李重陽 王飛躍 陳志權(quán)
用正電子湮沒譜研究煅燒對SBA-15熱穩(wěn)定性的影響
李重陽1王飛躍1陳志權(quán)2
1(華北水利水電大學(xué)電力學(xué)院 鄭州 450045)2(武漢大學(xué)物理科學(xué)與技術(shù)學(xué)院 武漢 430072)
多孔材料由于具有高比表面積、高滲透性、吸附性和可組裝性等優(yōu)異的物理化學(xué)性能,被廣泛應(yīng)用于氣體吸附、電化學(xué)、藥物輸送、催化劑和催化劑載體等領(lǐng)域。多孔材料的應(yīng)用性取決于其宏觀性質(zhì),尤其是孔隙結(jié)構(gòu)的多樣性、孔徑的可調(diào)性、熱穩(wěn)定性等對其大規(guī)模實際應(yīng)用非常重要。利用正電子湮沒譜學(xué)(Positron Annihilation Spectroscopy,PAS)觀察了SBA-15的熱穩(wěn)定性。以正硅酸四乙酯為硅源,P123為結(jié)構(gòu)導(dǎo)向劑,合成了原生有序介孔二氧化硅(SBA-15)和550 ℃煅燒后的有序介孔二氧化硅(SBA-15)。將上述兩種SBA-15在100~1 000 ℃溫度下煅燒處理,觀察其孔隙結(jié)構(gòu)的熱穩(wěn)定性變化。采用小角度X射線散射(Small Angle X-ray Scattering,SAXS)、掃描電子顯微鏡(Scanning Electron Microscopy,SEM)、高分辨透射電子顯微鏡(High-resolution Transmission Electron Microscope,HRTEM)、N2吸附/脫附(N2adsorption-desorption)和正電子湮沒譜學(xué)(Positron Annihilation Spectroscopy,PAS)等方法研究了兩種SBA-15有序孔隙結(jié)構(gòu)的穩(wěn)定性。正電子壽命測量結(jié)果表明:兩種SBA-15均存在4種壽命組分,較長壽命3和4分別對應(yīng)于o-Ps在材料中微孔和二維六角的較大孔中的湮滅結(jié)果。隨著熱處理溫度的升高,這兩種SBA-15中較長壽命4逐漸降低,其強度4也逐漸降低,但煅燒后SBA-15較長壽命及其強度在600 ℃后下降更為明顯。同時,參數(shù)結(jié)果與正電子壽命的結(jié)果吻合較好,-曲線也表明煅燒后SBA-15孔隙類型在100~900 ℃間幾乎未發(fā)生變化。結(jié)果表明:煅燒后SBA-15表現(xiàn)出較好的熱穩(wěn)定性,同時電子偶素(Ps)是一種非常靈敏的研究孔隙結(jié)構(gòu)的探針。
SBA-15,孔隙結(jié)構(gòu),電子偶素,熱穩(wěn)定性
自20世紀90年代以來,多孔材料由于具有高比表面積、高滲透性、吸附性和可組裝性等優(yōu)異的物理化學(xué)性質(zhì),在氣體吸附、電化學(xué)、藥物傳遞、催化劑和催化劑載體等領(lǐng)域得到了廣泛的應(yīng)用[1? 2]。多孔材料的應(yīng)用在很大程度上取決于其宏觀性質(zhì),特別是其孔隙結(jié)構(gòu)的多樣性及孔徑的可調(diào)節(jié)性。直到1992年,美孚公司的研究人員在堿性條件下使用陽離子表面活性劑和無機硅源,報道了一系列M41S(MCM-41、MCM-48和MCM-50),這是沸石從微米到介孔孔徑的里程碑式發(fā)現(xiàn)[3?7]。近年來,MCM-41、SBA-15、KIT-6等介孔材料已發(fā)展成為化學(xué)、物理、生物、醫(yī)學(xué)等領(lǐng)域的研究熱點之一[4, 8?9]。SBA系列通常在酸性介質(zhì)中合成,包括SBA-1、SBA-2、SBA-3、SBA-7、SBA-15、SBA-16等[10?13]。以陽離子表面活性劑為模板劑,以聚環(huán)氧乙烷-聚環(huán)氧丙烷-聚環(huán)氧乙烷(PEO-PPO-PEO)為結(jié)構(gòu)導(dǎo)向劑,可在強堿條件下合成了SBA-1、SBA-2、SBA-3、SBA-7,在強酸條件下合成了SBA-11、SBA-12、SBA-14、SBA-15、SBA-16。由于其表面含有豐富的硅羥基,介孔材料更容易摻雜一些具有催化活性的金屬原子到其骨架中或在表面接枝特定的官能團,使其在大分子催化反應(yīng)中表現(xiàn)出較好的轉(zhuǎn)化率或選擇性[14?20]。
正電子在小顆粒細粉末中的湮沒是基礎(chǔ)而又特別有吸引力的研究課題[21?26]。在金屬中,由于其電子密度高,正電子注入或擴散到該材料表面后,由于簡單的庫倫引力作用快速發(fā)生湮沒,不會形成電子偶素(Ps)[27?29]。與金屬不同,當正電子入射到小顆粒的納米粉末中,如Al2O3、SiO2和MgO,相當一部分正電子會捕獲低密度區(qū)域中的電子形成Ps,很大可能發(fā)生3γ自湮沒,進而顯示出較長的壽命成分。因此,多孔絕緣材料中,正電子湮沒譜(Positron Annihilation Spectroscopy,PAS)關(guān)鍵特征是能夠通過o-Ps的形成、擴散和湮沒檢測其孔洞信息。正電子從22NaCl源中發(fā)射時攜帶0~545 keV的能量,一旦進入凝聚態(tài)物質(zhì)內(nèi)部,因電離作用和原子核的強烈散射,e+將受到強烈排斥,發(fā)生非彈性碰撞后快速損失其動能,1~3 ps內(nèi)迅速慢化到熱能級(在室溫下為0.025 eV)。熱化后e+在固體中以無規(guī)則熱運動的形式隨機擴散,約100 nm后,與電子發(fā)生自由湮沒或被空位型缺陷捕獲后湮沒。
如前所述,正電子從22Na源中發(fā)射時攜帶的能量較高,最高峰值為0.545 MeV,平均能量為0.220 MeV。這些高能的正電子在與周圍的原子、分子碰撞過程中可以產(chǎn)生大量的電子-空穴對[30?32]。當晶粒尺寸小于正電子的擴散長度,正電子將有機會擴散至晶粒的表面并在表面形成表面態(tài)Ps,或者在表面捕獲一個電子后形成Ps[33?36]。由于正電子和電子自旋方向的不同,Ps原子分為三重態(tài)o-Ps(=1,s=-1,0,+1)和單重態(tài)p-Ps(=0,s=0)。從自旋態(tài)的差異來看,o-Ps的形成概率約為p-Ps的3倍。在真空中,由于發(fā)射出3γ射線發(fā)生自湮滅,o-Ps壽命高達142 ns,而發(fā)射2γ射線的p-Ps壽命僅為125 ps。
正電子湮沒譜學(xué)作為表征多孔材料孔隙結(jié)構(gòu)的一種特色測量技術(shù),已得到廣泛的應(yīng)用[23?24,37?40]。在具有二維六角柱狀孔洞的SBA-15納米顆粒中,正電子在其管道內(nèi)先捕獲一個電子形成Ps,進而發(fā)生湮沒,且o-Ps原子壽命與孔隙結(jié)構(gòu)有關(guān)[41]。當o-Ps局限于孔內(nèi)時,o-Ps會從孔壁上拾取一個電子并發(fā)出2γ射線發(fā)生湮滅,稱為拾取湮滅。因此,o-Ps的壽命將減少到幾ns左右。根據(jù)Tao、Eldrup、Dull和Gowork等[42?45]建立的壽命-孔半徑間半經(jīng)驗?zāi)P停?/p>
其中:
本文在酸性條件下制備了SBA-15,采用正電子壽命測量技術(shù)、小角X射線散射、掃描電子顯微鏡、高分辨透射電子顯微鏡和N2吸附/脫附測試等表征手段。同時,采用后熱處理方式,通過分析熱處理對SBA-15孔結(jié)構(gòu)的影響,探究SBA-15的熱穩(wěn)定性。
以兩親性三嵌段共聚物Pluronic P123(分子重量w= 5 800,EO20-PO70-EO20,Sigma Aldrich)為結(jié)構(gòu)導(dǎo)向劑,正硅酸四乙酯(TEOS,C8H20O4Si)為硅源制備了SBA-15[4]。將2 g P123溶于11.823 g 37wt% HCl、60.026 g去離子水中,待P123完全溶解后,再加入4.271 g正硅酸四乙酯,35 ℃混合攪拌24 h,然后轉(zhuǎn)移到Teflon-lined高壓釜,在靜態(tài)條件下100 ℃保持24 h。最后,經(jīng)過濾、蒸餾水洗滌,并在100 ℃干燥24 h,命名為原生(As-Prepared)SBA-15。將部分原生SBA-15在550 ℃下空氣中煅燒6 h,升溫速率為1 ℃·min-1,稱為煅燒(Calcined)SBA-15。將兩種合成的SBA-15分別在瑪瑙砂漿中手工研磨2 h后,在6 MPa的靜壓下壓制5 min,制得厚度為1.5 mm、直徑為15 mm的圓片狀。然后在100~1 000 ℃溫度下,以10 ℃·min-1的升溫速率進行退火,研究其介孔結(jié)構(gòu)的熱穩(wěn)定性。
用小角X射線散射儀(X'Pert Pro,PANalytical,Netherlands)對Cu Kα輻射進行了小角度X射線散射(Small Angle X-ray Scattering,SAXS)測量,入射X射線為0.154 06 nm,工作電壓和電流為40 kV、40 mA。掃描電子顯微鏡(Scanning Electron Microscope,SEM)(XL30(Philips),荷蘭)和高分辨透射電子顯微鏡(High-Resolution Transmission Electron Microscopy,HRTEM)(JEOL JE-2010FEF(UHR),日本東京)用于觀察其形貌,加速度電壓為200 kV。為了驗證合成的SBA-15的孔隙結(jié)構(gòu),利用JW-BK 100C氣體吸附分析儀在77 K下進行N2吸附/脫附等溫線測量,180 ℃預(yù)處理2 h。
22Na正電子源(1.85×106Bq)被包夾在兩片相同的樣品中形成三明治式的結(jié)構(gòu),隨后放進真空樣品室中,整個實驗過程中真空度優(yōu)于1.33×10-4Pa。為了同時收集正電子湮沒壽命譜和多普勒展寬譜,壽命譜的兩個探頭與多普勒展寬譜的兩個探頭垂直交叉放置。為了盡可能多搜集o-Ps的3γ湮滅信號,將終止道(0.511 MeV湮滅γ射線)鑒別器上的低能級能窗設(shè)置得盡可能低。壽命譜的總計數(shù)為1.5×106,計數(shù)率為26,每個多普勒展寬譜的總計數(shù)大于1.5×107。
圖1為制備的SBA-15的小角X射線散射圖。從圖1可以看到,SBA-15在2分別為0.98°、1.78°和2.06°位置存在三個特征散射峰:(100)、(110)、(200),即P6mm結(jié)構(gòu)的特征峰。該結(jié)果證實制備的SBA-15具有規(guī)則二維六角的孔洞排列。通過Bragg的公式,該樣品的周期型間隔(孔徑+孔壁)采用主散射峰位(100)計算得到:
通過小角X射線散射(Small Angle X-ray Scattering,SAXS)測量,我們能夠得到SBA-15的周期型間隔,可估算出SBA-15的周期型間隔為9.01 nm,由周期型間隔減去孔壁得出SBA-15的孔徑。從圖2中SBA-15的SEM圖可知,制備的SBA-15的顆粒分布均勻,均具有0.6 μm長和0.2 μm寬的珠狀鏈條形貌。
圖2 SBA-15的掃描電子顯微鏡
同時,高分辨透射電子顯微鏡(High-resolution transmission electron microscope,HRTEM)測試結(jié)果分別是垂直孔徑方向和平行孔徑方向證實了SBA-15中孔結(jié)構(gòu)的高度有序性,即一條條排列緊密、高度有序的二維六角結(jié)構(gòu)的孔洞管道,如圖3所示。TEM結(jié)果表明:SBA-15的孔徑約為7~9 nm,孔壁約為1.82 nm。結(jié)合SAXS測試中周期型間隔結(jié)果,可知SBA-15的孔徑約為7.19 nm。
為了獲得更詳細的孔隙參數(shù),特別是孔徑分布信息,對合成的SBA-15在低溫77 K下進行N2吸附/脫附測量,得到SBA-15的吸附/脫附等溫線及其孔徑分布。如圖4所示,N2吸附/脫附等溫線為典型的IV型曲線,具有H1滯后回線,在相對壓力/0為0.6~0.9時發(fā)生明顯的毛細凝結(jié),這也是介孔尺寸的特征現(xiàn)象[46]。同時,利用Barrett-Joyner-Halenda(BJH)模型[47]從吸附分支計算樣品的孔徑分布曲線,其孔徑分布相對較窄,最可幾孔徑約為10.0 nm,平均孔徑約為7.5 nm,與SAXS和SEM結(jié)果基本一致?;贐ET模型[48],合成的比表面積約為597.92 m2·g-1。
圖3 SBA-15(100)方向的高分辨透射電子顯微鏡 (a) 100 nm,(b) 50 nm,(c) 20 nm
圖4 SBA-15的N2吸附/脫附等溫線和孔徑分布圖
合成SBA-15的峰歸一化的正電子湮沒壽命譜,如圖5所示。結(jié)果表明,SBA-15中正電子壽命組分相對較長,表明樣品中孔隙較大。由PATFIT程序[49]可知,兩個較長壽命3(約6 ns)和4(約92 ns)是o-Ps在多孔材料中孔洞內(nèi)湮沒的結(jié)果[50]。眾所周知,o-Ps的壽命與材料的孔徑密切相關(guān)。兩種o-Ps壽命成分表明SBA-15中存在兩種不同類型的孔隙,分別具有較小和較大的開孔體積,即o-Ps在SBA-15材料中二維P6mm六角柱狀介孔孔管道和管道-管道間的連接管內(nèi)湮沒的結(jié)果。對于本文SBA-15中二維六角的孔結(jié)構(gòu),根據(jù)已建立的壽命-半徑的半經(jīng)驗?zāi)P?、Tao-Eldrup及其拓展模型[42?43]、基于長方體的Dull拓展模型[45]得到的孔徑誤差略大,而基于圓柱狀的Goworek拓展模型[44]更為適用,可得出這兩種孔隙寬度分別約為0.64 nm和7.20 nm,介孔孔徑結(jié)果與SAXS、N2吸附/脫附等測量結(jié)果基本一致。這些結(jié)果同樣表明制備SBA-15是成功的,同時也證實正電子湮沒是表征孔結(jié)構(gòu)的較好探針。
圖5 合成SBA-15的歸一化峰的正電子湮沒壽命譜
圖6顯示了SBA-15中較長壽命3、4及其相應(yīng)強度3、4隨退火溫度的變化。對于原生SBA-15,較短o-Ps壽命3保持在6 ns左右。同時,4、4和3變化明顯,可分為3個階段:在100~400 ℃階段,4由91.8 ns急劇下降至54.6 ns,4由30%下降至27%。4的急劇下降可能與孔隙結(jié)構(gòu)的破壞以及表面活性劑P123的分解有關(guān);在400~900 ℃退火過程中,較長壽命4下降緩慢,4急劇下降;在第3階段,4和4均再次急劇下降。壽命4的降低可能是由于較大孔隙(晶粒間未占據(jù)的空間)被破壞成微孔或這些孔隙的收縮所致,這也是4降低、3增加的原因。由于原生SBA-15未在550 ℃下煅燒,樣品中含有P123聚合物模板劑在350 ℃左右可以完全分解。但是,10 ℃·min-1的升溫速度使得P123模板不規(guī)則地分解,導(dǎo)致原生SBA-15孔隙結(jié)構(gòu)被破壞。同時,通過PATFIT分析,部分較長o-Ps壽命被擬合為3成分,這可能是3增加的原因。對于在550 ℃下以1 ℃·min-1的速率煅燒5 h的煅燒后SBA-15樣品,在退火后也進行了正電子湮滅壽命的測量。隨著退火溫度升高,3呈連續(xù)上升趨勢。由于200 ℃的退火溫度過低而不能破壞孔結(jié)構(gòu)時,較長壽命成分4和其強度4基本保持不變。隨著煅燒溫度升高至1 000 ℃,較長壽命4逐漸降低至18 ns,但下降速度慢于原生SBA-15。另外,在100~600 ℃退火溫度范圍內(nèi),對應(yīng)的強度4基本保持不變。但當退火溫度高于600 ℃時,4從30%下降到5%,降幅較大。結(jié)果表明:煅燒后SBA-15的熱穩(wěn)定性較好,在較低的熱處理溫度下其熱穩(wěn)定性幾乎未受到破壞。
圖6 原生SBA-15 (a)和煅燒后的SBA-15 (b)中τ3、τ4的強度I3、I4隨熱處理溫度的變化
我們還對這兩種SBA-15進行了多普勒展寬測量。從圖7可以看出,參數(shù)的變化與各4的變化非常相似。對于原生SBA-15,參數(shù)先急劇下降至0.504,然后緩慢下降至0.497。但煅燒后SBA-15中參數(shù)的下降速率要低得多,在600 ℃以下幾乎沒有變化,與強度4的下降速率基本一致。由-相關(guān)曲線可知,除100 ℃煅燒的樣品外,原生SBA-15的數(shù)據(jù)可被一條直線擬合,說明煅燒過程中塌陷的孔洞類型一致。而煅燒后SBA-15的-曲線表明除1 000 ℃外,100~900 ℃煅燒處理的樣品孔洞類型一致。這些結(jié)果表明:550 ℃煅燒的SBA-15穩(wěn)定性更好。
圖7 原生SBA-15 (a)和煅燒后SBA-15 (b)中S參數(shù)隨退火溫度變化圖和S-W曲線圖
綜上所述,我們制備了兩種SBA-15樣品,分別為原生SBA-15和煅燒后SBA-15。TEM測試表明:它們都具有高度有序的二維六角的孔隙結(jié)構(gòu)。對兩種SBA-15在100~1 000 ℃的熱處理條件下,以10 ℃·min-1的速率逐步破壞有序的二維六角的較大孔結(jié)構(gòu)。正電子湮沒測量結(jié)果得到的o-Ps壽命及其強度的變化以及參數(shù)和參數(shù)結(jié)果表明:550 ℃煅燒后SBA-15的熱穩(wěn)定性優(yōu)于原生SBA-15。同時,該結(jié)果進一步證明了電子偶素可以作為表征多孔材料孔隙結(jié)構(gòu)變化的靈敏探針。
作者貢獻聲明 李重陽:負責(zé)文章的制備樣品、測試、數(shù)據(jù)處理,起草撰寫及最終版本的修訂;王飛躍:負責(zé)文章的細節(jié)修訂、校對;陳志權(quán):負責(zé)文章的修改和整體把握。
1 Larki A, Saghanezhad S J, Ghomi M. Recent advances of functionalized SBA-15 in the separation/preconcentration of various analytes: a review[J]. Microchemical Journal, 2021, 169: 106601. DOI: 10.1016/j.microc.2021.106601.
2 Shakeri M, Khatami Shal Z, van der Voort P. An overview of the challenges and progress of synthesis, characterization and applications of plugged SBA-15 materials for heterogeneous catalysis[J]. Materials (Basel, Switzerland), 2021, 14(17): 5082. DOI: 10.3390/ma14175082.
3 Kresge C T, Leonowicz M E, Roth W J,. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359(6397): 710–712. DOI: 10.1038/359710a0.
4 Zhao D, Feng J, Huo Q,. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350): 548–552. DOI: 10.1126/science.279.5350.548.
5 Beck J S, Vartuli J C, Roth W J,. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. Journal of the American Chemical Society, 1992, 114(27): 10834–10843. DOI: 10.1021/ja00053a020.
6 Ryoo R, Jun S. Improvement of hydrothermal stability of MCM-41 using salt effects during the crystallization process[J]. The Journal of Physical Chemistry B, 1997, 101(3): 317–320. DOI: 10.1021/jp962500d.
7 Kim J M, Jun S, Ryoo R. Improvement of hydrothermal stability of mesoporous silica using salts: reinvestigation for time-dependent effects[J]. The Journal of Physical Chemistry B, 1999, 103(30): 6200–6205. DOI: 10.1021/jp990394k.
8 Fang K G, Ren J, Sun Y H. Synthesis and characterization of steam-stable Al-MCM-41[J]. Materials Chemistry and Physics, 2005, 90(1): 16–21. DOI: 10.1016/j.matchemphys.2004.05.018.
9 Zhao D Y, Huo Q S, Feng J L,. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. Journal of the American Chemical Society, 1998, 120(24): 6024–6036. DOI: 10.1021/ja974025i.
10 Saikia D, Deka J R, Wu C G,. pH responsive selective protein adsorption by carboxylic acid functionalized large pore mesoporous silica nanoparticles SBA-1[J]. Materials Science and Engineering: C, 2019, 94: 344–356. DOI: 10.1016/j.msec.2018.09.043.
11 Poonia E, Duhan S, Kumar K,. One pot hydrothermal synthesis of ordered mesoporous SnO2/SBA-16 nanocomposites[J]. Journal of Porous Materials, 2019, 26(2): 553–560. DOI: 10.1007/s10934-018-0651-y.
12 Zheng P, Hu D, Meng Q,. Influence of support acidity on the HDS performance over β-SBA-16 and Al-SBA-16 substrates: a combined experimental and theoretical study[J]. Energy & Fuels, 2019, 33(2): 1479–1488. DOI: 10.1021/acs.energyfuels.8b04133.
13 Li H C, Sakamoto Y, Li Y S,. Synthesis of carbon replicas of SBA-1 and SBA-7 mesoporous silicas[J]. Microporous and Mesoporous Materials, 2006, 95(1–3): 193–199. DOI: 10.1016/j.micromeso.2006.05.014.
14 Xiong H F, Zhang Y H, Wang S G,. Preparation and catalytic activity for Fischer–Tropsch synthesis of Ru nanoparticles confined in the channels of mesoporous SBA-15[J]. The Journal of Physical Chemistry C, 2008, 112(26): 9706–9709. DOI: 10.1021/jp800579v.
15 Wang H, Liu Y, Pinnavaia T J. Highly acidic mesostructured aluminosilicates assembled from surfactant-mediated zeolite hydrolysis products[J]. The Journal of Physical Chemistry B, 2006, 110(10): 4524–4526. DOI: 10.1021/jp056688p.
16 Yeasmin F, Mallik A K, Chisty A H,. Remarkable enhancement of thermal stability of epoxy resin through the incorporation of mesoporous silica micro-filler[J]. Heliyon, 2021, 7(1): e05959. DOI: 10.1016/j.heliyon. 2021.e05959.
17 Anyanwu J T, Wang Y R, Yang R T. Influence of water on amine loading for ordered mesoporous silica[J]. Chemical Engineering Science, 2021, 241: 116717. DOI: 10.1016/j.ces.2021.116717.
18 Mayanovic R A, Yan H, Brandt A D,. Mechanical and hydrothermal stability of mesoporous materials at extreme conditions[J]. Microporous and Mesoporous Materials, 2014, 195: 161–166. DOI: 10.1016/j.micromeso.2014.04.027.
19 Herbert R, Wang D, Schom?cker R,. Stabilization of mesoporous silica SBA-15 by surface functionalization[J]. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 2009, 10(13): 2230–2233. DOI: 10.1002/cphc.200900311.
20 Cui Z M, Hao J, Cao C Y,. Having it both ways: delicate hierarchical structure and robust mechanical stability on micro/nanomaterials with mesoporous silica coating[J]. Journal of Porous Materials, 2017, 24(1): 103–108. DOI: 10.1007/s10934-016-0242-8.
21 Brandt W. Positron dynamics in solids[J]. Applied Physics, 1974, 5(1): 1–23. DOI: 10.1007/BF01193389.
22 Gidley D W, Peng H G, Vallery R S. Positron annihilation as a method to characterize porous materials[J]. Annual Review of Materials Research, 2006, 36: 49–79. DOI: 10.1146/annurev.matsci.36.111904.135144.
23 Rien?cker B, Gigl T, Nebbia G,. Absolute fraction of emitted Ps determined by geant4-supported analysis of gamma spectra[J]. Physical Review A, 2020, 102(6): 062212. DOI: 10.1103/physreva.102.062212.
24 ?í?ek J, Melikhova O, Hru?ka P,. Positronium formation in nanostructured metals[J]. Acta Physica Polonica A, 2017, 132(5): 1579–1584. DOI: 10.12693/aphyspola.132.1579.
25 Cassidy D B, Mills A P. Enhanced ps-ps interactions due to quantum confinement[J]. Physical Review Letters, 2011, 107(21): 213401. DOI: 10.1103/physrevlett. 107.213401.
26 Chiari L, Ohnuki C, Fujinami M. A positronium-based systematic study of the physico-chemical properties of zeolite pores[J]. Radiation Physics and Chemistry, 2021, 184: 109441. DOI: 10.1016/j.radphyschem.2021.109441.
27 Tuomisto F, Makkonen I. Defect identification in semiconductors with positron annihilation: experiment and theory[J]. Reviews of Modern Physics, 2013, 85(4): 1583–1631. DOI: 10.1103/revmodphys.85.1583.
28 Romero A H, Allan D C, Amadon B,. ABINIT: overview and focus on selected capabilities[J]. The Journal of Chemical Physics, 2020, 152(12): 124102. DOI: 10.1063/1.5144261.
29 Korhonen E, Tuomisto F, Gogova D,. Electrical compensation by Ga vacancies in Ga2O3thin films[J]. Applied Physics Letters, 2015, 106(24): 242103. DOI: 10.1063/1.4922814.
30 Golovchak R, Wang S J, Jain H,. Positron annihilation lifetime spectroscopy of nano/macroporous bioactive glasses[J]. Journal of Materials Research, 2012, 27(19): 2561–2567. DOI: 10.1557/jmr.2012.252.
31 Mariazzi S, Toniutti L, Patel N,. Formation and escaping of positronium in porous SiO2films at low temperature[J]. Applied Surface Science, 2008, 255(1): 191–193. DOI: 10.1016/j.apsusc.2008.05.207.
32 Bonnelle C, Jonnard P. Dynamics of charge trapping by electron-irradiated alumina[J]. Physical Review B, 2010, 82(7): 075132. DOI: 10.1103/physrevb.82.075132.
33 Nagai Y, Nagashima Y, Hyodo T. Lifetime of delocalized positronium in α–SiO2[J]. Physical Review B, 1999, 60(11): 7677–7679. DOI: 10.1103/physrevb.60.7677.
34 Hyodo T, Nakayama T, Saito H,. The quenching of ortho-positronium[J]. Physica Status Solidi C, 2009, 6(11): 2497–2502. DOI: 10.1002/pssc.200982118.
35 Zhang H J, Chen Z Q, Wang S J. Monolayer dispersion of NiO in NiO/Al2O3catalysts probed by positronium atom[J]. The Journal of Chemical Physics, 2012, 136(3): 034701. DOI: 10.1063/1.3676259.
36 Sudarshan K, Patil P N, Goswami A,. Positronium chemistry of the Ps quenchers adsorbed on to the mesoporous resin[J]. Physica Status Solidi: C, 2009, 6(11): 2552–2555. DOI: 10.1002/pssc.200982082.
37 Kim T W, Ryoo R, Gierszal K P,. Characterization of mesoporous carbons synthesized with SBA-16 silica template[J]. Journal of Materials Chemistry, 2005, 15(15): 1560. DOI: 10.1039/b417804a.
38 Zhang H J, Chen Z Q, Wang S J,. Spin conversion of positronium in NiO/Al2O3catalysts observed by coincidence Doppler broadening technique[J]. Physical Review B, 2010, 82(3): 035439. DOI: 10.1103/physrevb.82.035439.
39 Sagara A, Yabe H, Chen X,. Pore structure analysis of ionic liquid-templated porous silica using positron annihilation lifetime spectroscopy[J]. Microporous and Mesoporous Materials, 2020, 295: 109964. DOI: 10.1016/j.micromeso.2019.109964.
40 王少階, 陳志權(quán), 王波. 應(yīng)用正電子譜學(xué)[M]. 武漢: 湖北科學(xué)技術(shù)出版社, 2008.
WANG Shaojie, CHEN Zhiquan, WANG Bo. Applied positron spectroscopy[M]. Wuhan: Hubei Science & Technology Press, 2008.
41 Boujibar O, Souikny A, Ghamouss F,. CO2capture using N-containing nanoporous activated carbon obtained from argan fruit shells[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 1995–2002. DOI: 10.1016/j.jece.2018.03.005.
42 Tao S J. Positronium annihilation in molecular substances[J]. The Journal of Chemical Physics, 1972, 56(11): 5499–5510. DOI: 10.1063/1.1677067.
43 Eldrup M, Lightbody D, Sherwood J N. The temperature dependence of positron lifetimes in solid pivalic acid[J]. Chemical Physics, 1981, 63(1–2): 51–58. DOI: 10. 1016/0301-0104(81)80307-2.
44 Goworek T, Ciesielski K, Jasińska B,. Positronium states in the pores of silica gel[J]. Chemical Physics, 1998, 230(2–3): 305–315. DOI: 10.1016/S0301-0104(98)00068-8.
45 Dull T L, Frieze W E, Gidley D W,. Determination of pore size in mesoporous thin films from the annihilation lifetime of positronium[J]. The Journal of Physical Chemistry B, 2001, 105(20): 4657–4662. DOI: 10.1021/jp004182v.
46 Thommes M, Kaneko K, Neimark A V,. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9–10): 1051–1069. DOI: 10.1515/pac-2014-1117.
47 Barrett E P, Joyner L G, Halenda P P. The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms[J]. Journal of the American Chemical Society, 1951, 73(1): 373–380. DOI: 10.1021/ja01145a126.
48 Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 60(2): 309–319. DOI: 10.1021/ja01269a023.
49 Davis M E. Ordered porous materials for emerging applications[J]. ChemInform, 2002, 33(40): 245. DOI: 10.1002/chin.200240245.
50 Paulin R, Ambrosino G. Annihilation libre de l'ortho-positronium formé dans certaines poudres de grande surface spécifique[J]. Le Journal de Physique, 1968, 29(4): 263–270.
Effect of calcination on the thermal stability of SBA-15 studied by positron annihilation spectroscopy
LI Chongyang1WANG Feiyue1CHEN Zhiquan2
1()2()
Since the 1990s, porous materials have been widely used in the fields of gas adsorption, electrochemistry, drug delivery, catalyst and catalyst carrier because of their excellent physical and chemical properties such as high specific surface area, high permeability, adsorption and assemblability. The application of porous materials largely depends on their macroscopic properties, especially the diversity of pore structure and the adjustability of pore size, especially, the thermal stability of SBA-15 is very important for its large-scale practical application.This study aims to observe the thermal stability of SBA-15 by positron annihilation spectroscopy (PAS). [Methods] First of all, ordered mesoporous silica SBA-15 were synthesized by using TEOS (tetraethyl orthosilicate) as the silicon source and P123 as the structure-directing agent. Part of the obtained SBA-15 was further calcined at 550 ℃. Then, the above two kinds of SBA-15 were heated at 100~1 000 ℃ to check the thermal stability of their pore structure. Small angle X-ray scattering (SAXS), scanning electron microscopy (SEM),high-resolution transmission electron microscopy (HRTEM), N2adsorption/desorption and positron annihilation spectroscopy (PAS) measurements were used to study the ordered pore structure of SBA-15.Positron lifetime measurements reveal that four life components exist in both SBA-15 whilst the two longer lifetimes3and4correspond to the annihilation of o-Ps in the micropores and large pores of the material, respectively. With the increase of heat treatment temperature, the longest lifetime4of these two kinds of synthesized silica decrease gradually, as well as the corresponding intensity4. However, the longer life and intensity of calcined SBA-15 decrease obviously after 600 ℃. Meanwhile, theparameter of calcined SBA-15 is in good agreement with the results of o-Ps lifetime, and the-curve also shows that the pore types of calcined SBA-15 nearly are unchanged during in the heat treatment process at the temperature range of 100~900 ℃.All the results indicate that the synthesized SBA-15 calcined at 550 ℃ exhibits relatively better thermal stability, and positronium (Ps) is a very sensitive probe to study pore structure.
SBA-15, Pore structure, Positronium, Thermal stability
Supported by National Natural Science Foundation of China (No.11665017), Project of Central Plains Science and Technology Innovation Leading Talents of Henan Province (No.224200510022)
LI Chongyang, female, born in 1988, graduated from Wuhan University with a doctoral degree in 2016, focusing on positron annihilation spectroscopy
CHEN Zhiquan, E-mail: chenzq@whu.edu.cn
2022-02-20,
2022-03-25
O59,TL99
10.11889/j.0253-3219.2022.hjs.45.060201
國家自然科學(xué)基金(No.11665017)、中原科技創(chuàng)新領(lǐng)軍人才項目(No.224200510022)資助
李重陽,女,1988年出生,2016年于武漢大學(xué)獲博士學(xué)位,專業(yè)領(lǐng)域為正電子湮沒譜學(xué)
陳志權(quán),E-mail:chenzq@whu.edu.cn
2022-02-20,
2022-03-25