国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

光控誘導(dǎo)重組系統(tǒng)的開發(fā)與應(yīng)用

2022-08-25 06:50謝甜王梅高瑞鈺苗艷尼張燚銘蔣婧
遺傳 2022年8期
關(guān)鍵詞:莫昔芬光敏遺傳學(xué)

謝甜,王梅,高瑞鈺,苗艷尼,張燚銘,蔣婧

光控誘導(dǎo)重組系統(tǒng)的開發(fā)與應(yīng)用

謝甜,王梅,高瑞鈺,苗艷尼,張燚銘,蔣婧

中國(guó)科學(xué)院分子細(xì)胞科學(xué)卓越創(chuàng)新中心(生物化學(xué)與細(xì)胞生物學(xué)研究所),基因組標(biāo)簽計(jì)劃研發(fā)中心,上海 200031

位點(diǎn)特異性重組系統(tǒng)由重組酶和特異性識(shí)別位點(diǎn)兩部分組成,是一種強(qiáng)大的基因操作工具,被廣泛運(yùn)用于生命科學(xué)研究。已開發(fā)的誘導(dǎo)型重組系統(tǒng)以時(shí)空方式精準(zhǔn)調(diào)控細(xì)胞和動(dòng)物的基因表達(dá),被用于基因功能研究、細(xì)胞譜系示蹤和疾病治療等領(lǐng)域。根據(jù)誘導(dǎo)重組酶時(shí)空表達(dá)方式的不同,誘導(dǎo)型重組系統(tǒng)可分為化學(xué)誘導(dǎo)和光控誘導(dǎo)兩種方式。光控誘導(dǎo)重組系統(tǒng)是利用光作為誘導(dǎo)劑,根據(jù)光控方式和對(duì)象的不同,可進(jìn)一步分為光籠和光遺傳學(xué)兩類。光籠誘導(dǎo)重組系統(tǒng)是利用光敏基團(tuán)來控制化學(xué)誘導(dǎo)劑或重組酶,光誘導(dǎo)前它們的活性被光敏基團(tuán)抑制;在特定光照射后,它們的活性被恢復(fù),進(jìn)而實(shí)現(xiàn)光控誘導(dǎo)基因重組。光遺傳學(xué)誘導(dǎo)重組系統(tǒng)是通過光遺傳學(xué)開關(guān)介導(dǎo)分割型重組酶的重新激活來誘導(dǎo)基因重組。其中光遺傳學(xué)開關(guān)由一系列基因編碼的光敏蛋白組成,包括隱花色素、VIVID蛋白、光敏色素等。這些類型豐富的光控誘導(dǎo)重組系統(tǒng)為從高時(shí)空分辨率的維度解析基因的表達(dá)和功能提供了更多的工具,以滿足日益復(fù)雜的生命科學(xué)研究需求。本文主要對(duì)不同類型光控誘導(dǎo)重組系統(tǒng)的開發(fā)原理及應(yīng)用進(jìn)行綜述,比較其優(yōu)缺點(diǎn),最后對(duì)未來開發(fā)更多光控重組系統(tǒng)進(jìn)行展望, 旨在為系統(tǒng)優(yōu)化升級(jí)提供理論基礎(chǔ)和指導(dǎo)。

光控誘導(dǎo)重組系統(tǒng);光籠;光遺傳學(xué)開關(guān);位點(diǎn)特異性重組酶;時(shí)空調(diào)控

位點(diǎn)特異性重組酶(site-specific recombinases, SSRs)是一類具有催化活性,能夠特異性識(shí)別DNA序列,實(shí)現(xiàn)位點(diǎn)特異性重組的基因操作工具。其中酪氨酸重組酶家族成員如Cre[1~3]、Flp[4]和Dre[5,6],由于其重組特異性和高效性,在基因工程中發(fā)揮著關(guān)鍵作用。這些重組酶能夠在沒有輔助蛋白的幫助下,實(shí)現(xiàn)基因組DNA的切除(excision)、倒位(inver-sion)和易位(translocation)[7]。因此,SSRs介導(dǎo)的基因重組系統(tǒng)是生物醫(yī)學(xué)研究不可或缺的工具。

SSRs家族成員Cre重組酶因其卓越的重組效率成為小鼠遺傳學(xué)中最常用的工具。Cre/重組系統(tǒng)來源于P1噬菌體[8],包含Cre重組酶和34 bp的位點(diǎn)兩種組分,由Cre重組酶催化位點(diǎn)之間發(fā)生DNA重組[9]。Cre重組酶的表達(dá)可受啟動(dòng)子調(diào)控,因此操縱不同類型啟動(dòng)子即可調(diào)控Cre重組酶的時(shí)空表達(dá)。在過去的幾十年中,已開發(fā)了一系列誘導(dǎo)型重組系統(tǒng)用于復(fù)雜的科學(xué)研究,主要包括化學(xué)誘導(dǎo)和光控誘導(dǎo)兩種方式。

化學(xué)誘導(dǎo)重組系統(tǒng)(chemical-inducible recombi-nation system)是指通過小分子化合物來介導(dǎo)SSRs的時(shí)空表達(dá),已被廣泛應(yīng)用于在特定發(fā)育階段和特定組織細(xì)胞中對(duì)特定基因進(jìn)行遺傳操作。以化學(xué)誘導(dǎo)Cre重組酶為例,主要包含有CreER[10]、基于Tet-on的Cre[11,12]、Di-Cre[13]和DD-Cre[14]等方式。CreER的使用最為廣泛,是將Cre與雌激素受體(estrogen receptor, ER)的配體結(jié)合域(ligand binding domain, LBD)相融合。CreER通常定位于細(xì)胞質(zhì)中,在他莫昔芬(tamoxifen, Tam)誘導(dǎo)下,融合的Cre蛋白才會(huì)進(jìn)入細(xì)胞核,識(shí)別位點(diǎn)并發(fā)生基因重組[15,16]?;赥et-on的Cre則是通過強(qiáng)力霉素(doxycycline, Dox)誘導(dǎo)型啟動(dòng)子,即TRE啟動(dòng)子驅(qū)動(dòng)Cre的表達(dá)。Tet-on系統(tǒng)的另一個(gè)元件rtTA由普遍存在或組織特異性的啟動(dòng)子驅(qū)動(dòng)表達(dá),強(qiáng)力霉素可以結(jié)合并激活rtTA,使得激活的rtTA結(jié)合到TRE啟動(dòng)子上誘導(dǎo)Cre的表達(dá)[17]。另外,Di-Cre[13]和DD-Cre[14]分別是通過小分子化合物介導(dǎo)重組酶二聚化或穩(wěn)定化從而實(shí)現(xiàn)Cre的時(shí)間特異性激活。其中Di-Cre是利用雷帕霉素(rapamycin, Rap)誘導(dǎo)FKBP12和FRB的二聚化來重新組合分割型Cre重組酶。分割型重組酶是指將重組酶拆分成兩個(gè)小蛋白,當(dāng)它們重新拼接組裝后可恢復(fù)重組酶的功能進(jìn)而催化重組反應(yīng)[18,19]。然而,化學(xué)誘導(dǎo)重組系統(tǒng)存在細(xì)胞毒性、系統(tǒng)泄漏和潛在脫靶等缺點(diǎn)。此外,由于小分子化合物可自由擴(kuò)散,缺乏組織特異性,多用于時(shí)間軸上的調(diào)控;并且小分子化合物擴(kuò)散時(shí)間長(zhǎng)且難以立即去除,導(dǎo)致時(shí)間調(diào)控不夠精準(zhǔn)[20,21]。

為了精準(zhǔn)實(shí)現(xiàn)時(shí)間和空間的雙調(diào)控,相比小分子化合物,光是一種理想的誘導(dǎo)劑,可在不同環(huán)境中自然調(diào)節(jié)許多細(xì)胞過程[22~24]?;谧贤?UV light)、藍(lán)光(blue light)和遠(yuǎn)紅光(far-red light)照射的光控誘

導(dǎo)重組系統(tǒng)(light-controlled inducible recombination system)已被開發(fā)用于時(shí)空特異地精準(zhǔn)遺傳操作。根據(jù)光控方式及對(duì)象的不同,光控誘導(dǎo)重組系統(tǒng)分為光籠和光遺傳學(xué)兩種類型。光籠誘導(dǎo)重組系統(tǒng)(pho-tocaged inducible recombination system)是利用光敏基團(tuán)來控制化學(xué)誘導(dǎo)劑或重組酶。而光遺傳學(xué)誘導(dǎo)重組系統(tǒng)(optogenetic inducible recombination system)主要是利用光遺傳學(xué)開關(guān)來介導(dǎo)分割型重組酶的重新激活。本綜述將對(duì)這兩大類光控誘導(dǎo)重組系統(tǒng)的開發(fā)原理及其應(yīng)用進(jìn)行總結(jié)比較。

1 光籠誘導(dǎo)重組系統(tǒng)

光籠(photocage)是一種可光控釋放的光敏物質(zhì),其原理是通過物理或化學(xué)等方法將光敏基團(tuán)安裝到目標(biāo)釋放物的核心位置,使其處于非活性狀態(tài)。在特定光照射下,目標(biāo)釋放物被釋放出來,恢復(fù)生物天然活性[25]。光籠已被用于多種生物學(xué)研究中,包括轉(zhuǎn)錄研究[26]、蛋白質(zhì)–蛋白質(zhì)相互作用[27]、細(xì)胞遷移與增殖[28]、蛋白質(zhì)磷酸化[29]以及CreER系統(tǒng)的基因表達(dá)調(diào)控[30]等。光籠一般包含目標(biāo)釋放物(target substance)和光敏基團(tuán)(photosensitive group)兩個(gè)基本組成部分,目標(biāo)釋放物可以是藥物、氨基酸、多肽、蛋白質(zhì)和核酸等[31~33]。根據(jù)目標(biāo)釋放物類型的不同,光籠誘導(dǎo)重組系統(tǒng)的應(yīng)用可以分為兩類:光籠化學(xué)誘導(dǎo)劑和光籠重組酶。

1.1 光籠化學(xué)誘導(dǎo)劑

光籠化學(xué)誘導(dǎo)劑(photocaged chemical inducer)是將化學(xué)誘導(dǎo)重組系統(tǒng)的小分子化合物進(jìn)行光籠修飾。例如CreER系統(tǒng)的小分子化合物包括4-羥基他莫昔芬氮丙啶(4-hydroxytamoxifen aziridine)、4-羥基環(huán)芬(4-hydroxycyclofen)、他莫昔芬(Tam)和4-羥基他莫昔芬(4-hydroxytamoxifen)等,都可以設(shè)計(jì)成為光籠(圖1 A)。Link等[30]合成了釋放4-羥基他莫昔芬氮丙啶的光籠,在紫外光刺激下能夠觸發(fā)培養(yǎng)細(xì)胞中CreER系統(tǒng)激活重組,但是該系統(tǒng)存在背景泄露。相比之下,4-羥基環(huán)芬具有更好的光穩(wěn)定性且易于合成[34]。Sinha等[35]合成了釋放4-羥基環(huán)芬的光籠,在水溶液中可以滲透入斑馬魚胚胎,通過紫外照射或雙光子照射后可快速恢復(fù)活性進(jìn)而激活CreER重組系統(tǒng),實(shí)現(xiàn)高時(shí)空分辨率單細(xì)胞標(biāo)記以及調(diào)控基因表達(dá)。當(dāng)光籠化合物作用于復(fù)雜的生物體內(nèi),其活性受藥代動(dòng)力學(xué)、遞送障礙和光與組織復(fù)雜相互作用等多種因素的影響。釋放4-羥基環(huán)芬光籠的光控功能除了在體外細(xì)胞培養(yǎng)系統(tǒng)和斑馬魚體內(nèi)模型中得到證實(shí),還在復(fù)雜生物體內(nèi)被證明。Lu等[36]的實(shí)驗(yàn)表明,釋放4-羥基環(huán)芬的光籠在類器官與小鼠體內(nèi)仍具有活性,可在紫外光下有效地誘導(dǎo)CreER介導(dǎo)DNA重組,實(shí)現(xiàn)單細(xì)胞水平的精準(zhǔn)基因時(shí)空調(diào)控(表1)。

光籠進(jìn)行光反應(yīng)釋放目標(biāo)物的關(guān)鍵是光敏基團(tuán),上述兩種光籠使用的光敏基團(tuán)為4,5-二甲氧基- 2-硝基苯甲醇(4,5-dimethoxy-2-nitrobenzyl alcohol)。Inlay等[37]利用另一種光敏基團(tuán)——鄰硝基芐基(o- nitrobenzyl)合成了釋放他莫昔芬的光籠。不同的是,首先它允許直接對(duì)他莫昔芬進(jìn)行光籠修飾,而無需對(duì)藥物分子進(jìn)行任何結(jié)構(gòu)修改或衍生,其次與幾乎不溶于水的他莫昔芬相比,光籠修飾后大大提高了水溶性。值得注意的是,他莫昔芬必須轉(zhuǎn)化為4-羥基他莫昔芬才能有效地結(jié)合CreER[43]。因此光籠他莫昔芬的使用僅限于能將他莫昔芬轉(zhuǎn)化為4-羥基他莫昔芬的部分細(xì)胞。然而體外細(xì)胞的這種轉(zhuǎn)化效率低,需要使用接近毒性濃度的他莫昔芬才能實(shí)現(xiàn)穩(wěn)健的基因重組。因此,F(xiàn)aal等[38]直接將4-羥基他莫昔芬共價(jià)連接鄰硝基芐基基團(tuán),合成釋放4-羥基他莫昔芬的光籠,其活性比釋放他莫昔芬的光籠高100倍以上,可以封閉的非活性形式有效進(jìn)入細(xì)胞并在細(xì)胞內(nèi)光依賴性釋放,實(shí)現(xiàn)更精準(zhǔn)地基因重組(表1)。

Tet-on表達(dá)調(diào)控系統(tǒng)的化學(xué)誘導(dǎo)劑為四環(huán)素類似物,最常用的是強(qiáng)力霉素(Dox)。釋放強(qiáng)力霉素或其類似物的光籠已被證明可以用于在不同生物系統(tǒng)中通過紫外線或雙光子局部照射誘導(dǎo)基因表達(dá),包括體外培養(yǎng)的細(xì)胞、離體培養(yǎng)的小鼠海馬體、發(fā)育中的小鼠胚胎和非洲爪蟾蝌蚪[44~46]。利用這種方式可以設(shè)計(jì)基于Tet-on表達(dá)Cre的光籠重組系統(tǒng),但尚未有研究者開展相關(guān)研究驗(yàn)證。

Di-Cre的化學(xué)誘導(dǎo)劑是雷帕霉素(Rap),Rap誘導(dǎo)的FKBP12和FRB蛋白異二聚化是常用的條件性控制生物過程的開關(guān)之一[47]。Brown等[39]開發(fā)了一種釋放Rap的光籠,稱為光裂解雷帕霉素二聚體(light-cleavable rapamycin dimer, dRap),可在紫外照射后裂解釋放Rap,誘導(dǎo)形成FKBP12-Rap-FRB三元復(fù)合物。而FKBP12和FRB分別融合Cre的N端(氨基酸19~59)和C端(氨基酸60~343),隨著三元復(fù)合物的形成,Cre可重構(gòu)恢復(fù)活性,進(jìn)而誘導(dǎo)基因重組(圖1 B)。dRap在紫外線照射之前不會(huì)誘導(dǎo)FKBP12和FRB的異二聚化,很好地防止了背景泄露(表1)。

圖1 基于光籠分子的光控誘導(dǎo)重組系統(tǒng)

A:光籠化學(xué)誘導(dǎo)劑。在光控誘導(dǎo)CreER/系統(tǒng)中,經(jīng)光籠修飾的小分子化合物活性被抑制。在特定波段的光照下,光控釋放的小分子化合物恢復(fù)活性,使得CreER融合蛋白與HSP90發(fā)生解離。CreER被轉(zhuǎn)運(yùn)進(jìn)入細(xì)胞核后可識(shí)別序列,誘導(dǎo)兩個(gè)序列之間的目標(biāo)基因(gene of interest,GOI)發(fā)生重組。B:光裂解雷帕霉素二聚體dRap。紫外光照射后,dRap裂解釋放天然雷帕霉素Rap,從而誘導(dǎo)FRB-CreC和FKBP12-CreN二聚化,使得分割型Cre重組酶重構(gòu)恢復(fù)催化活性。C:光籠重組酶。紫外光照射后,光籠Cre重組酶恢復(fù)活性。

表1 光籠誘導(dǎo)重組系統(tǒng)的比較

與化學(xué)誘導(dǎo)重組系統(tǒng)相比,利用紫外光的局部照射增強(qiáng)了系統(tǒng)的時(shí)空特異性。然而,基于紫外光的光籠技術(shù)在使用中也存在一些問題,例如紫外照射會(huì)導(dǎo)致不同程度的DNA損傷,從而引起細(xì)胞毒性;紫外光組織穿透能力較差,需要進(jìn)行多次輻照等。相比之下,近紅外光的光毒性低且具有高效的組織穿透性,因此Gorka等[40]設(shè)計(jì)了一種基于花菁(cyanine)的光籠,在報(bào)告細(xì)胞系中可以依賴近紅外光釋放4-羥基環(huán)芬,從而結(jié)合CreER調(diào)控基因表達(dá)。這種近紅外解鎖策略需要進(jìn)一步在體內(nèi)進(jìn)行驗(yàn)證,以便未來在復(fù)雜生理環(huán)境中應(yīng)用(表1)。

1.2 光籠重組酶

光籠重組酶(photocaged recombinase)是直接對(duì)重組酶蛋白進(jìn)行光籠修飾(圖1 C)。Edwards等[41]設(shè)計(jì)了一種基因編碼釋放Cre重組酶的光籠,可以直接在Cre蛋白的Y324催化位點(diǎn)安裝光敏基團(tuán)鄰硝基芐基,紫外光照射下可恢復(fù)Cre活性,實(shí)現(xiàn)基因重組。光籠Cre重組酶的生成方法是將攜帶突變的表達(dá)質(zhì)粒和鄰硝基芐基酪氨酸表達(dá)質(zhì)粒共轉(zhuǎn)化大腸桿菌[48],表達(dá)生成的光籠Cre蛋白需要分離純化后才能使用,制備麻煩限制了其應(yīng)用。Luo等[42]將突變的基因克隆入鄰硝基芐基酪氨酸表達(dá)載體,無需額外的蛋白表達(dá)和純化,轉(zhuǎn)染了表達(dá)載體和報(bào)告質(zhì)粒的細(xì)胞在紫外暴露下可產(chǎn)生功能性Cre重組酶,高效誘導(dǎo)報(bào)告基因重組。但這種光籠重組酶系統(tǒng)僅在哺乳動(dòng)物細(xì)胞中得到驗(yàn)證,還需要更深入廣泛的生物體內(nèi)運(yùn)用驗(yàn)證(表1)。

2 光遺傳學(xué)誘導(dǎo)重組系統(tǒng)

光遺傳學(xué)(optogenetics)是一種新興的融合光學(xué)(optics)和遺傳學(xué)(genetics)的生物技術(shù)。其中基因編碼的光遺傳學(xué)開關(guān)(optogenetic switch)是一類強(qiáng)大的光遺傳學(xué)工具,由響應(yīng)光刺激產(chǎn)生聚合反應(yīng)或構(gòu)象變化的光敏蛋白(photosensitive protein)組成。基于各種光敏蛋白已開發(fā)一系列光遺傳學(xué)開關(guān):隱花色素[49~52]、VIVID(VVD)[53~55]、Magnets[56]、植物光敏色素[57~59]、UVR8[60~62]、細(xì)菌光敏色素[63~65]、LOV結(jié)構(gòu)域[66~68]等。隱花色素和VVD系統(tǒng)的光遺傳學(xué)開關(guān)是最廣泛使用的光遺傳學(xué)工具,主要由波長(zhǎng)為450~490 nm的藍(lán)光控制。然而,藍(lán)光的組織穿透力不足,需要較長(zhǎng)的曝光時(shí)間,導(dǎo)致對(duì)細(xì)胞的光毒性增加,限制了藍(lán)光光遺傳學(xué)開關(guān)在動(dòng)物體內(nèi)的應(yīng)用。使用更長(zhǎng)波長(zhǎng)的光源可以突破這一限制。光譜區(qū)域在700~900 nm內(nèi)的遠(yuǎn)紅光和近紅外光譜可以穿透更深的組織或內(nèi)臟器官[69,70]。由此,研究者們又開發(fā)了一系列基于響應(yīng)紅光或遠(yuǎn)紅光的植物和細(xì)菌光敏色素的光遺傳學(xué)開關(guān),來進(jìn)行胚胎組織或深部組織中的光遺傳學(xué)操作。利用上述光遺傳學(xué)開關(guān)和不同分割型重組酶,可以產(chǎn)生多樣的光遺傳學(xué)誘導(dǎo)重組系統(tǒng)。目前已開發(fā)的分割型重組酶包括Cre、Dre和Flp等,其中以分割型Cre重組酶的光遺傳學(xué)誘導(dǎo)重組系統(tǒng)最廣泛應(yīng)用(表2)。

2.1 隱花色素

來源于擬南芥()中的隱花色素CRY2是一種藍(lán)光響應(yīng)光感受器,其天然結(jié)合配體為具有螺旋-環(huán)-螺旋結(jié)構(gòu)的CIB1蛋白。在藍(lán)光刺激條件下,CRY2與CIB1相互作用形成二聚體,并且在黑暗條件下二者逐漸解聚,無需外源輔助因子。CRY2蛋白含有一個(gè)保守的N端光裂合酶同源區(qū)域(photolyase homology region, PHR),是與CIB1結(jié)合的最小相互作用域。在藍(lán)光調(diào)控下,CRY2或CRY2PHR可與全長(zhǎng)CIB1或截短形式的CIBN發(fā)生聚合或解聚作用[49]。CRY2-CIB1二聚化系統(tǒng)已被廣泛用于功能研究,如用于蛋白質(zhì)分布和定位[49,81]、轉(zhuǎn)錄調(diào)節(jié)[82~85]、磷酸肌醇水平[86~88]、細(xì)胞骨架動(dòng)力學(xué)[89]等。

最早將CRY2-CIB1系統(tǒng)和Cre重組酶聯(lián)合使用的是Kennedy等[49],通過將CRY2和CIBN分別融合到分割型Cre重組酶的N端(氨基酸19~104)和C端(氨基酸106~343)。在藍(lán)光照射下CRY2和CIBN的二聚化重構(gòu)Cre恢復(fù)催化活性,介導(dǎo)DNA重組。這被認(rèn)為是第一代光遺傳學(xué)Cre重組系統(tǒng)(PA-Cre 1.0) (圖2 A,表2)。Boulina等[90]將編碼三色熒光蛋白的Brainbow基因盒與PA-Cre結(jié)合,在果蠅中誘導(dǎo)熒光蛋白的表達(dá),實(shí)現(xiàn)了多色標(biāo)記細(xì)胞的光控實(shí)時(shí)成像。Schindler等[91]利用光纖傳導(dǎo)的藍(lán)光照射激活PA-Cre,實(shí)現(xiàn)對(duì)小鼠海馬體永久性基因修飾,并且使用組織穿透力較強(qiáng)的雙光子激活可以對(duì)小鼠大腦中亞毫米精度組織進(jìn)行基因表達(dá)調(diào)控。

表2 光遺傳學(xué)誘導(dǎo)重組系統(tǒng)的比較

盡管CRY2-CIB1系統(tǒng)可以在亞秒時(shí)間分辨率和亞細(xì)胞空間分辨率上實(shí)現(xiàn)二聚化,但是存在元件體積大、暗背景泄露、誘導(dǎo)效率低等局限性。通過優(yōu)化CRY2-CIB1元件可以升級(jí)該系統(tǒng)。Taslimi等[71]發(fā)現(xiàn)CRY2()-CreN突變體在短暫的光照時(shí)間下可快速結(jié)合CIBN-CreC誘導(dǎo)DNA重組,且減緩二聚體的解聚,延長(zhǎng)相互作用時(shí)間。該系統(tǒng)與PA-Cre 1.0相比,重組酶活性提高約35%,暗背景下本底泄露顯著降低50%,被稱為PA-Cre 1.5 (圖2 A,表2)。在PA-Cre 1.5的基礎(chǔ)上將CRY2()-CreN和CIB1-CreC構(gòu)建在同一載體上,可使得重組背景極低,在哺乳動(dòng)物細(xì)胞和小鼠體內(nèi)實(shí)驗(yàn)中顯示出更加靈敏的光響應(yīng)性以及更高的重組效率,升級(jí)為PA-Cre 2.0[71](表2)。Meador等[72]系統(tǒng)地檢查了PA-Cre 2.0的兩個(gè)模塊蛋白的表達(dá)和定位對(duì)重組效率的影響,發(fā)現(xiàn)PA-Cre 2.0的低暗背景是由于CRY2()- CreN的核-胞質(zhì)穿梭所導(dǎo)致,突變削弱了CRY2的核定位,而主要表達(dá)在細(xì)胞質(zhì)中。隨著細(xì)胞中整體蛋白質(zhì)表達(dá)的增加,細(xì)胞核中CRY2()- CreN減少?;诖?,利用化學(xué)和光控雙重誘導(dǎo),設(shè)計(jì)產(chǎn)生他莫昔芬調(diào)控核轉(zhuǎn)位的ER- CRY2()- CreN和核定位的NLS-CIB1-CreC構(gòu)成的改良型PA-Cre 2.0,實(shí)現(xiàn)對(duì)DNA重組的嚴(yán)格控制(圖2 B,表2)。

圖2 基于隱花色素的光控誘導(dǎo)重組系統(tǒng)

A:CRY2或者CRY2()融合CreN,CIBN融合CreC構(gòu)建的PA-Cre 1.0以及優(yōu)化的PA-Cre 1.5系統(tǒng)。在黑暗條件下,Cre被分成兩個(gè)片段對(duì)位點(diǎn)沒有催化活性。在藍(lán)光照射下,CRY2或者CRY2()與CIBN發(fā)生二聚化介導(dǎo)CreN和CreC互補(bǔ)重構(gòu),使得Cre迅速恢復(fù)催化活性,可識(shí)別兩個(gè)位點(diǎn)發(fā)生DNA重組。B:光與他莫昔芬Tam雙重調(diào)控的改良型PA-Cre 2.0系統(tǒng),包含融合了ER的CRY2 ()-CreN和NLS-CIB1-CreC,通過Tam控制核轉(zhuǎn)運(yùn)和光介導(dǎo)組裝分割片段,實(shí)現(xiàn)對(duì)Cre重組酶活性的雙重控制,提供更為復(fù)雜的DNA重組調(diào)控。C:Li-rtTA系統(tǒng)。rtTA的兩個(gè)功能域即DNA結(jié)合域rTetR和轉(zhuǎn)錄激活結(jié)構(gòu)域VP16分別與CIBN和CRY2PHR相融合。藍(lán)光刺激CRY2PHR和CIBN的二聚化,促使rTetR和VP16組合發(fā)揮完整的rtTA功能。在強(qiáng)力霉素Dox存在的情況下,二聚化的融合蛋白激活Tet-on系統(tǒng),驅(qū)動(dòng)Cre的表達(dá)。NLS:核定位信號(hào)。

利用Tet-on表達(dá)調(diào)控系統(tǒng)的元件也可以設(shè)計(jì)成光遺傳學(xué)誘導(dǎo)重組系統(tǒng)。Li等[50]通過將Tet-on系統(tǒng)的rtTA元件的兩個(gè)功能域VP16和rTetR分別與CRY2PHR和CIBN融合,設(shè)計(jì)了一種新型光控rtTA (Li-rtTA)系統(tǒng)。通過CRY2PHR和CIBN的二聚化而重新結(jié)合形成的rtTA,在強(qiáng)力霉素存在的情況下,能夠結(jié)合TRE并驅(qū)動(dòng)下游基因表達(dá)。在藍(lán)光和強(qiáng)力霉素的雙重誘導(dǎo)之后,Li-rtTA系統(tǒng)以時(shí)空特異的方式激活小鼠報(bào)告基因。使用rtTA作為光激活模塊,能夠利用許多現(xiàn)有的遺傳工具來實(shí)現(xiàn)多樣化的時(shí)空調(diào)控,如與基于Tet-on的Cre工具鼠交配獲得的子代小鼠可以實(shí)現(xiàn)時(shí)空特異性基因重組(圖2 C,表2)。

2.2 VIVID與Magnets

VIVID (VVD)是一種來源于絲狀真菌粗糙脈孢菌()的藍(lán)光光感受器,是目前作為光遺傳學(xué)工具的最小的光感受器之一,可以響應(yīng)藍(lán)光從單體可逆地轉(zhuǎn)換為同源二聚體[53~55]。但這種天然同源二聚化親和力低,影響結(jié)合效率且解聚動(dòng)力學(xué)太慢,無法精確調(diào)控蛋白質(zhì)相互作用[56,92,93]。因此開發(fā)能夠克服天然光感受器限制的強(qiáng)大且多功能的光遺傳學(xué)開關(guān)至關(guān)重要。Kawano等[56]通過改造VVD開發(fā)了兩種不同類型的變體,分別是帶正電荷的“正磁體”(pMag)和帶負(fù)電荷的“負(fù)磁體”(nMag),稱為Magnets。Magnets的磁體對(duì)pMag和nMag在藍(lán)光照射下通過靜電相互作用識(shí)別吸引從而發(fā)生異源二聚化,可以防止不需要的同源二聚化。Magnets為蛋白活動(dòng)和相關(guān)細(xì)胞功能的時(shí)空調(diào)控研究提供了強(qiáng)大的工具。該研究者將Magnets和分割型Cre重組酶聯(lián)合使用,開發(fā)了一種新型Magnets-PA-Cre系統(tǒng)。通過Magnets的異源二聚化重新組裝分割型Cre重組酶,恢復(fù)Cre重組酶的催化活性,促使在低強(qiáng)度或短周期脈沖的藍(lán)光照射下能夠快速介導(dǎo)DNA重組,該系統(tǒng)在體內(nèi)具有高時(shí)空分辨率[73](圖3 A)。與CRY2-CIB1系統(tǒng)不同的是,Magnets-PA-Cre系統(tǒng)使用的分割型Cre片段是CreN59 (氨基酸19~59)和CreC60 (氨基酸60~343),恢復(fù)活性后的Cre重組酶不僅可以識(shí)別序列還可以識(shí)別其他變體如和位點(diǎn)[94~96],極大地?cái)U(kuò)展了Magnets-PA- Cre的適用性。為了減少在黑暗及自然光下的系統(tǒng)泄露,Morikawa等[74]進(jìn)一步開發(fā)了升級(jí)版本Magnets- PA-Cre 3.0,通過使用CAG啟動(dòng)子與2A自切割肽、優(yōu)化密碼子,使得該系統(tǒng)最大程度地減少了暗泄漏,并且具有高重組效率(表2)。

另外,利用他莫昔芬結(jié)合CreER調(diào)控核轉(zhuǎn)位也可以減少黑暗背景下的系統(tǒng)泄露[72]。Allen等[75]將CreER系統(tǒng)與Magnets相結(jié)合,創(chuàng)建了TamPA-Cre系統(tǒng)(圖3 B)。通過將胞質(zhì)定位的ER配體結(jié)合域融合到CreN(2~59)-nMag的N端,使其與核定位的NLS-pMag-CreC(60~343)在空間上實(shí)現(xiàn)物理分離。這種物理分離防止了Magnets-PA-Cre系統(tǒng)中出現(xiàn)的自發(fā)、濃度依賴的nMag-pMag二聚化,從而阻止了系統(tǒng)泄漏。TamPA-Cre系統(tǒng)的光刺激模式(脈沖與連續(xù)曝光)、他莫昔芬添加時(shí)間和光控開始時(shí)間,都能調(diào)控該系統(tǒng)的重組效率。在他莫昔芬處理3小時(shí)后的脈沖藍(lán)光刺激下,TamPA-Cre系統(tǒng)表現(xiàn)出對(duì)低強(qiáng)度、短時(shí)間藍(lán)光暴露的高敏感性,可高效誘導(dǎo)DNA重組(表2)。

Tet-off是另一種基因調(diào)控系統(tǒng),與Tet-on系統(tǒng)相反,在沒有強(qiáng)力霉素(Dox)情況下持續(xù)性開啟基因表達(dá),而在強(qiáng)力霉素存在的情況下關(guān)閉基因表達(dá)[97,98]。將Tet-off系統(tǒng)與Magnets結(jié)合構(gòu)建的tTA依賴性啟動(dòng)子驅(qū)動(dòng)PA-Cre表達(dá)的TRE-PA-Cre小鼠,在藍(lán)光照射下可實(shí)現(xiàn)時(shí)空特異性DNA重組,而且該系統(tǒng)可以通過強(qiáng)力霉素來關(guān)閉,一定程度上減少系統(tǒng)的背景泄露[76],但該系統(tǒng)在小鼠模型的基因調(diào)控效果還需要更深入的表征與研究(圖3 C,表2)。

2.3 光敏色素

來自植物擬南芥的光敏色素A(phytochrome A, PhyA)是一種紅光和遠(yuǎn)紅光響應(yīng)光感受器。在與發(fā)色團(tuán)藻藍(lán)膽素(phycocyanobilin, PCB)共價(jià)結(jié)合后,對(duì)紅光和遠(yuǎn)紅光均敏感,可逆地與伴侶蛋白FHY1結(jié)合(660 nm紅光)或分離(730 nm遠(yuǎn)紅光)[99~101]。此外,更為常用的是另一種來自擬南芥的光敏色素B (phytochrome B, PhyB)。在紅光照射下,PhyB在PCB的介導(dǎo)下發(fā)生可逆構(gòu)象變化,從而與光敏色素相互作用因子(phytochrome interaction factor, PIF)發(fā)生結(jié)合,并且這種結(jié)合在遠(yuǎn)紅光照射下發(fā)生解離[102,103]。PhyB/PIF系統(tǒng)被用于在哺乳動(dòng)物細(xì)胞中以精準(zhǔn)的時(shí)空分辨率調(diào)控基因表達(dá)、蛋白質(zhì)-蛋白質(zhì)相互作用和蛋白質(zhì)定位等[58,59,104]。Yen等[77]將PhyB/PIF6系統(tǒng)與分割型Cre重組酶相結(jié)合開發(fā)了CreLite系統(tǒng),在紅光照射下,PhyB-CreC和PIF6-CreN融合蛋白在PCB存在下結(jié)合在一起,從而恢復(fù)Cre重組酶活性。CreLite系統(tǒng)被用于培養(yǎng)細(xì)胞和離體器官中的時(shí)空調(diào)控基因表達(dá)(圖4 A,表2)。值得注意的是,PCB對(duì)于PhyA和PhyB介導(dǎo)的光控開關(guān)至關(guān)重要,可它不能在哺乳動(dòng)物細(xì)胞內(nèi)自然合成[105],因而限制了Phy系統(tǒng)的應(yīng)用。

圖3 基于Magnets的光控誘導(dǎo)重組系統(tǒng)

A:Magnets-PA-Cre和Magnets-PA-Cre3.0系統(tǒng)。藍(lán)光照射下,nMag和pMag的二聚化重構(gòu)分割型Cre重組酶活性,促使兩個(gè)位點(diǎn)的目標(biāo)基因(GOI)發(fā)生重組。B:TamPA-Cre系統(tǒng)。通過將胞質(zhì)定位的雌激素受體(ER)融合到分割型CreN-nMag的N端,使TamPA-Cre蛋白ER-CreN-nMag與核定位的NLS-pMag-CreC在空間上分離。在他莫昔芬Tam處理和藍(lán)光刺激下,分割型Cre重組酶隨著nMag-pMag的二聚化而互補(bǔ)重構(gòu)。C:TRE-PA-Cre系統(tǒng)。tTA依賴的TRE啟動(dòng)子驅(qū)動(dòng)CreN-nMag和CreC-pMag的表達(dá),在沒有Dox情況下,藍(lán)光照射激活nMag-pMag二聚化重構(gòu)分割型Cre重組酶恢復(fù)催化活性。

圖4 基于光敏色素的光控誘導(dǎo)重組系統(tǒng)

A:基于PhyB的CreLite系統(tǒng)。在這個(gè)系統(tǒng)中,PhyB和PIF6分別與CreC和CreN融合。PhyB需要輔助因子PCB才能發(fā)揮功能。PhyB與PCB共價(jià)結(jié)合后吸收紅光和紅外光。當(dāng)紅光暴露后,PhyB發(fā)生構(gòu)象變化,從失活的Pr形式(紅色吸收)轉(zhuǎn)變?yōu)橛谢钚缘腜fr形式(遠(yuǎn)紅色吸收)。這個(gè)過程可以被遠(yuǎn)紅外光逆轉(zhuǎn)。Pfr狀態(tài)下的PhyB和PIF6相互結(jié)合,將分割型Cre重組酶的兩個(gè)片段組合重構(gòu),恢復(fù)其重組酶活性。B:基于BphS的FISC系統(tǒng)。在這個(gè)系統(tǒng)中,Cre重組酶被分為兩個(gè)片段,其中CreN與Coh2融合,由組成型啟動(dòng)子PhCMV驅(qū)動(dòng),CreC與DocS融合,由遠(yuǎn)紅光誘導(dǎo)啟動(dòng)子PFRLx驅(qū)動(dòng)。遠(yuǎn)紅光照射下,光感受器BphS將三磷酸鳥苷酸GTP轉(zhuǎn)化為環(huán)二鳥苷酸單磷酸鹽c-di-GMP,誘導(dǎo)遠(yuǎn)紅光依賴的轉(zhuǎn)錄激活因子FRTA(P65-VP64-BldD)與啟動(dòng)子PFRLx結(jié)合,驅(qū)動(dòng)DocS-CreC表達(dá)?;贑oh2和DocS結(jié)構(gòu)域的強(qiáng)大親和力,兩個(gè)分割型Cre片段組裝在一起,恢復(fù)Cre重組酶的催化活性。

細(xì)菌中也存在類似的光敏色素,如BphP1和BphS[64,106]。與Phy系統(tǒng)相比,細(xì)菌光敏色素使用的發(fā)色團(tuán)膽綠素(biliverdin, BV)在包括哺乳動(dòng)物細(xì)胞在內(nèi)的真核細(xì)胞中天然存在且含量豐富,無需額外引入[107~109]。因此,細(xì)菌光敏色素已被設(shè)計(jì)成用于哺乳動(dòng)物組織的多種近紅外探針[110]。已經(jīng)構(gòu)建了基于細(xì)菌光敏色素BphP1及其天然配體PpsR2的近紅外光遺傳調(diào)控系統(tǒng),能夠介導(dǎo)細(xì)胞內(nèi)信號(hào)傳導(dǎo)、調(diào)控體內(nèi)基因表達(dá)[63,111]。但該系統(tǒng)存在一些缺點(diǎn)如BphP1和PpsR2的蛋白質(zhì)分子量相對(duì)較大,光控效率相對(duì)較低等。Wu等[78]設(shè)計(jì)了一種基于BphS的遠(yuǎn)紅光誘導(dǎo)系統(tǒng),將BphS光遺傳學(xué)開關(guān)和分割型Cre重組酶聯(lián)合構(gòu)建了FISC (far-red light-induced split Cre/system)系統(tǒng),僅通過遠(yuǎn)紅光就可以實(shí)現(xiàn)體內(nèi)基因的光遺傳學(xué)調(diào)控。FISC系統(tǒng)表現(xiàn)出低背景、低細(xì)胞毒性,強(qiáng)大器官穿透力等優(yōu)點(diǎn),可高效光控介導(dǎo)活體小鼠內(nèi)臟器官的DNA重組,性能大大優(yōu)于基于藍(lán)光誘導(dǎo)的光控重組系統(tǒng)(圖4 B,表2)。

2.4 光遺傳學(xué)開關(guān)與其他重組酶的聯(lián)合使用

單個(gè)重組酶系統(tǒng)滿足不了研究復(fù)雜生命過程的遺傳工具需求。隨著其他新型SSRs如Flp[4,79]、Dre[5]、Vika[112]和Nigri[113,114]等的發(fā)現(xiàn)鑒定,極大地豐富了基因操作工具。SSRs之間通常不會(huì)發(fā)生交叉重組,因而經(jīng)常聯(lián)合使用以實(shí)現(xiàn)更為精確的基因操作。已有報(bào)道表明可在小鼠體內(nèi)同時(shí)使用Cre/、Flp/和Dre/這三種重組系統(tǒng)[115,116]。

Jung等[79]基于Magnets首次開發(fā)了一種適用于體內(nèi)基因操作的高光敏和高效率的光控誘導(dǎo)Flp重組酶(PA-Flp),并將其與Cre重組酶聯(lián)合構(gòu)成Flp依賴的Cre重組系統(tǒng),可光控激活Flp進(jìn)而激活Cre用于小鼠的行為學(xué)研究。該系統(tǒng)具有高度光敏、非侵襲性、高效、易操作的優(yōu)點(diǎn),利用藍(lán)光即可激活小鼠大腦深部區(qū)域的基因發(fā)生重組(表2)。Li等[80]借助分子動(dòng)力學(xué)模擬,通過一系列篩選和優(yōu)化,設(shè)計(jì)了一種可光控誘導(dǎo)的PA-Dre系統(tǒng),并證明該系統(tǒng)在藍(lán)光照射下不僅在細(xì)胞上,還可在小鼠的肝臟和腦部高效精準(zhǔn)靈活地調(diào)控基因表達(dá)。此外,通過雙floxed倒置開放閱讀框策略,構(gòu)建了Cre激活的光誘導(dǎo)Dre系統(tǒng)(Cre-activated light-inducible Dre, CALID),在小鼠體內(nèi)細(xì)胞群體中實(shí)現(xiàn)時(shí)空特異性基因調(diào)控[80](表2)。為了針對(duì)單個(gè)神經(jīng)元進(jìn)行結(jié)構(gòu)和功能研究,Yao等[117]研究團(tuán)隊(duì)基于VVD系統(tǒng)創(chuàng)建了Cre、Dre和Flp重組酶系統(tǒng)RecV。通過單光子或雙光子照射誘導(dǎo)后,RecV系統(tǒng)能夠?qū)π∈蠛桶唏R魚中的單細(xì)胞或特定細(xì)胞群體進(jìn)行精準(zhǔn)基因調(diào)控。

3 結(jié)語與展望

光控誘導(dǎo)重組系統(tǒng)在近幾年獲得了長(zhǎng)足的發(fā)展和應(yīng)用。為了彌補(bǔ)化學(xué)誘導(dǎo)重組系統(tǒng)的空間局限性,可以將化學(xué)誘導(dǎo)劑設(shè)計(jì)成光籠,利用光控釋放的方法增強(qiáng)化學(xué)誘導(dǎo)重組系統(tǒng)的時(shí)空調(diào)控分辨率?,F(xiàn)有的可被光敏基團(tuán)修飾的化學(xué)誘導(dǎo)劑主要是針對(duì)CreER和Di-Cre系統(tǒng),后續(xù)可以進(jìn)一步研發(fā)針對(duì)Tet-on和DD-Cre系統(tǒng)的光敏基團(tuán)修飾化學(xué)誘導(dǎo)劑。另外,現(xiàn)有的光敏基團(tuán)大多是響應(yīng)紫外光誘導(dǎo),會(huì)造成DNA損傷,應(yīng)用范圍較為局限。為此可以開發(fā)響應(yīng)藍(lán)光、紅光、遠(yuǎn)紅光等其他光源誘導(dǎo)的新型光敏基團(tuán),進(jìn)而豐富光敏基團(tuán)種類,拓寬應(yīng)用范圍,提升光籠誘導(dǎo)重組系統(tǒng)的安全性和靈活性。

由于化學(xué)誘導(dǎo)劑和光敏基團(tuán)種類有限,合成毒性小、兼容性強(qiáng)的光籠仍具有挑戰(zhàn)性。相比之下,利用光遺傳學(xué)的光控二聚化開關(guān)來介導(dǎo)分割型重組酶重新激活的策略具有更強(qiáng)的靈活性和兼容性。多種類型的光遺傳學(xué)開關(guān)和重組酶為精準(zhǔn)遺傳操作提供了更廣泛的空間和更多的可能,以滿足生物醫(yī)學(xué)研究日益復(fù)雜的需求。最佳的光控誘導(dǎo)系統(tǒng)應(yīng)該是安全、高效、簡(jiǎn)單、可控,并具有精準(zhǔn)的時(shí)空調(diào)控、低泄漏、低背景、低毒性的屬性。綜合上述的研究,可以在兩個(gè)方面進(jìn)行系統(tǒng)升級(jí)改進(jìn)。一方面,可以根據(jù)研究需要,通過不同光遺傳學(xué)開關(guān)和不同重組酶組合方式來開發(fā)新的光遺傳學(xué)誘導(dǎo)重組系統(tǒng)。另一方面,可以通過篩選有效的重組酶分割形式,優(yōu)化光控元件的蛋白大小、組合方式、表達(dá)順序及其在表達(dá)載體的位置,以及優(yōu)化光控元件的氨基酸密碼子、Linker序列、核定位信號(hào)種類與位置等途徑進(jìn)一步升級(jí)系統(tǒng)。未來,迭代更新的光控誘導(dǎo)重組系統(tǒng)將廣泛用于生命科學(xué)研究領(lǐng)域,實(shí)現(xiàn)高時(shí)空分辨率遺傳操作,解析尚未可知的復(fù)雜生物過程。

[1] Sternberg N, Hamilton D. Bacteriophage P1 site- specific recombination. I. Recombination between loxP sites.,1981, 150(4): 467–486.

[2] Sternberg N, Hamilton D, Hoess R. Bacteriophage P1 site-specific recombination. II. Recombination between loxP and the bacterial chromosome.,1981, 150(4): 487–507.

[3] Sternberg N. Bacteriophage P1 site-specific recombina-tion. III. Strand exchange during recombination at lox sites.,1981, 150(4): 603–608.

[4] Golic KG, Lindquist S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome.,1989, 59(3): 499–509.

[5] Anastassiadis K, Fu J, Patsch C, Hu SB, Weidlich S, Duerschke K, Buchholz F, Edenhofer F, Stewart AF. Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice.,2009, 2(9–10): 508–515.

[6] Han XM, Zhang ZQ, He LJ, Zhu H, Li Y, Pu WJ, Han MY, Zhao H, Liu K, Li Y, Huang XZ, Zhang MJ, Jin HW, Lv Z, Tang J, Wang JJ, Sun RL, Fei J, Tian XY, Duan SZ, Wang QD, Wang LX, He B, Zhou B. A suite of new Dre recombinase drivers markedly expands the ability to perform intersectional genetic targeting.,2021, 28(6): 1160–1176.e7.

[7] Tronche F, Casanova E, Turiault M, Sahly I, Kellendonk C. When reverse genetics meets physiology: the use of site-specific recombinases in mice.,2002, 529(1): 116–121.

[8] Sauer B, Henderson N. Site-specific DNA recombi-nation in mammalian cells by the Cre recombinase of bacteriophage P1.,1988, 85(14): 5166–5170.

[9] Brault V, Besson V, Magnol L, Duchon A, Hérault Y. Cre/loxP-mediated chromosome engineering of the mouse genome.,2007(178): 29–48.

[10] Indra AK, Warot X, Brocard J, Bornert JM, Xiao JH, Chambon P, Metzger D. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases.,1999, 27(22): 4324– 4327.

[11] Sch?nig K, Schwenk F, Rajewsky K, Bujard H. Stringent doxycycline dependent control of CRE recombinase in vivo.,2002, 30(23): e134.

[12] Utomo AR, Nikitin AY, Lee WH. Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice.,1999, 17(11): 1091–1096.

[13] Jullien N, Sampieri F, Enjalbert A, Herman JP. Regulation of Cre recombinase by ligand-induced complementation of inactive fragments.,2003, 31(21): e131.

[14] Sando R, Baumgaertel K, Pieraut S, Torabi-Rander N, Wandless TJ, Mayford M, Maximov A. Inducible control of gene expression with destabilized Cre.,2013, 10(11): 1085–1088.

[15] Metzger D, Clifford J, Chiba H, Chambon P. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase.,1995, 92(15): 6991–6995.

[16] Feil R, Wagner J, Metzger D, Chambon P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains.,1997, 237(3): 752–757.

[17] Gossen M, Freundlieb S, Bender G, Müller G, Hillen W, Bujard H. Transcriptional activation by tetracyclines in mammalian cells.,1995, 268(5218): 1766–1769.

[18] Hirrlinger J, Scheller A, Hirrlinger PG, Kellert B, Tang WN, Wehr MC, Goebbels S, Reichenbach A, Sprengel R, Rossner MJ, Kirchhoff F. Split-cre complementation indicates coincident activity of different genes in vivo.,2009, 4(1): e4286.

[19] Tang JCY, Rudolph S, Dhande OS, Abraira VE, Choi S, Lapan SW, Drew IR, Drokhlyansky E, Huberman AD, Regehr WG, Cepko CL. Cell type-specific manipulation with GFP-dependent Cre recombinase.,2015, 18(9): 1334–1341.

[20] Gengenbacher M, Zimmerman MD, Sarathy JP, Kaya F, Wang H, Mina M, Carter C, Hossen MA, Su HW, Trujillo C, Ehrt S, Schnappinger D, Dartois V. Tissue distribution of doxycycline in animal models of tuberculosis.,2020, 64(5): e02479–e02519.

[21] Wilking N, Appelgren LE, Carlstr?m K, Pousette A, Theve NO. The distribution and metabolism of 14C-labelled tamoxifen in spayed female mice.,1982, 50(3): 161–168.

[22] Zhang JS, Wong SHD, Wu X, Lei H, Qin M, Shi P, Wang W, Bian LM, Cao Y. Engineering photoresponsive ligand tethers for mechanical regulation of stem cells.,2021, 33(48): e2105765.

[23] Richter F, Fonfara I, Bouazza B, Schumacher CH, Bratovi? M, Charpentier E, M?glich A. Engineering of temperature- and light-switchable Cas9 variants.,2016, 44(20): 10003–10014.

[24] Liu RM, Yang J, Yao J, Zhao Z, He W, Su N, Zhang ZY, Zhang CX, Zhang Z, Cai HB, Zhu LY, Zhao YZ, Quan S, Chen XJ, Yang Y. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins.,2022, 40(5): 779–786.

[25] Mayer G, Heckel A. Biologically active molecules with a “l(fā)ight switch”.,2006, 45(30): 4900–4921.

[26] Pinheiro AV, Baptista P, Lima JC. Light activation of transcription: photocaging of nucleotides for control over RNA polymerization.,2008, 36(14): e90.

[27] Karginov AV, Zou Y, Shirvanyants D, Kota P, Dokholyan NV, Young DD, Hahn KM, Deiters A. Light regulation of protein dimerization and kinase activity in living cells using photocaged rapamycin and engineered FKBP.,2011, 133(3): 420–423.

[28] Miller DS, Chirayil S, Ball HL, Luebke KJ. Manipulating cell migration and proliferation with a light-activated polypeptide.,2009, 10(3): 577–584.

[29] Lemke EA, Summerer D, Geierstanger BH, Brittain SM, Schultz PG. Control of protein phosphorylation with a genetically encoded photocaged amino acid.,2007, 3(12): 769–772.

[30] Link KH, Shi YH, Koh JT. Light activated recom-bination.,2005, 127(38): 13088–13089.

[31] Lawrence DS. The preparation and in vivo applications of caged peptides and proteins.,2005, 9(6): 570–575.

[32] Young DD, Deiters A. Photochemical control of biological processes.,2007, 5(7): 999–1005.

[33] Tang XJ, Dmochowski IJ. Regulating gene expression with light-activated oligonucleotides.,2007, 3(2): 100–110.

[34] Sinha DK, Neveu P, Gagey N, Aujard I, Benbrahim- Bouzidi C, Le Saux T, Rampon C, Gauron C, Goetz B, Dubruille S, Baaden M, Volovitch M, Bensimon D, Vriz S, Jullien L. Photocontrol of protein activity in cultured cells and zebrafish with one- and two-photon illumina-tion.,2010, 11(5): 653–663.

[35] Sinha DK, Neveu P, Gagey N, Aujard I, Le Saux T, Rampon C, Gauron C, Kawakami K, Leucht C, Bally- Cuif L, Volovitch M, Bensimon D, Jullien L, Vriz S. Photoactivation of the CreER T2 recombinase for conditional site-specific recombination with high spatiotemporal resolution.,2010, 7(2): 199– 204.

[36] Lu X, Agasti SS, Vinegoni C, Waterman P, DePinho RA, Weissleder R. Optochemogenetics (OCG) allows more precise control of genetic engineering in mice with CreER regulators.,2012, 23(9): 1945–1951.

[37] Inlay MA, Choe V, Bharathi S, Fernhoff NB, Baker JR Jr, Weissman IL, Choi SK. Synthesis of a photocaged tamoxifen for light-dependent activation of Cre-ER recombinase-driven gene modification.,2013, 49(43): 4971–4973.

[38] Faal T, Wong PT, Tang SZ, Coulter A, Chen Y, Tu CH, Baker JR, Choi SK, Inlay MA. 4-Hydroxytamoxifen probes for light-dependent spatiotemporal control of Cre-ER mediated reporter gene expression.,2015, 11(3): 783–790.

[39] Brown KA, Zou Y, Shirvanyants D, Zhang J, Samanta S, Mantravadi PK, Dokholyan NV, Deiters A. Light- cleavable rapamycin dimer as an optical trigger for protein dimerization.,2015, 51(26): 5702–5705.

[40] Gorka AP, Nani RR, Zhu JJ, Mackem S, Schnermann MJ. A near-IR uncaging strategy based on cyanine photochemistry.,2014, 136(40): 14153–14159.

[41] Edwards WF, Young DD, Deiters A. Light-activated Cre recombinase as a tool for the spatial and temporal control of gene function in mammalian cells.,2009, 4(6): 441–445.

[42] Luo J, Arbely E, Zhang J, Chou C, Uprety R, Chin JW, Deiters A. Genetically encoded optical activation of DNA recombination in human cells.,2016, 52(55): 8529–8532.

[43] Beverage JN, Sissung TM, Sion AM, Danesi R, Figg WD. CYP2D6 polymorphisms and the impact on tamoxifen therapy.,2007, 96(9): 2224– 2231.

[44] Cambridge SB, Geissler D, Keller S, Cürten B. A caged doxycycline analogue for photoactivated gene expression.,2006, 45(14): 2229–2231.

[45] Goegan B, Terzi F, Bolze F, Cambridge S, Specht A. Synthesis and characterization of photoactivatable doxycycline analogues bearing two-photon-sensitive photoremovable groups suitable for light-induced gene expression.,2018, 19(12): 1341–1348.

[46] Cambridge SB, Geissler D, Calegari F, Anastassiadis K, Hasan MT, Stewart AF, Huttner WB, Hagen V, Bonhoeffer T. Doxycycline-dependent photoactivated gene expression in eukaryotic systems.,2009, 6(7): 527–531.

[47] Zheng YJ, Nandakumar KS, Cheng K. Optimization of CAR-T cell-based therapies using small-molecule-based safety switches.,2021, 64(14): 9577–9591.

[48] Deiters A, Groff D, Ryu Y, Xie JM, Schultz PG. A genetically encoded photocaged tyrosine.,2006, 45(17): 2728–2731.

[49] Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL. Rapid blue-light-mediated induction of protein interactions in living cells.,2010, 7(12): 973–975.

[50] Li F, Lu ZW, Wu WB, Qian NN, Wang FC, Chen T. Optogenetic gene editing in regional skin.,2019, 29(10): 862–865.

[51] Bugaj LJ, Choksi AT, Mesuda CK, Kane RS, Schaffer DV. Optogenetic protein clustering and signaling activation in mammalian cells.,2013, 10(3): 249–252.

[52] Taslimi A, Vrana JD, Chen D, Borinskaya S, Mayer BJ, Kennedy MJ, Tucker CL. An optimized optogenetic clustering tool for probing protein interaction and function.,2014, 5: 4925.

[53] Zoltowski BD, Schwerdtfeger C, Widom J, Loros JJ, Bilwes AM, Dunlap JC, Crane BR. Conformational switching in the fungal light sensor Vivid.,2007, 316(5827): 1054–1057.

[54] Zoltowski BD, Crane BR. Light activation of the LOV protein vivid generates a rapidly exchanging dimer.,2008, 47(27): 7012–7019.

[55] Vaidya AT, Chen CH, Dunlap JC, Loros JJ, Crane BR. Structure of a light-activated LOV protein dimer that regulates transcription.,2011, 4(184): ra50.

[56] Kawano F, Suzuki H, Furuya A, Sato M. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins.,2015, 6: 6256.

[57] Liu HT, Yu XH, Li KW, Klejnot J, Yang HY, Lisiero D, Lin CT. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis.,2008, 322(5907): 1535–1539.

[58] Shimizu-Sato S, Huq E, Tepperman JM, Quail PH. A light-switchable gene promoter system.,2002, 20(10): 1041–1044.

[59] Levskaya A, Weiner OD, Lim WA, Voigt CA. Spatiotemporal control of cell signalling using a light-switchable protein interaction.,2009, 461(7266): 997–1001.

[60] Wu D, Hu Q, Yan Z, Chen W, Yan CY, Huang X, Zhang J, Yang PY, Deng HT, Wang JW, Deng XW, Shi YG. Structural basis of ultraviolet-B perception by UVR8.,2012, 484(7393): 214–219.

[61] Cloix C, Kaiserli E, Heilmann M, Baxter KJ, Brown BA, O'Hara A, Smith BO, Christie JM, Jenkins GI. C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein.,2012, 109(40): 16366–16370.

[62] Crefcoeur RP, Yin RH, Ulm R, Halazonetis TD. Ultraviolet-B-mediated induction of protein-protein interactions in mammalian cells.,2013, 4: 1779.

[63] Kaberniuk AA, Shemetov AA, Verkhusha VV. A bacterial phytochrome-based optogenetic system controllable with near-infrared light.,2016, 13(7): 591–597.

[64] Ryu MH, Gomelsky M. Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications.,2014, 3(11): 802–810.

[65] Shao JW, Xue S, Yu GL, Yu YH, Yang XP, Bai Y, Zhu SC, Yang LF, Yin JL, Wang YD, Liao SY, Guo SW, Xie MQ, Fussenegger M, Ye HF. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice.,2017, 9(387): eaal2298.

[66] Strickland D, Lin Y, Wagner E, Hope CM, Zayner J, Antoniou C, Sosnick TR, Weiss EL, Glotzer M. TULIPs: tunable, light-controlled interacting protein tags for cell biology.,2012, 9(4): 379–384.

[67] Woolley GA. Designing chimeric LOV photoswitches.,2012, 19(4): 441–442.

[68] Guntas G, Hallett RA, Zimmerman SP, Williams T, Yumerefendi H, Bear JE, Kuhlman B. Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins.,2015, 112(1): 112–117.

[69] Wan S, Parrish JA, Anderson RR, Madden M. Transmittance of nonionizing radiation in human tissues.,1981, 34(6): 679–681.

[70] Gomelsky M. Photoactivated cells link diagnosis and therapy.,2017, 9(387): eaan3936.

[71] Taslimi A, Zoltowski B, Miranda JG, Pathak GP, Hughes RM, Tucker CL. Optimized second-generation CRY2-CIB dimerizers and photoactivatable Cre recombinase.,2016, 12(6): 425–430.

[72] Meador K, Wysoczynski CL, Norris AJ, Aoto J, Bruchas MR, Tucker CL. Achieving tight control of a photoactivatable Cre recombinase gene switch: new design strategies and functional characterization in mammalian cells and rodent.,2019, 47(17): e97.

[73] Kawano F, Okazaki R, Yazawa M, Sato M. A photoactivatable Cre-loxP recombination system for optogenetic genome engineering.,2016, 12(12): 1059–1064.

[74] Morikawa K, Furuhashi K, de Sena-Tomas C, Garcia-Garcia AL, Bekdash R, Klein AD, Gallerani N, Yamamoto HE, Park SHE, Collins GS, Kawano F, Sato M, Lin CS, Targoff KL, Au E, Salling MC, Yazawa M. Photoactivatable Cre recombinase 3.0 for in vivo mouse applications.,2020, 11(1): 2141.

[75] Allen ME, Zhou W, Thangaraj J, Kyriakakis P, Wu YQ, Huang ZL, Ho P, Pan YJ, Limsakul P, Xu XD, Wang YX. An AND-Gated drug and photoactivatable Cre-loxP system for spatiotemporal control in cell-based therapeutics.,2019, 8(10): 2359–2371.

[76] Takao T, Hiraoka Y, Kawabe K, Yamada D, Ming L, Tanaka K, Sato M, Takarada T. Establishment of a tTA-dependent photoactivatable Cre recombinase knock-in mouse model for optogenetic genome engineering.,2020, 526(1): 213–217.

[77] Yen ST, Trimmer KA, Aboul-Fettouh N, Mullen RD, Culver JC, Dickinson ME, Behringer RR, Eisenhoffer GT. CreLite: An optogenetically controlled Cre/loxP system using red light.,2020, 249(11): 1394–1403.

[78] Wu JL, Wang MY, Yang XP, Yi CW, Jiang J, Yu YH, Ye HF. A non-invasive far-red light-induced split-Cre recombinase system for controllable genome engineering in mice.,2020, 11(1): 3708.

[79] Jung H, Kim SW, Kim M, Hong J, Yu D, Kim JH, Lee Y, Kim S, Woo D, Shin HS, Park BO, Heo WD. Noninvasive optical activation of Flp recombinase for genetic manipulation in deep mouse brain regions.,2019, 10(1): 314.

[80] Li HY, Zhang QS, Gu YR, Wu YY, Wang YM, Wang LR, Feng SJ, Hu YQ, Zheng YS, Li YM, Ye HF, Zhou B, Lin LN, Liu MY, Yang HY, Li DL. Efficient photoac-tivatable Dre recombinase for cell type-specific spatio-temporal control of genome engineering in the mouse.,2020, 117(52): 33426–33435.

[81] Duan LT, Che D, Zhang K, Ong QX, Guo SL, Cui BX. Optogenetic control of molecular motors and organelle distributions in cells.,2015, 22(5): 671–682.

[82] Hughes RM, Bolger S, Tapadia H, Tucker CL. Light-mediated control of DNA transcription in yeast.,2012, 58(4): 385–391.

[83] Konermann S, Brigham MD, Trevino A, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F. Optical control of mammalian endogenous transcription and epigenetic states.,2013, 500(7463): 472–476.

[84] Polstein LR, Gersbach CA. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation.,2015, 11(3): 198–200.

[85] Nihongaki Y, Furuhata Y, Otabe T, Hasegawa S, Yoshimoto K, Sato M. CRISPR-Cas9-based photoac-tivatable transcription systems to induce neuronal differentiation.,2017, 14(10): 963–966.

[86] Idevall-Hagren O, Dickson EJ, Hille B, Toomre DK, De Camilli P. Optogenetic control of phosphoinositide metabolism.,2012, 109(35): E2316–E2323.

[87] Giordano F, Saheki Y, Idevall-Hagren O, Colombo SF, Pirruccello M, Milosevic I, Gracheva EO, Bagriantsev SN, Borgese N, De Camilli P. PI(4,5)P(2)-dependent and Ca(2+)-regulated ER-PM interactions mediated by the extended synaptotagmins.,2013, 153(7): 1494–1509.

[88] Kakumoto T, Nakata T. Optogenetic control of PIP3: PIP3 is sufficient to induce the actin-based active part of growth cones and is regulated via endocytosis.,2013, 8(8): e70861.

[89] Maiuri P, Rupprecht JF, Wieser S, Ruprecht V, Bénichou O, Carpi N, Coppey M, De Beco S, Gov N, Heisenberg CP, Lage Crespo C, Lautenschlaeger F, Le Berre M, Lennon-Dumenil AM, Raab M, Thiam HR, Piel M, Sixt M, Voituriez R. Actin flows mediate a universal coupling between cell speed and cell persistence.,2015, 161(2): 374–386.

[90] Boulina M, Samarajeewa H, Baker JD, Kim MD, Chiba A. Live imaging of multicolor-labeled cells in Drosophila.,2013, 140(7): 1605–1613.

[91] Schindler SE, McCall JG, Yan P, Hyrc KL, Li MJ, Tucker CL, Lee JM, Bruchas MR, Diamond MI. Photo-activatable Cre recombinase regulates gene expression in vivo.,2015, 5: 13627.

[92] Zoltowski BD, Vaccaro B, Crane BR. Mechanism-based tuning of a LOV domain photoreceptor.,2009, 5(11): 827–834.

[93] Lamb JS, Zoltowski BD, Pabit SA, Crane BR, Pollack L. Time-resolved dimerization of a PAS-LOV protein measured with photocoupled small angle X-ray scattering.,2008, 130(37): 12226–12227.

[94] Thomson JG, Rucker EB 3rd, Piedrahita JA. Mutational analysis of loxP sites for efficient Cre-mediated insertion into genomic DNA.,2003, 36(3): 162–167.

[95] Oberdoerffer P, Otipoby KL, Maruyama M, Rajewsky K. Unidirectional Cre-mediated genetic inversion in mice using the mutant loxP pair lox66/lox71.,2003, 31(22): e140.

[96] Araki K, Okada Y, Araki M, Yamamura KI. Comparative analysis of right element mutant lox sites on recombination efficiency in embryonic stem cells.,2010, 10: 29.

[97] Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters.,1992, 89(12): 5547–5551.

[98] Furth PA, St Onge L, B?ger H, Gruss P, Gossen M, Kistner A, Bujard H, Hennighausen L. Temporal control of gene expression in transgenic mice by a tetracycline- responsive promoter.,1994, 91(20): 9302–9306.

[99] Jorissen HJMM, Quest B, Lindner I, de Marsac NT, G?rtner W. Phytochromes with noncovalently bound chromophores: the ability of apophytochromes to direct tetrapyrrole photoisomerization.,2002, 75(5): 554–559.

[100] Kami C, Mukougawa K, Muramoto T, Yokota A, Shinomura T, Lagarias JC, Kohchi T. Complementation of phytochrome chromophore-deficient Arabidopsis by expression of phycocyanobilin:ferredoxin oxidoreductase.,2004, 101(4): 1099–1104.

[101] Zhou Y, Kong DQ, Wang XY, Yu GL, Wu X, Guan NZ, Weber W, Ye HF. A small and highly sensitive red/far- red optogenetic switch for applications in mammals.,2022, 40(2): 262–272.

[102] Müller K, Engesser R, Timmer J, Nagy F, Zurbriggen MD, Weber W. Synthesis of phycocyanobilin in mammalian cells.,2013, 49(79): 8970–8972.

[103] Khanna R, Huq E, Kikis EA, Al-Sady B, Lanzatella C, Quail PH. A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors.,2004, 16(11): 3033–3044.

[104] Müller K, Engesser R, Metzger S, Schulz S, K?mpf MM, Busacker M, Steinberg T, Tomakidi P, Ehrbar M, Nagy F, Timmer J, Zubriggen MD, Weber W. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells.,2013, 41(7): e77.

[105] Wiltbank LB, Kehoe DM. Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors.,2019, 17(1): 37–50.

[106] Kojadinovic M, Laugraud A, Vuillet L, Fardoux J, Hannibal L, Adriano JM, Bouyer P, Giraud E, Verméglio A. Dual role for a bacteriophytochrome in the bioenergetic control of Rhodopseudomonas palustris: enhancement of photosystem synthesis and limitation of respiration.,2008, 1777(2): 163–172.

[107] Ulijasz AT, Vierstra RD. Phytochrome structure and photochemistry: recent advances toward a complete molecular picture.,2011, 14(5): 498–506.

[108] Piatkevich KD, Subach FV, Verkhusha VV. Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals.,2013, 42(8): 3441–3452.

[109] Tran MTN, Tanaka J, Hamada M, Sugiyama Y, Sakaguchi S, Nakamura M, Takahashi S, Miwa Y. In vivo image analysis using iRFP transgenic mice.,2014, 63(3): 311–319.

[110] Shcherbakova DM, Baloban M, Verkhusha VV. Near- infrared fluorescent proteins engineered from bacterial phytochromes.,2015, 27: 52–63.

[111] Redchuk TA, Kaberniuk AA, Verkhusha VV. Near- infrared light-controlled systems for gene transcription regulation, protein targeting and spectral multiplexing.,2018, 13(5): 1121–1136.

[112] Karimova M, Abi-Ghanem J, Berger N, Surendranath V, Pisabarro MT, Buchholz F. Vika/vox, a novel efficient and specific Cre/loxP-like site-specific recombination system.,2013, 41(2): e37.

[113] Karimova M, Splith V, Karpinski J, Pisabarro MT, Buchholz F. Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering.,2016, 6: 30130.

[114] Liu K, Yu W, Tang MX, Tang J, Liu XX, Liu QZ, Li Y, He LJ, Zhang LB, Evans SM, Tian XY, Lui KO, Zhou B. A dual genetic tracing system identifies diverse and dynamic origins of cardiac valve mesenchyme.,2018, 145(18): dev167775.

[115] Plummer NW, Evsyukova IY, Robertson SD, de Marchena J, Tucker CJ, Jensen P. Expanding the power of recombinase-based labeling to uncover cellular diversity.,2015, 142(24): 4385–4393.

[116] Karimova M, Baker O, Camgoz A, Naumann R, Buchholz F, Anastassiadis K. A single reporter mouse line for Vika, Flp, Dre, and Cre-recombination.,2018, 8(1): 14453.

[117] Yao SQ, Yuan P, Ouellette B, Zhou T, Mortrud M, Balaram P, Chatterjee S, Wang Y, Daigle TL, Tasic B, Kuang XL, Gong H, Luo QM, Zeng SQ, Curtright A, Dhaka A, Kahan A, Gradinaru V, Chrapkiewicz R, Schnitzer M, Zeng HK, Cetin A. RecV recombinase system for in vivo targeted optogenomic modifications of single cells or cell populations.,2020, 17(4): 422–429.

Development and application of light-controlled inducible recombination systems

Tian Xie, Mei Wang, Ruiyu Gao, Yanni Miao, Yiming Zhang, Jing Jiang

The site-specific recombination systems are composed of recombinases and specific recognition sites, which are powerful tools for gene manipulation and have been extensively used in life sciences research. Inducible recombination systems have been developed to precisely regulate gene expression in a spatiotemporal manner in cells and animals for applications such as gene function research, cell lineage tracing and disease treatment. Based on different spatiotemporal expression methods of recombinases, inducible recombination systems can be divided into two categories: chemical- controlled and light-controlled inductions. Light-controlled inducible recombination systems that utilize light as inducer consist of photocage and optogenetics in accordance with optical control patterns and objects. Photocaged inducible recombination systems are using photosensitive groups to control chemical inducers or recombinases. Their activities are inhibited by photosensitive groups before light induction and recovered after specific light irradiation, leading to light-controlled inducible gene recombination. While optogenetic inducible recombination systems rely on reactivations of split recombinases that mediated by optogenetic switches. Optogenetic switches are composed of a series of gene-encoded photosensitive proteins, including cryptochromes, VIVID, phytochromes, etc. These types of light-controlled inducible recombination systems provide more possibilities for analyzing gene expression and function from the dimension of high spatiotemporal resolution to meet the increasingly complex demands of life science research. In this review, we summarize the developing principles and applications of different types of light-controlled inducible recombination systems, compare their advantages and disadvantages, and prospect the development of more light-controlled recombination systems in the future, with the aims to provide theoretical basis and guidance for system optimization and upgrade.

light-controlled inducible recombination system; photocage;optogenetic switch;site-specific recombinase;spatiotemporal control

2022-05-15;

2022-06-28;

2022-07-13

國(guó)家重點(diǎn)研發(fā)計(jì)劃專項(xiàng)(編號(hào):2020YFA0509001),國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):31801057)和上海市科學(xué)技術(shù)委員會(huì)科技計(jì)劃項(xiàng)目(編號(hào):21140905100,22140903500)資助[Supported by the National Key Research and Development Program of China (No. 2020YFA0509001), the National Natural Science Foundation of China (No. 31801057), and Shanghai Municipal Commission for Science and Technology Grants (Nos. 21140905100, 22140903500)]

謝甜,碩士,工程師,研究方向:基因組標(biāo)簽計(jì)劃與基因編輯。E-mail: tian.xie@sibcb.ac.cn

蔣婧,博士,副研究員,研究方向:基因組標(biāo)簽計(jì)劃與基因編輯。E-mail: jiangjing@sibcb.ac.cn

10.16288/j.yczz.22-158

(責(zé)任編委: 郭偉翔)

猜你喜歡
莫昔芬光敏遺傳學(xué)
黛力新及其組分對(duì)大鼠體內(nèi)他莫昔芬及其代謝物的藥動(dòng)學(xué)影響
光敏色素A參與苜蓿秋眠調(diào)控分子機(jī)制的研究進(jìn)展
光固化3D打印中光敏樹脂的研究進(jìn)展
Fe修飾石墨烯的結(jié)構(gòu)及其析氫性能調(diào)控研究
鳴律
FKBP51表達(dá)降低促進(jìn)雌激素受體陽性乳腺癌他莫昔芬耐藥機(jī)制初探
例析對(duì)高中表觀遺傳學(xué)的認(rèn)識(shí)
絕經(jīng)期前乳腺癌患者輔助內(nèi)分泌治療效果研究
實(shí)驗(yàn)設(shè)計(jì)巧斷遺傳學(xué)(下)
遺傳學(xué)