国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

長期高堿脅迫下凡納濱對蝦基因表達差異研究*

2022-09-05 02:14王旭江么宗利來琦芳于明超李新蒼高鵬程崔青曼劉一萌
漁業(yè)科學進展 2022年4期
關鍵詞:對蝦測序腸道

王旭江 么宗利 來琦芳 于明超 李新蒼 高鵬程 周 凱 崔青曼 劉一萌 孫 真 李 燕

長期高堿脅迫下凡納濱對蝦基因表達差異研究*

王旭江1,2么宗利2①來琦芳2于明超3李新蒼2高鵬程2周 凱2崔青曼1劉一萌2孫 真2李 燕2

(1. 天津科技大學海洋與環(huán)境學院 天津 300457;2. 中國水產科學研究院東海水產研究所 農業(yè)農村部低洼鹽堿地水產養(yǎng)殖重點實驗室 鹽堿水域漁業(yè)工程技術研究中心(上海) 上海 200090;3. 通威股份有限公司 成都 610093)

凡納濱對蝦()具有較強的環(huán)境適應能力,對鹽堿水環(huán)境有一定的耐受性,但在高pH、高堿環(huán)境下的存活率不穩(wěn)定。為探究凡納濱對蝦對長期高堿脅迫的響應機制,本研究以低堿對照組(LSW:碳酸鹽堿度為3 mmol/L,鹽度為6,pH為8.1)和高堿脅迫組(AW:碳酸鹽堿度為10 mmol/L,鹽度為6,pH為8.8)養(yǎng)殖42 d的凡納濱對蝦腸道和鰓組織作為實驗材料,通過Illumina平臺進行轉錄組測序,對測序數據進行拼接、注釋,進而篩選、分析高堿脅迫下的差異表達基因及調控通路并進行定量PCR驗證。結果顯示,2個組織共同差異表達基因有243個,其中,98個表達上調,145個表達下調。腸道中差異表達基因主要集中在糖代謝、碳水化合物消化吸收、膽汁分泌、ABC跨膜轉運、緊密連接以及免疫調節(jié)等途徑。鰓中差異表達基因主要集中在谷胱甘肽代謝、碳酸氫鹽轉運、精氨酸合成、糖代謝以及離子轉運等相關途徑。進一步篩選獲得10個最顯著的差異表達基因,經qRT-PCR驗證發(fā)現,凡納濱對蝦鰓中碳酸酐酶(、)、蛻皮激素誘導蛋白()、β-半乳糖基轉移酶()基因在高堿脅迫下均表達下調,而Na+/K+-ATPase-α ()、Na+/K+transporting ATPase interacting ()氨轉運蛋白()、蘋果酸脫氫酶()等基因表達上調,與轉錄組表達趨勢一致,推測其可能參與了對蝦高堿脅迫下的應激響應。凡納濱對蝦表現出較強的高堿適應性,可能是通過下調鰓中的表達,補償體內堿中毒,上調氨轉運蛋白防止氨在體內積累,上調相關基因維持體內滲透平衡;但蛻皮激素誘導蛋白()顯著下調,推測其蛻皮功能受到影響。本研究為深入探討凡納濱對蝦在長期高堿脅迫條件下的生理響應機制提供了基礎數據。

凡納濱對蝦;轉錄組;碳酸鹽堿度;差異表達基因

我國擁有豐富的鹽堿水資源,其高pH、高碳酸鹽堿度水質特征制約了水生動物的生存、生長和繁殖。凡納濱對蝦()具有較強的抗逆性,在鹽堿水中有一定的耐受性。短期鹽堿脅迫下,凡納濱對蝦碳酸酐酶()、Na-K-等離子調控類基因差異表達,以增強離子調節(jié)的方式進行酸堿和滲透平衡的調控(么宗利等, 2010、2012),但針對長期高堿脅迫下凡納濱對蝦的基因調控研究相對較少。目前,雖然鹽堿水凡納濱對蝦養(yǎng)殖取得一定成功,但養(yǎng)殖存活率不穩(wěn)定,凡納濱對蝦耐鹽堿選育鮮有報道。國內通過引進、消化、吸收和自主創(chuàng)新,建立了基于規(guī)?;蚁档摹八a動物多性狀復合育種技術”(張?zhí)鞎r, 2010),選育的優(yōu)良性狀包括抗病(黃永春等, 2013)、耐低溫(景福濤等, 2006)、耐鹽堿(李明棟等, 2021)、耐低鹽度(郝登春等, 2018)、養(yǎng)殖存活率(孔杰等, 2017)等,為實現凡納濱對蝦良種本土化打下了良好的基礎。為有效利用鹽堿水資源,迫切需要開展凡納濱對蝦耐鹽堿選育工作,從而促進凡納濱對蝦鹽堿水養(yǎng)殖業(yè)的健康發(fā)展。

水生生物耐鹽堿性狀由多基因互相作用協(xié)同控制(么宗利等, 2010),其分子響應機制是一個復雜的過程。研究發(fā)現,耐鹽堿性狀具有一定的遺傳潛力,在尼羅羅非魚()、瓦氏雅羅魚()、脊尾白蝦()等水產動物中獲得了若干耐鹽堿功能基因(唐首杰等, 2018; Chang, 2021; 李明棟等, 2021),但功能位點尚不清晰。隨著基因組學和生物信息學的高速發(fā)展,高通量測序技術逐漸成熟,并廣泛應用于功能基因挖掘、分子標記篩選及信號轉導等研究中,為耐鹽堿響應機制的研究提供了有效的技術手段。其中,轉錄組測序可以針對各種環(huán)境條件下的物種細胞或組織進行高通量測序,并對測序結果進行基因結構分析和功能注釋,分析特定條件下相關基因的表達水平,以揭示其代謝網絡及調控響應機理(Sims, 2014)。本研究采用高通量測序技術對2種處理下的凡納濱對蝦腸道和鰓組織進行轉錄組測序,篩選長期高堿脅迫下差異表達基因以及與鹽堿脅迫相關代謝通路,為解析凡納濱對蝦耐鹽堿調控機制提供基礎數據,同時為鹽堿水環(huán)境下凡納濱對蝦分子輔助育種提供理論依據。

1 材料與方法

1.1 實驗材料

實驗所用凡納濱對蝦取自通威股份有限公司2020年5月培育的G10代育種群體。對現有20個凡納濱對蝦家系進行馴化、篩選、熒光標記后,進行96 h高堿急性脅迫實驗,依據實驗結果,開展42 d的高堿脅迫實驗。挑選活力相對較好、個體規(guī)格比較一致的凡納濱對蝦作為實驗用蝦,起始平均體長為(7.2±0.5) cm,體重為(4.7±0.6) g。

1.2 碳酸鹽堿度脅迫實驗

碳酸鹽堿度脅迫實驗于2020年8月開始,每個家系挑選規(guī)格相對一致的凡納濱對蝦96尾,設置低堿對照組(LSW)和高堿脅迫組(AW),每組設置3個平行(每個平行16尾),每個平行單獨放置在50 cm× 50 cm×50 cm網箱中養(yǎng)殖。AW組養(yǎng)殖用水通過添加相應的Na2CO3和NaHCO3配制而成(碳酸鹽堿度為10 mmol/L,鹽度為6,pH=8.8),LSW組為對照組(碳酸鹽堿度為3 mmol/L,鹽度為6,pH=8.1)。為保證實驗組鹽堿水碳酸鹽堿度和pH穩(wěn)定,每隔24 h換水50%。經過42 d的養(yǎng)殖,選擇一個高堿敏感家系[養(yǎng)殖存活率為(42.5±8.33)%]取樣,LSW和AW每組每個平行各取6尾蝦[體長為(9.8±0.8) cm,體重為(9.6±0.9) g],活體解剖,取鰓和腸道組織放入RNA保存液保存?zhèn)溆?,其中?尾用于轉錄組測序,3尾用于后期qRT-PCR驗證。

1.3 RNA提取及轉錄組測序

按照常規(guī)Trizol法提取每尾蝦的鰓和腸道組織總RNA。通過1%瓊脂糖凝膠電泳和NanoDrop ND-2000分光光度計(Thermo, 美國)檢測RNA質量及濃度。總RNA濃度>250 ng/μL,OD260nm/OD280nm介于1.8~2.2之間,確保RNA無降解、無污染,然后,進行文庫構建和高通量測序(Hiseq 2500, Illumina,美國)。

1.4 轉錄組序列組裝及注釋

測序原始數據經過質量分析,去除帶接頭、低質量和N(無法確定堿基信息)比例大于10%的序列,質控后的序列用Trinity軟件進行拼接,每個基因以拼接得到的最長序列為該基因序列(unigene)(Grabherr, 2011)。轉錄組測序數據用CASAVA Base Calling軟件、RSEM軟件分析,并利用hisat2將Clean Reads與指定參考基因組(ASM378908v1-NCBI)進行序列比對,獲取在參考基因組或基因上的位置信息以及測序樣本特有的序列特征信息。

1.5 差異表達分析及差異基因富集分析

采用FPKM方法計算基因表達量(Trapnell, 2010)。利用R語言DEGseq軟件包篩選差異表達基因(DEGs),篩選閥值為fold change >2和<0.05(Anders, 2010)。對于DEGs,依據測序結果中的基因GO(gene ontology)功能注釋(Young, 2010),并結合KEGG數據庫分析差異顯著基因參與的代謝通路(Kanehisa, 2008)。

1.6 qRT-PCR驗證

為了進一步驗證轉錄組數據,選取10個差異倍數較大的DEGs進行鰓組織qRT-PCR驗證分析,其中包含5個上調和5個下調表達的基因。利用Primer 5.0軟件設計特異性引物(表1),送交生工生物工程(上海)股份有限公司合成。qRT-PCR實驗采用TaKaRa相對熒光定量試劑盒,以18S rRNA為內參基因,每個樣品3次重復,驗證所用樣品為前期實驗經過相同處理的平行樣品。利用2–??法分析基因的相對表達量(Schmittgen, 2008),與轉錄組表達數據進行比較分析。

表1 用于轉錄組表達驗證的引物序列

Tab.1 Genes and primers used for validation of RNA-seq data

2 結果與分析

2.1 轉錄組測序數據質量評估

轉錄組測序分析共完成12個樣本的有參轉錄組測序,獲得75.62 Gb的Clean data,各樣本有效數據量在5.72~7.01 Gb,堿基Q30在92.83%~93.47%,平均GC含量為47.76%,說明測序質量符合生物信息學分析要求,測序數據質量如表2所示。

2.2 轉錄組測序Reads基因組比對結果

通過將Clean reads比對到參考基因組,得到各個樣本的基因組比對情況,比對率為80.93%~91.2%?;诒葘Y果,進行蛋白編碼基因表達量分析。根據蛋白編碼基因在不同樣本中的表達量進行差異篩選,設有腸道和鰓2個差異分組,其檢測到的差異基因數量分別為2480和1699,共同差異表達基因為243個(圖1)。

對AW和LSW的差異表達基因分析結果繪制火山圖(圖2)。結果顯示,在高堿脅迫條件下,腸道組織有1224個基因表達上調,有1256個基因表達下調;鰓組織有613個基因表達上調,1086個基因表達下調。將2個組織在高堿脅迫下的差異表達基因進行比較,2個組織有243個共同的差異表達基因,其中,98個基因上調表達,145個基因下調表達,這243個共同的差異表達基因可能與高堿脅迫下凡納濱對蝦組織間協(xié)同調控分子機制有關。

表2 樣品測序數據與組裝結果統(tǒng)計

Tab.2 Summary of sequencing and transcriptome assembly

注:AWI1、AWI2和AWI3表示高堿脅迫組對蝦腸道組織3個生物學重復,AWG1、AWG2和AWG3表示高堿脅迫組對蝦鰓組織3個生物學重復;LSWI1、LSWI2和LSWI3表示對照組對蝦腸道組織3個生物學重復,LSWG1、LSWG2和LSWG3表示對照組對蝦鰓組織3個生物學重復;Q30:Phred數值大于30的堿基占總體堿基百分比。

Note: AWI1, AWI2, and AWI3 are three individual intestines of high-alkaline groups. AWG1, AWG2, and AWG3 are three individual gills of high-alkaline groups; LSWI1, LSWI2, and LSWI3 are three individual intestines of control groups. LSWG1, LSWG2, and LSWG3 are three individual gills of control groups. Q30: The base of the Phred value greater than 30 accounts for the percentage of the overall base.

圖1 高堿脅迫下凡納濱對蝦腸道和鰓組織差異表達基因維恩圖

Fig.1 Numbers of differentially expressed genes in intestine and gills ofunder high alkaline stress

2.3 高堿脅迫下凡納濱對蝦差異表達基因GO富集分析

GO富集分析顯示,差異基因在生物過程(biological process, BP)、細胞成分(cellular component, CC)和分子功能(molecular function, MF)中均有分布,其中,以生物過程居多。腸道中,差異表達基因共富集到5253個terms,其中,生物過程3223個,細胞組分910個,分子功能1120個。鰓組織中,差異表達基因共富集到3647個terms,其中,生物過程1244個,細胞組分1185個,分子功能1218個。在生物過程中,生物調節(jié)、代謝途徑、細胞途徑、離子轉運以及單有機體過程是包含差異基因最多的幾類;在細胞成分類中,差異基因最多的是細胞組分和細胞這兩類;而在分子功能類中,結合和催化活性這兩類包含了最多的差異基因,挑選每個分類中富集最顯著的前10個GO terms進行展示(圖3)。

2.4 高堿脅迫下凡納濱對蝦差異表達基因KEGG富集分析

KEGG富集結果顯示,2種處理在腸道組織的DEGs涉及238個通路,在鰓組織的DEGs涉及225個通路,從KEGG富集分析中選取富集最顯著的20個代謝途徑,繪制KEGG富集氣泡圖(圖4)。其中,腸道中差異表達基因主要集中在糖代謝、碳水化合物消化吸收、膽汁分泌、ABC跨膜轉運、緊密連接、免疫調節(jié)等途徑。鰓中差異表達基因主要集中在谷胱甘肽代謝、碳酸氫鹽轉運、精氨酸合成、糖代謝以及離子轉運等相關途徑。

2.5 轉錄組數據的qRT-PCR驗證

從2種不同處理下凡納濱對蝦的腸道和鰓中篩選的243個共同DEGs中,根據GO和KEGG富集結果,選取10個差異倍數較大DEGs進行驗證(圖5)。各基因qRT-PCR驗證表達趨勢與轉錄組表達趨勢一致。其中,、、、和基因在高堿脅迫下呈上調表達,差異倍數在1.6~4.1之間;、、、和基因呈下調表達,差異倍數在1.9~4.4之間。

圖2 高堿脅迫下凡納濱對蝦差異表達基因火山圖

a:腸道組織差異基因火山圖;b:鰓組織差異基因火山圖灰色為非顯著性差異的基因,紅色為顯著上調表達基因,綠色為顯著下調表達基因。

a: The volcanic plot of the differentially expressed genes in intestine; b: The volcanic plot of the differentially expressed genes in gills; The gray means non-significant different genes, the red and green means a significant different genes, red means the up-regulated genes, and green means down-regulated genes.

3 討論

3.1 長期高堿脅迫下凡納濱對蝦轉錄組分析

長期高堿脅迫下,凡納濱對蝦腸道中差異基因主要富集在糖代謝、碳水化合物、膽汁分泌等消化吸收相關通路以及細胞凋亡等免疫相關通路,鰓中差異基因主要富集在谷胱甘肽代謝等氮代謝相關通路以及碳酸氫根轉運等離子轉運相關通路。鰓和腸道是凡納濱對蝦酸堿調節(jié)、滲透調節(jié)和生長調控的重要器官。鰓是水生動物特有的呼吸器官,在氣體交換、滲透壓平衡和氨氮排泄等方面發(fā)揮重要作用(龔仕玲等, 2019)。腸道在機體的生長調節(jié)、營養(yǎng)代謝以及免疫防御等方面起到重要作用。研究表明,高pH脅迫會影響腸道組織的消化酶活性和抗氧化酶活性(Duan, 2019)。因此,本研究以選育凡納濱對蝦的鰓和腸道組織作為實驗材料,通過高通量測序技術分析其在高堿脅迫和正常堿度條件下轉錄水平的差異。高碳酸鹽堿度會影響對蝦的生長和存活(么宗利等, 2010、2012; 柳飛等, 2016),而青海湖裸鯉()、瓦氏雅羅魚()、尼羅羅非魚()等魚類在高堿環(huán)境下,其體內會積累氨氮(衣曉飛等, 2017; 徐悅等, 2021; 吳俊偉等, 2016)。本研究中,凡納濱對蝦腸道消化吸收、鰓氮代謝等通路富集了大量差異表達基因,推測其在應對長期高堿脅迫時,生長和氮廢物排泄受到較大影響。同時,凡納濱對蝦細胞凋亡相關通路的變化提示,脅迫環(huán)境可能會破壞其免疫防御系統(tǒng),導致免疫抑制(Xiao, 2019)。

3.2 高堿環(huán)境下凡納濱對蝦相關基因表達

本研究發(fā)現,在應對長期高堿脅迫時,鰓組織中等離子轉運基因和氨轉運基因表現為上調模式,而等基因表現為下調模式。凡納濱對蝦應對高堿脅迫的響應機制較為復雜,當其暴露在高堿環(huán)境中時,堿性水環(huán)境中HCO3–、CO32–等離子可直接腐蝕對蝦鰓和其他表面暴露部位,造成器質性損傷,破壞其離子交換體系,進而影響對蝦的存活。高堿度水體中較高濃度的CO32–、HCO3–導致水生動物體內攝入過多的HCO3–,同時,外界環(huán)境的高pH會抑制一些離子交換(如Na+/H+、Cl–/HCO3–等),HCO3–大量累積,造成水生動物體內酸堿平衡遭到破壞,最終導致持續(xù)性堿中毒(Yao, 2015)。本研究中,鰓中相關基因表達上調,有利于高堿環(huán)境下凡納濱對蝦維持體內離子平衡,而低表達的碳酸酐酶則有助于降低體內HCO3–含量,從而維持酸堿平衡。脊尾白蝦中3種碳酸酐酶()在鹽堿水中響應高堿脅迫分子機制的研究也發(fā)現,和在高堿環(huán)境中具有重要調節(jié)能力,對高堿環(huán)境下對蝦的存活發(fā)揮重要作用,為對蝦的存活爭取了時間(Ge, 2019)。研究表明,高堿環(huán)境會影響水生動物氨氮的排泄,魚類可以通過上調、基因增加氨的排泄(衣曉飛等, 2017)。本研究發(fā)現,凡納濱對蝦鰓中表達上調,推測其可能參與了長期高堿脅迫下氨排泄。甲殼類動物外殼由大量Ca2+化合物構成,甲殼類動物在蛻皮前期會將外殼中的部分Ca重新吸收,但蛻皮后仍需從食物或者通過鰓組織從水體中獲取Ca (董少帥等, 2005)。在長期高堿環(huán)境下,由于Ca2+的流失,蛻殼周期延長,AW組在養(yǎng)殖過程中的蛻殼率較低。本研究發(fā)現,在鰓中表達下調,而這一基因在調控果蠅() 蛻皮變態(tài)發(fā)育上有著重要的協(xié)同作用(Fletcher, 1995),推測其在高堿脅迫下參與對蝦蛻殼調控過程。此外,本研究發(fā)現,鰓部等能量代謝基因表達下調,推測在高堿脅迫下,對蝦能量消耗較大,通過降低能量消耗維持其基本生命活動。對蝦耐堿脅迫是一個復雜的過程,涉及生理、生化及遺傳多個方面。因此,蝦類對高碳酸鹽堿度的抵抗能力不僅是單個耐受基因的啟動和識別,更重要的是在整個生理過程中多個基因的相互作用。

圖3 高堿脅迫下凡納濱對蝦腸道、鰓組織差異基因前30 GO富集分析

a:腸道組織差異基因GO富集;b:鰓組織差異基因GO富集

a: GO enrichment terms of differentially expressed genes in intestine tissue; b: GO enrichment terms of differentially expressed genes in gills tissue

圖4 高堿脅迫下凡納濱對蝦腸道和鰓差異表達基因KEGG富集分析氣泡圖

a:腸道差異表達基因KEGG富集分析;b:鰓差異表達基因KEGG富集分析值大小用點的顏色來表示,-value越小則顏色越接近紅色,每個通路下包含差異基因的多少用點的大小來表示。

a: KEGG enrichment results of differentially expressed genes in intestine; b: KEGG enrichment results of differentially expressed genes in gills. The-value is represented by the color of dots. Red color indicates small-value. The number of differential genes contained in each pathway is represented by the size of dots.

綜合轉錄組和定量PCR實驗結果顯示,凡納濱對蝦表現出較強的高堿適應性,可能是通過下調鰓中的表達補償體內堿中毒,上調氨轉運蛋白防止氨在體內積累,上調相關基因維持體內滲透平衡而得到的結果;蛻皮激素誘導蛋白()顯著下調,推測其蛻皮功能受到影響。本研究通過對凡納濱對蝦鰓和腸道進行轉錄組分析,尋找高堿環(huán)境下差異表達基因,為后續(xù)高堿環(huán)境下凡納濱對蝦的選育及良種培育提供了理論基礎。

圖5 高堿脅迫下凡納濱對蝦鰓組織差異基因qRT-PCR驗證

ANDERS S, HUBER W. Differential expression analysis for sequence count data. Genome Biology, 2010, 11: R106

CHANG Y M, ZHAO X F, LIEW H J. Effects of bicarbonate stress on serum ions and gill transporters in alkali and freshwater forms of Amur ide (). Aquatic Physiology, 2021, 12(5): 676–696

DONG S S, DONG S L, WANG F,. The effect of Ca2+concentration on the growth of juvenile.Journal of Fisheries of China, 2005, 29(2): 211–215 [董少帥, 董雙林, 王芳, 等. Ca2+濃度對凡納濱對蝦稚蝦生長的影響. 水產學報, 2005, 29(2): 211–215]

DUAN Y F, WANG Y, LIU Q S. Changes in the intestine barrier function ofin response to pH stress. Fish and Shellfish Immunology, 2019, 88(3): 142–149

FLETCHER C, THUMMEL C S. TheE74 gene is required for the proper stage- and tissue-specific transcription of ecdysone-regulated genes at the onset of metamorphosis. Development, 1995, 121(5): 1411–1421

GE Q Q, LI J, WANG J J,. Characterization, functional analysis, and expression levels of three carbonic anhydrases in response to pH and salinealkaline stresses in the ridgetail white prawn. Cell Stress and Chaperones, 2019, 2(3): 212–224

GONG S L, XIE D M, LI Y W,. Cadmium exposure induces histological damage, oxidative stress and immune response in yellow catfish. Acta Hydrobiologica Sinica, 2019, 43(2): 340–347 [龔仕玲, 謝冬梅, 李英文, 等. 鎘暴露誘導黃顙魚鰓的組織學損傷、氧化應激和免疫反應. 水生生物學報, 2019, 43(2): 340–347]

GRABHERR M G, HAAS B J, YASSOUR M,. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011, 29(7): 644– 652

HAO D C, LUAN S, CAO B X,. Genetic parameters of survival of juvenile families ofduring desalination and culture stages. Progress in Fishery Sciences, 2018, 39(1): 9096 [郝登春, 欒生, 曹寶祥, 等. 凡納濱對蝦家系幼蝦淡化和養(yǎng)殖階段存活性狀遺傳參數估計. 漁業(yè)科學進展, 2018, 39(1): 9096]

HUANG Y C, AI H S, PAN Z C,. Establishment and WSSV resistant characteristics of selective breeding families for resistance to the white spot syndrome virus of. Journal of Fisheries of China, 2013, 37(3): 359– 366 [黃永春, 艾華水, 潘忠誠, 等. 凡納濱對蝦抗WSSV選育家系的建立及其抗病特性. 水產學報, 2013, 37(3): 359–366]

JING F T, PAN L Q, HU F W. The immune response of white shrimpto the change of temperature. Periodical of Ocean University of China (Natural Science), 2006, 36(S1): 40–44 [景福濤, 潘魯青, 胡發(fā)文. 凡納濱對蝦對溫度變化的免疫響應. 中國海洋大學學報(自然科學版), 2006, 36(增刊): 40–44]

KANEHISA M, ARAKI M, GOTO S,. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 2008, 36(3): 480–484

KIM D, LANGMEAD B, SALZBERG S L. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 2015, 12(4): 357–362

KONG J, LUAN S, LUO K,. Genetic evaluation for body weight and survival of Pacific white shrimp () at different salinity. Journal of Fisheries of China, 2017, 41(4): 573–578 [孔杰, 欒生, 羅坤, 等. 不同鹽度下凡納濱對蝦生長和存活性狀遺傳評估. 水產學報, 2017, 41(4): 573–578]

LI M D, LI J T, SHI K P,. Estimation of heritability and genetic correlation of saline-alkali tolerance in. Progress in Fishery Sciences, 2021, 42(1): 117–123 [李明棟, 李吉濤, 史鯤鵬, 等. 脊尾白蝦耐鹽堿性狀遺傳力和遺傳相關的估計. 漁業(yè)科學進展, 2021, 42(1): 117–123]

LIU F, LI J, LI J T,. Effect of carbonate alkalinity stress on the survival, growth, reproduction and immune enzyme activities of. Journal of Fishery Sciences of China, 2016, 23(5): 1137–1147 [柳飛, 李健, 李吉濤, 等. 碳酸鹽堿度對脊尾白蝦生存、生長、繁殖及免疫酶活性的影響. 中國水產科學2016, 23(5): 1137– 1147]

SCHMITTGEN T D, LIVAK K J. Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols, 2008, 3(6): 1101–1108

SIMS D, SUDBERY I, ILOTT N E,. Sequencing depth and coverage: Key considerations in genomic analyses. Nature Reviews Genetics, 2014, 15(2): 121–132

TANG S J, LI S F, ZHAO J L,. Heritability analysis of the late selection generations of Nile Tilapia () new gift strain using microsatellites. Transactions of Oceanology and Limnology, 2018, 48(5): 171–174 [唐首杰, 李思發(fā), 趙金良, 等. “新吉富”羅非魚選育后期世代遺傳潛力的微衛(wèi)星分析, 海洋湖沼通報, 2018, 48(5): 171–174]

TRAPNELL C, WILLIAMS B A, PERTEA G. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 2010, 28(5): 511–515

WU J W, ZHAO J L, ZHAO Y,. Effects of high carbonate alkalinity stress on changes in ammonia metabolism expression of. Journal of Fishery Sciences of China, 2016, 23(6): 1290–1299 [吳俊偉, 趙金良, 趙巖, 等. 高碳酸鹽堿脅迫對尼羅羅非魚氨代謝基因表達變化的影響. 中國水產科學, 2016, 23(6): 1290–1299]

XIAO J, LI Q Y, TU J P,. Stress response and tolerance mechanisms of ammonia exposure based on transcriptomics and metabolomics in. Ecotoxicology and Environmental Safety, 2019, 180(5): 491–450

XU Y, MI B H, ZHAO X F,. Effects on alkalinity stress on blood biochemical indices. Chinese Journal of Fisheries, 2021, 34(3): 17–21 [徐悅, 米博瀚, 趙雪飛, 等. 碳酸鹽脅迫對瓦氏雅羅魚血液中部分生理生化指標的影響, 水產學雜志, 2021, 34(3): 17–21]

YAO Z L, LAI Q F, HAO Z R,, Carbonic anhydrase 2-like and Na+-K+-ATPase a gene expression in medaka () under carbonate alkalinity stress. Fish Physiology and Biochemistry, 2015, 41(6): 1491–1500

YAO Z L, WANG H, ZHOU K,. Effects of water carbonate alkalinity and pH on survival rate of post larva. Chinese Journal of Ecology, 2010, 29(5): 945– 950 [么宗利, 王慧, 周凱, 等. 碳酸鹽堿度和pH值對凡納濱對蝦仔蝦存活率的影響. 生態(tài)學雜志, 2010, 29(5): 945–950]

YAO ZL, YING CQ, ZHOU K,. Gene expression profiles ofin response to carbonate alkalinity stress. Journal of Fishery Sciences of China, 2012, 19(1): 1– 12 [么宗利, 應成琦, 周凱, 等. 碳酸鹽堿度脅迫下凡納濱對蝦基因的差異表達. 中國水產科學, 2012, 19(1): 1– 12]

YI X F, LAI Q F, SHI J Q,. Nitrogenous waste excretion and gene expression of nitrogen transporter inin high alkaline environment. Journal of Fishery Sciences of China, 2017, 24(4): 681–689 [衣曉飛, 來琦芳, 史建全, 等. 高堿環(huán)境下青海湖裸鯉氮廢物排泄及相關基因的表達規(guī)律. 中國水產科學, 2017, 24(4): 681–689]

YOUNG M D, WAKEFIELD M J, SMYTH G K,. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biology, 2010, 11: R14

ZHANG T S. Analysis of animal models and estimation of genetic parameters inbreeding. Doctoral Dissertation of Ocean University of China, 2010, 13–17 [張?zhí)鞎r. 中國對蝦()育種的模型分析與遺傳參數評估. 中國海洋大學博士研究生學位論文, 2010, 13–17]

ZOU H, SUN J, YU F,. Effect of cadmium on lysosomes in BRL 3A cells. Chinese Veterinary Science, 2019, 49(12): 1602–1608 [鄒輝, 孫建, 于凡, 等. 鎘暴露對BRL3A細胞溶酶體的影響. 中國獸醫(yī)科學, 2019, 49(12): 1602–1608]

Transcriptomic Analysis of Gene Expression ofduring Long-Term Exposure to High Alkaline Water

WANG Xujiang1,2, YAO Zongli2①, LAI Qifang2, YU Mingchao3, LI Xincang2, GAO Pengcheng2, ZHOU Kai2, CUI Qingman1, LIU Yimeng2, SUN Zhen2, LI Yan2

(1. School of Oceanography and Environment, Tianjin University of Science and Technology, Tianjin 300457, China; 2. Key Laboratory of Aquaculture on Saline-Alkaline Land, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Fishery Engineering Technology Research Center for Saline-Alkaline Waters (Shanghai), Shanghai 200090, China; 3. Tongwei Co, LTD, Chengdu, Sichuan 610093, China)

The total saline-alkaline land area in China is approximately 99.13 million hectares, distributed throughout northern China, coastal areas, and areas along the Huanghe River. About 45.87 million hectares of saline-alkaline water areas are spread around these lands, most of which are athalassic waters characterized by a high pH value above 8.8, associated with high-carbonate alkalinity and various types of ions imbalances. The saline-alkaline land and water cannot be directly used for agriculture, and most of them are arid. The development of aquaculture in saline-alkaline land is not only beneficial to expanding the aquaculture area but also can restore the saline-alkaline soil, which is of great significance to food security and ecological restoration. Saline-alkaline aquaculture is one of the main inland aquaculture models developed in the past ten years. With the maturity of aquaculture technologies, the saline-alkaline aquaculture area has expanded year by year, which has brought earnings to local farmers. China has abundant saline-alkaline water resources. The high pH and high-carbonate alkalinity of these waters restrict the survival, growth, and reproduction of aquatic animals.is highly resistant to stress and has a certain tolerance to saline-alkaline water. Under short-term saline-alkaline stress, the expression of the carbonic anhydrase (),Na/K-ATPase, and other ion-regulated genes ofwere induced, and the acid-base and osmolality balance were determined by strengthening ion regulation. At present, relatively few studies on gene regulation ofunder long-term stress have been performed. Althoughfarming has been successful in saline-alkaline water, the survival rate is unstable, and there are few reports on the selective breeding oftolerant to salinity and alkalinity. Through independent innovation, a family-based "multi-trait compound breeding technology for aquatic animals" has been established in China. These techniques have laid a good foundation for developing improvedstrains. To effectively utilize saline-alkaline water resources, it is urgent to conductsalt-alkali-tolerant breeding and promote the healthy development of the saline-alkaline aquaculture industry.has strong environmental adaptability and relatively high tolerance to saline-alkaline water. It is one of the main species of saline-alkaline aquaculture. However, its survival rate in high pH and high-alkaline environments is not stable. To explore the response mechanism to long-term high-alkaline stress,was exposed to low-alkaline water as the control group (LSW, carbonate alkalinity of 3 mmol/L, salinity of 6, pH of 8.1) and to high-alkaline stress (AW, carbonate alkalinity of 10 mmol/L, salinity of 6, pH of 8.8) for 42 days. The intestine and gill ofraised for 42 days were used as the experimental materials. Transcriptome sequencing was performed using the Illumina platform. After splicing analysis and gene annotation, the differentially expressed genes and regulatory pathways regulated under high-alkaline stress were screened and analyzed, with further verification by qRT-PCR. The results showed 243 differentially expressed genes in both tissues, of which 98 were up-regulated and 145 were down-regulated. The differentially expressed genes in the intestine were enriched for glucose metabolism, carbohydrate digestion and absorption, bile secretion, ABC transmembrane transport, and tight junction related pathways. The differentially expressed genes in gills were enriched for glutathione metabolism, bicarbonate transport, arginine synthesis, sugar metabolism, and ion transport related pathways. The ten most significant differentially expressed genes were further studied and verified by qRT-PCR. Carbonic anhydrase (,), ecdysone-inducible protein (), and-galactosyltransferase () genes in gills were down-regulated. However, the expression ofNa/K-ATPase-α(), Na+/K+transporting ATPase interacting (), ammonia transporter (), and malate dehydrogenase () were up-regulated under high-alkaline stress. The transcriptome expression pattern and qRT-PCR results were consistent. We speculated that these genes may be involved in the shrimp stress response to high-alkaline stress.showed a relatively strong high-alkaline tolerance, which may be compensated by down-regulating the expression ofto prevent alkalosis, up-regulatingto prevent ammonia accumulation and-related genes to maintain the osmotic balance. The ecdysone function was probably affected as thegene was down-regulated. This study provides basic data for further analyzing the physiological response mechanisms ofunder long-term highly alkaline stress.

; Transcriptome; Carbonate alkalinity; Differential expression genes

YAO Zongli, E-mail: yaozl@ecsf.ac.cn

10.19663/j.issn2095-9869.20220113001

S603.4

A

2095-9869(2022)04-0022-11

*國家重點研究計劃(2019YFD0900404)和中國水產科學研究院基本科研業(yè)務費(2021XT0401; 2020TD52)共同資助 [This work was supported by the National Key Research Program (2019YFD0900404), and Central Public-Interest Scientific Institution Basal Research Fund, CAFS (2021XT0401; 2020TD52)]. 王旭江,E-mail: 2694786690@qq.com

么宗利,研究員,E-mail: yaozl@ecsf.ac.cn

2022-01-13,

2022-04-01

http://www.yykxjz.cn/

王旭江, 么宗利, 來琦芳, 于明超, 李新蒼, 高鵬程, 周凱, 崔青曼, 劉一萌, 孫真, 李燕. 長期高堿脅迫下凡納濱對蝦基因表達差異研究. 漁業(yè)科學進展, 2022, 43(4): 22–32

WANG X J, YAO Z L, LAI Q F, YU M C, LI X C, GAO P C, ZHOU K, CUI Q M, LIU Y M, SUN Z, LI Y. Transcriptomic analysis ofduring long-term exposure to high alkaline water. Progress in Fishery Sciences, 2022, 43(4): 22–32

(編輯 馮小花)

猜你喜歡
對蝦測序腸道
對蝦養(yǎng)殖弱勢群體的管理
對蝦吃料慢的原因分析和處理
新一代高通量二代測序技術診斷耐藥結核病的臨床意義
宏基因組測序輔助診斷原發(fā)性肺隱球菌
生物測序走在前
人體腸道內竟有超14萬種病毒
要想長壽,得先“腸壽”
要想長壽,得先“腸壽”
基因測序技術研究進展
蝦:蹦蹦跳跳的美味(三)
蚌埠市| 濉溪县| 合水县| 高邑县| 三江| 万盛区| 长泰县| 元朗区| 宜都市| 新平| 宝丰县| 镇坪县| 左权县| 北安市| 克山县| 岳阳市| 新津县| 永川市| 华宁县| 丹巴县| 自治县| 南雄市| 同德县| 贡觉县| 惠州市| 余江县| 多伦县| 静宁县| 老河口市| 鄂伦春自治旗| 邯郸县| 潮州市| 科技| 绿春县| 滦平县| 寿光市| 旬阳县| 武强县| 北安市| 招远市| 莱州市|