【摘 要】幾何直觀主要是指利用圖形描述和分析問題,可以把復(fù)雜的數(shù)學(xué)問題變得簡明、形象,有助于探索解決問題的思路,預(yù)測結(jié)果。通過一題多解可以很好地發(fā)展學(xué)生的幾何直觀素養(yǎng),讓學(xué)生走出“題?!保岣邔W(xué)習(xí)效率。
【關(guān)鍵詞】初中數(shù)學(xué);數(shù)形結(jié)合;幾何直觀;一題多解
【中圖分類號】G633.6? 【文獻(xiàn)標(biāo)識碼】A? 【文章編號】1671-8437(2022)24-0016-06
幾何證明題在中考數(shù)學(xué)中占有極其重要的地位,不僅屬于難點,還具有拉開學(xué)生之間的分?jǐn)?shù)差距的作用。而角和線段是初中幾何的基本元素,其中角相等的證明,基本上可以涉及初中幾何的方方面面,如角平分線、兩直線平行、三角形全等及相似等知識。解決角相等問題的知識和方法越多,選擇的范圍也就越廣,這對教師的教和學(xué)生的學(xué)都提出了新的要求??v觀各地試題,有的給基礎(chǔ)習(xí)題添加新問題,有的給基本模型創(chuàng)設(shè)新情境,有的賦予核心概念新視角。對此,學(xué)生要能夠抓住問題的本質(zhì),靈活運用角平分線、兩直線平行、全等三角形、等面積法等知識和方法,提升自己的解題
能力[1]。
幾何直觀主要是指運用圖形描述和分析問題的意識和習(xí)慣,可以把復(fù)雜的數(shù)學(xué)問題變得簡明、形象。下面筆者通過一道初二幾何壓軸題,展示數(shù)形結(jié)合與幾何直觀在證明角相等的問題中的
作用。
1? ?試題再現(xiàn)
2017—2018學(xué)年湖北省武漢市青山區(qū)八年級(上)期末數(shù)學(xué)試卷24題:如圖1,在平面直角坐標(biāo)系中,直線AB分別交x軸、y軸于點A(a,0)與點B(0,b),且a,b滿足a2+4a+4+|2a+b|=0。
(1)a=____;b=____;
(2)點P在直線AB的右側(cè),且∠APB=45°,
①若點P在x軸上,則點P的坐標(biāo)為____;
②若ΔABP為直角三角形,求點P的坐標(biāo);
(3)如圖2,在(2)的條件下,點P在第四象限,∠BAP=90°,AP與y軸交于點M,BP與x軸交于點N,連接MN,求證:MP平分ΔBMN的一個外角。
2? ?解法呈現(xiàn)
解析問題(1):方程左邊前三項先完成配方,然后根據(jù)兩個非負(fù)數(shù)的和為零則這兩個非負(fù)數(shù)都為零這一規(guī)律,得到兩個方程,最終解得a=-2,b=4。
解析問題(2):①如圖3,根據(jù)上一問得到b=4,則得到OB的長為4,再根據(jù)點P在直線AB的右側(cè)且在軸上,再加上∠APB=45°,很容易根據(jù)等腰三角形的性質(zhì)得到OP=OB=4,進(jìn)而得到P的坐標(biāo)為(4,0)。
②如圖4,題目要求ΔABP為直角三角形,并沒有指明哪個角是直角,此時要應(yīng)用分類討論思想。由于已給出∠APB=45°,因此只有∠ABP=90°和∠BAP′=90°兩類。
當(dāng)∠ABP=90°時,過點P作PC⊥OB于C,易證ΔAOB≌ΔBCP(AAS),∴P(4,2);當(dāng)∠BAP′=90°時,過點P′作P′D⊥OA于D,同理可得ΔADP′≌ΔBOA,∴P′(2,-2)。即滿足條件的點P坐標(biāo)為(4,2)或(2,-2)。
2.1? 利用平行構(gòu)造全等
問題(3)解法1:已知∠BAP為直角,因為兩坐標(biāo)系互相垂直,容易想到“K字型”模型。借助平行輔助線,構(gòu)造兩組全等,進(jìn)而將角的問題通過全等得以轉(zhuǎn)化。
如圖5,由(2)知點P(2,-2),∵A(-2,0),∴直線AP的解析式為,
∴M(0,-1),∴BM=5,
同理,直線BP的解析式為y=-3x+4,
∴N(,0),∴MN=,
過點P作PH∥AB交x軸于H,
∵∠BAP=90°,
∴∠BAO+∠PAH=90°,
∴∠BAO+∠ABM=90°,
∴∠ABM=∠PAH,
在ΔABM和ΔPAH中,
∴ΔABM≌ΔPAH(ASA),
∴∠AMB=∠PHA,AH=BM=5,
∴∠PMG=∠PHA,OH=AH-OA=3,
∴H(3,0),
∴NH=3-,
∵P(2,-2),M(0,-1),H=(3,0),
∴PM=,PH=,PM=PH,
∴ΔPNM≌ΔPNH(SSS),
∴∠AHP=∠PMN,
∴∠PMG=PMN,即MP是ΔBMN的一個外角的平分線。
評析:借助平行線構(gòu)建了“K字型”基本模型的兩個全等三角形ΔABM和ΔPAH,進(jìn)而求得了AP和BP兩條直線的解析式,利用直線與坐標(biāo)軸的交點和兩點間的距離公式得到MN=NH,PM=PH,最后再次利用全等求得兩角相等。在平時的教學(xué)中,教師不僅要重視兩直線平行、三角形全等、兩點距離公式等基本知識和基本方法的傳授,還要重視基本模型的滲透。
2.2? 巧借中點構(gòu)造全等
解法2:要證明∠DMP=∠NMP,可以轉(zhuǎn)化為證明∠AMB=∠NMP,于是想到作MP的垂線來構(gòu)造全等三角形。根據(jù)同垂直于一條直線的兩直線平行,借助直線解析式可以得到交點坐標(biāo),進(jìn)而獲得相等線段。
如圖6,過點P作PM的垂線,交MN的延長線于點C,交y軸于點D。
設(shè)直線AP為y=kx+b(k≠0),直線過點A(-2,0),P(2,-2),
則有,解得,
∴直線AP為,
令x=0,則y=-1,∴M的坐標(biāo)為(0,-1),
又∵AP中點為,即(0,-1),
∴M為AP中點。
設(shè)直線BP為y=k1x+b1(k1≠0),直線過點B,P,
∴,解得,
∴直線BP為y=-3x+4,令y=0,則,
∴N。
設(shè)直線MN為y=k2x+b2(k2≠0),直線過點
M,N,
∴,解得,
∴直線MN為,
又∵∠MPC=∠BAP=90°,
∴AB∥PC,設(shè)直線PC為y=2x+b3過點P,
∴-2=4+b3,解得b3=-6,
∴直線PC為y=2x-6,
∴,解得,
∴MC=。
又∵BM=OB+OM=5,∴BM+MC,
在RtΔABM與RtΔPCM中,
∴RtΔABM≌RtΔPCM(HL),
∴∠BMA=∠CMP,
又∵∠DMP=∠AMB,
∴∠DMP=∠PMC,
∴MP為∠DMN的平分線。
評析:借助兩直線垂直時k值互為負(fù)倒數(shù)的基本知識得到PC的直線解析式。利用中點坐標(biāo)公式推出M為AP中點,再由直線解析式求得N,C的坐標(biāo),然后利用兩點間的距離公式得到BM=MC,最后利用全等求得兩角相等。
2.3? 利用函數(shù)構(gòu)造全等
解法3:利用∠APB為45°這個條件,結(jié)合本問要證明的結(jié)論反推回來,此時作BP的垂線能夠得到全等三角形。
如圖7,過點P作BP的垂線交BA的延長線于點Q,交y軸于點G。
設(shè)直線BP為y=kx+b(k≠0),B(0,4),P(2,-2)在直線BP上,
∴,解得:,
∴直線BP為y=-3x+4,又∴BP⊥PQ,
可設(shè)直線PQ為,P(2,-2)在直線PQ上,∴,,
∴直線PQ為,
求得:,。
∴NP===,
GP===,
∴GP=NP。
∵∠BPA=45°,∠BPQ=90°
∴∠NPM=∠GPM=45°。
在ΔMNP與ΔMGP中,,
ΔMNP≌ΔMGP(SAS)
∴∠NPM=∠GPM,即MP平分∠GMN。
評析:此法同樣用到了兩直線垂直時k值互為負(fù)倒數(shù),獲得PQ直線解析式,仍舊利用兩點間的距離公式得到線段相等,最后結(jié)合已知的45°角和公共邊,只用一次全等就能證明結(jié)論。兩直線垂直k的關(guān)系、特殊角的應(yīng)用是此方法的特點,教師要引導(dǎo)學(xué)生充分利用現(xiàn)有條件構(gòu)建全等模型,發(fā)展幾何直觀素養(yǎng)。
2.4? 借助旋轉(zhuǎn)構(gòu)造全等
解法4:題中∠APB為45°,若向兩邊作垂線可以得到半角模型,可得出PE的輔助線做法,進(jìn)而構(gòu)造全等的模型。
如圖8,過點P分別向x軸、y軸作垂線,分別交于點C,D。
∵P(2,-2),∴CP=DP,
將?CPN繞著P點逆時針轉(zhuǎn)動90°,C點落在D點上,N點落在y軸的E點上。
∴?CPN≌?DPE,
∴∠CPN=∠DPE,EP=NP,
又∵∠CPN+MPD=45°,
∴∠DPE+∠MPD=45°,
∵∠EPM=45°,
∴∠EPM=∠NPM。
在?EPM與?NPM中,,
∴ΔEMP≌ΔNMP(SAS),
∴∠EMP=∠NMP,即MP平分∠NME。
評析:過P向坐標(biāo)軸作垂線,易得到正方形,再加之∠APB=45°的條件,具有較強的指導(dǎo)性。由于學(xué)生常見的半角模型多是以直角為背景的,此時旋轉(zhuǎn)思想的應(yīng)用比較自然,最后利用二次全等便可直接證明兩個角相等。這也要求教師在平時的教學(xué)中注重基本幾何模型的提煉,如半角模型、全等模型等。
2.5? 用等面積法構(gòu)造全等
解法5:利用角平分線的逆定理來證明角平分線,往角兩邊作垂線應(yīng)該是最容易想到的輔助線方法,再借助等面積方法思想,只需要證明PY=PH即可。
如圖9,過P點分別作y軸與MN的垂線交于點H與點Y。
設(shè)直線AP的解析式y(tǒng)=kx+b(k≠0),直線過點A(-2,0),(2,-2),
∴,解得,
∴直線AP為。
∵直線AP交y軸于點M,
∴M(0,1),
∴OM=1。
設(shè)直線BP為y=k1x+b1(k1≠0),
直線BP過B(0,4),P(2,-2),
∴,解得,
∴直線BP為y=-3+4,
∵直線BP交x軸于點N,
令y=0,則,
∴N(,0),
∴ON=,
評析:要證角平分線,可以證明點P到角兩邊的距離相等即可。作角兩邊垂線的輔助線還是比較容易想到的,這樣可以接著把問題轉(zhuǎn)化為面積問題,進(jìn)而轉(zhuǎn)化為求線段長的問題,最終還是構(gòu)造全等模型證明角平分線。面積法往往可以使問題簡化。
2.6? 截取線段構(gòu)造全等
解法6:最簡單明了的方法就是直接構(gòu)造兩角相等的全等三角形,截取線段相等不難想到,但是要借助直線解析式證明PN=PH是重難點,而借助坐標(biāo)解決線段相等問題變得較為簡單。
評析:此解法為六種解法中最為巧妙的。難點是截取線段相等,亮點是解析式求點坐標(biāo),利用兩點間的距離公式得到邊相等,最后利用SSS巧妙證明全等。教師要使學(xué)生掌握化繁為簡的技巧,直接抓住問題的本質(zhì),理清解題的思路,有效提升學(xué)生的邏輯思維能力。
在幾何題目中,輔助線的添加具有較強的技巧性,對解題有舉足輕重的作用。如何利用條件添加輔助線?如何結(jié)合結(jié)論添加輔助線?這些都是教師在日常教學(xué)中應(yīng)該重點思考的問題。教師平時還應(yīng)多開展一題多解的訓(xùn)練,這樣有助于學(xué)生把握一些基本的教學(xué)模型,提高學(xué)生的數(shù)學(xué)能力[2]。
由上述例題可以看到,函數(shù)解析式對于幾何證明有很大的幫助,不僅可以求解點的坐標(biāo),也能間接解決線段相等的問題。兩直線互相垂直時,k的關(guān)系以及兩點間的距離公式都能起到關(guān)鍵的作用。幾何直觀可以幫助學(xué)生直觀地理解數(shù)學(xué)知識,在整個數(shù)學(xué)學(xué)習(xí)過程中都發(fā)揮著重要作用。對此,教師應(yīng)打破束縛,勇于探索,發(fā)展學(xué)生的幾何直觀素養(yǎng)。
【參考文獻(xiàn)】
[1]曹曉榮.與角平分線相關(guān)的基本題型[J].初中數(shù)學(xué)教與學(xué),2017(8).
[2]孫刖夫.淺談初中《幾何》習(xí)題一題多解與多變[J].成都教育學(xué)員學(xué)報,2000(7).
【作者簡介】
李杰(1986~),男,四川成都人,本科,中學(xué)一級教師。研究方向:初中數(shù)學(xué)教學(xué)。