorente B. Mechanistic view and genetic control of DNA recombination during meiosis., 2018, 70(1): 9–20. e26.
[79] Azumi Y, Liu D, Zhao DZ, Li WX, Wang GF, Hu Y, Ma H. Homolog interaction during meiotic prophase I inrequires the SOLO DANCERS gene encoding a novel cyclin-like protein., 2002, 21(12): 3081–95.
[80] Sanchez-Moran E, Santos JL, Jones GH, Franklin FCH. ASY1 mediates AtDMC1-dependent interhomolog recombination during meiosis in., 2007, 21(17): 2220–2233.
[81] De Muyt A, Pereira L, Vezon D, Chelysheva L, Gendrot G, Chambon A, Lainé-Choinard S, Pelletier G, Mercier R, Nogué F, Grelon M. A high throughput genetic screen identifies new early meiotic recombination functions in., 2009, 5(9): e1000654.
[82] Ferdous M, Higgins JD, Osman K, Lambing C, Roitinger E, Mechtler K, Armstrong SJ, Perry R, Pradillo M, Cu?ado N, Franklin FC. Inter-homolog crossing-over and synapsis inmeiosis are dependent on the chromosome axis protein AtASY3., 2012, 8(2): e1002507.
[83] Yao Y, Li XJ, Chen WL, Liu H, Mi LM, Ren D, Mo AW, Lu PL. ATM promotes RAD51-mediated meiotic DSB repair by inter-sister-chromatid recombination in., 2020, 11: 839.
[84] Argunhan B, Leung WK, Afshar N, Terentyev Y, Subramanian VV, Murayama Y, Hochwagen A, Iwasaki H, Tsubouchi T, Tsubouchi H. Fundamental cell cycle kinases collaborate to ensure timely destruction of the synaptonemal complex during meiosis., 2017, 36(17): 2488–2509.
[85] Prugar E, Burnett C, Chen XY, Hollingsworth NM. Coordination of double strand break repair and meiotic progression in yeast by a Mek1-Ndt80 negative feedback loop., 2017, 206(1): 497–512.
[86] Callender TL, Laureau R, Wan LH, Chen XY, Sandhu R, Laljee S, Zhou S, Suhandynata RT, Prugar E, Gaines WA, Kwon Y, B?rner GV, Nicolas A, Neiman AM, Hollingsworth NM. Mek1 down regulates Rad51 activity during yeast meiosis by phosphorylation of Hed1., 2016, 12(8): e1006226.
[87] Lao JP, Cloud V, Huang CC, Grubb J, Thacker D, Lee CY, Dresser ME, Hunter N, Bishop DK. Meiotic crossover control by concerted action of Rad51-Dmc1 in homolog template bias and robust homeostatic regulation., 2013, 9(12): e1003978.
[88] Thorslund T, Esashi F, West SC. Interactions between human BRCA2 protein and the meiosis-specific reco-mbinase DMC1., 2007, 26(12): 2915–2922.
[89] Dray E, Siaud N, Dubois E, Doutriaux MP. Interaction betweenBrca2 and its partners Rad51, Dmc1, and Dss1., 2006, 140(3): 1059– 1069.
[90] Kumar R, Duhamel M, Coutant E, Ben-Nahia E, Mercier R. Antagonism between BRCA2 and FIGL1 regulates homologous recombination., 2019, 47(10): 5170–5180.
[91] Fernandes JB, Duhamel M, Seguéla-Arnaud M, Froger N, Girard C, Choinard S, Solier V, De Winne N, De Jaeger G, Gevaert K, Andrey P, Grelon M, Guerois R, Kumar R, Mercier R. FIGL1 and its novel partner FLIP form a conserved complex that regulates homologous recombination., 2018, 14(4): e1007317.
[92] Nimonkar AV, Dombrowski CC, Siino JS, Stasiak AZ, Stasiak A, Kowalczykowski SC.Dmc1 and Rad51 proteins preferentially function with Tid1 and Rad54 proteins, respectively, to promote DNA strand invasion during genetic recom-bination., 2012, 287(34): 28727–28737.
[93] Shah SS, Hartono S, Piazza A, Som V, Wright W, Chédin F, Heyer WD. Rdh54/Tid1 inhibits Rad51- Rad54-mediated D-loop formation and limits D-loop length.2020, 9: e59112.
[94] Hernandez Sanchez-Rebato M, Bouatta AM, Gallego ME, White CI, Da Ines O. RAD54 is essential for RAD51-mediated repair of meiotic DSB in., 2021, 17(5): e1008919.
[95] Mason JM, Dusad K, Wright WD, Grubb J, Budke B, Heyer WD, Connell PP, Weichselbaum RR, Bishop DK. RAD54 family translocases counter genotoxic effects of RAD51 in human tumor cells., 2015, 43(6): 3180–3196.
[96] Renkawitz J, Lademann CA, Jentsch S. Mechanisms and principles of homology search during recombination., 2014, 15(6): 369–383.
[97] Busygina V, Sehorn MG, Shi IY, Tsubouchi H, Roeder GS, Sung P. Hed1 regulates Rad51-mediated recom-bination via a novel mechanism., 2008, 22(6): 786–795.
[98] Busygina V, Saro D, Williams G, Leung WK, Say AF, Sehorn MG, Sung P, Tsubouchi H. Novel attributes of Hed1 affect dynamics and activity of the Rad51 presynaptic filament during meiotic recombination.2012, 287(2): 1566–1575.
[99] Vignard J, Siwiec T, Chelysheva L, Vrielynck N, Gonord F, Armstrong SJ, Schl?gelhofer P, Mercier R. The interplay of RecA-related proteins and the MND1-HOP2 complex during meiosis in., 2007, 3(10): 1894–1906.
[100] Zhao WX, Sung P. Significance of ligand interactions involving Hop2-Mnd1 and the RAD51 and DMC1 recombinases in homologous DNA repair and XX ovarian dysgenesis., 2015, 43(8): 4055–4066.
[101] Hayase A, Takagi M, Miyazaki T, Oshiumi H, Shinohara M, Shinohara A. A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmc1.2004, 119(7): 927–940.
[102] Tsubouchi H, Roeder GS. The budding yeast mei5 and sae3 proteins act together with dmc1 during meiotic recombination., 2004, 168(3): 1219–1230.
[103] Reitz D, Grubb J, Bishop DK. A mutant form of Dmc1 that bypasses the requirement for accessory protein Mei5-Sae3 reveals independent activities of Mei5-Sae3 and Rad51 in Dmc1 filament stability.2019, 15(12): e1008217.
[104] Ferrari SR, Grubb J, Bishop DK. The Mei5-Sae3 protein complex mediates Dmc1 activity in., 2009, 284(18): 11766–11770.
[105] Petukhova GV, Pezza RJ, Vanevski F, Ploquin M, Masson JY, Camerini-Otero RD. The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination.2005, 12(5): 449–453.
[106] Tsubouchi H, Argunhan B, Ito K, Takahashi M, Iwasaki H. Two auxiliary factors promote Dmc1-driven DNA strand exchange via stepwise mechanisms., 2020, 117(22): 12062–12070.
[107] Murayama Y, Kurokawa Y, Tsutsui Y, Iwasaki H. Dual regulation of Dmc1-driven DNA strand exchange by Swi5-Sfr1 activation and Rad22 inhibition., 2013, 27(21): 2299–2304.
[108] Chen HC, He CP, Wang CY, Wang XP, Ruan FY, Yan JJ, Yin P, Wang YX, Yan SP. RAD51 supports DMC1 by inhibiting the SMC5/6 complex during meiosis., 2021, 33(8): 2869–2882.
[109] Hunter N. Meiotic recombination: the essence of heredity., 2015, 7(12): a016618.
[110] Woglar A, Villeneuve AM. Dynamic architecture of DNA repair complexes and the synaptonemal complex at sites of meiotic recombination., 2018, 173(7): 1678–1691.e1616.
[111] Villeneuve AM, Hillers KJ. Whence meiosis?, 2001, 106(6): 647–650.
[112] Gerton JL, Hawley RS. Homologous chromosome interactions in meiosis: diversity amidst conservation., 2005, 6(6): 477–487.
[113] An YR, Manuguri SS, Malmstr?m J. Atomic force microscopy of proteins.2020, 2073: 247–285.
[114] Peng YH, Qiao HY. The application of single-cell RNA sequencing in mammalian meiosis studies.2021, 9: 673642.
[115] Prusicki MA, Keizer EM, van Rosmalen RP, Komaki S, Seifert F, Müller K, Wijnker E, Fleck C, Schnittger A. Live cell imaging of meiosis in., 2019, 8: e42834.
Recent advances in functional conservation and divergence of recombinase RAD51 and DMC1
Yuxuan Guo1, Shunping Yan2, Yingxiang Wang1
Meiosis is a specialized cell division that occurs in reproductive cells during sexual reproduction. It contains once DNA replication following nucleus division twice, thus producing haploid gametes. Fusion of male and female gametes restores genome to the diploid level, which not only ensures the genome stability between generations during sexual reproduction, but also leads to genetic diversity among offspring. Meiosis homologous recombination (HR) is one of the crucial events during meiotic prophase I, and it not only ensures thesubsequently faithful segregation of homologous chromosomes (homologs), but also exchanges genetic information between homologs with greatly increasing the genetic diversity of progeny. RAD51 (RADiation sensitive 51)and DMC1 (disruption Meiotic cDNA 1)are essential recombinases for the HR process, and have certain commonalities and differences. In this review, we summarize and compare the conserved and differentiated features of RAD51 and DMC1 in terms of origin, evolution, structure, and function, we also provide an outlook on future research directions to further understand and study the molecular mechanisms in regulation of meiotic recombination.
meiosis; homologous recombination; RAD51; DMC1
2022-01-17;
2022-03-31;
2022-04-12
國家自然科學(xué)基金項目(編號:31925005)資助[Supported by the National Natural Science Foundation of China (No. 31925005)]
郭雨萱,在讀博士研究生,專業(yè)方向:分子細(xì)胞生物學(xué)。E-mail: 21110700065@m.fudan.edu.cn
王應(yīng)祥,博士,研究員,研究方向:植物減數(shù)分裂的分子機制,E-mail: yx_wang@fudan.edu.cn
10.16288/j.yczz.22-016
(責(zé)任編委: 史慶華)