劉玉紅,劉書赫,鄧仕晗,李厚存,馮登雪
線驅(qū)動(dòng)仿海豹尾部推進(jìn)機(jī)構(gòu)設(shè)計(jì)與運(yùn)動(dòng)學(xué)分析
劉玉紅,劉書赫,鄧仕晗,李厚存,馮登雪
(天津大學(xué)機(jī)械工程學(xué)院,天津 300072)
仿生推進(jìn)由于具有速度快、效率高、機(jī)動(dòng)性好、噪聲污染低等優(yōu)勢(shì),在水下機(jī)器人領(lǐng)域備受青睞.基于對(duì)海豹尾部生物結(jié)構(gòu)及運(yùn)動(dòng)特征的研究,提出并設(shè)計(jì)了一種基于線驅(qū)動(dòng)原理并結(jié)合柔性鉸鏈機(jī)構(gòu)的仿海豹尾部擺動(dòng)推進(jìn)機(jī)構(gòu).該機(jī)構(gòu)包括脊椎框架單元、骨盆單元、脛骨單元以及柔性尾鰭單元,其關(guān)節(jié)采用柔性鉸鏈,并通過兩側(cè)彈性元件的對(duì)稱布置,可實(shí)現(xiàn)由單一舵機(jī)驅(qū)動(dòng)仿生推進(jìn)機(jī)構(gòu)實(shí)現(xiàn)周期性擺動(dòng)動(dòng)作.采用D-H參數(shù)法對(duì)推進(jìn)機(jī)構(gòu)進(jìn)行運(yùn)動(dòng)學(xué)分析,確定了推進(jìn)機(jī)構(gòu)尾鰭末端點(diǎn)在世界坐標(biāo)系中的坐標(biāo),研究了仿生推進(jìn)機(jī)構(gòu)等效連桿擺角參數(shù)(擺動(dòng)角、擺動(dòng)幅值、初始角)對(duì)推進(jìn)機(jī)構(gòu)擺動(dòng)幅值的影響規(guī)律.根據(jù)運(yùn)動(dòng)學(xué)分析結(jié)果,采用序列二次規(guī)劃法對(duì)設(shè)計(jì)的仿生推進(jìn)機(jī)構(gòu)等效連桿擺角參數(shù)進(jìn)行了優(yōu)化,獲得了與海豹尾部擺動(dòng)幅值一致的最佳運(yùn)動(dòng)參數(shù);在與海豹相同的游動(dòng)速度下,推進(jìn)機(jī)構(gòu)尾鰭末端點(diǎn)的擺動(dòng)軌跡與生物海豹的擺動(dòng)軌跡基本吻合,驗(yàn)證了優(yōu)化分析的正確性.在空氣中進(jìn)行原理樣機(jī)擺動(dòng)實(shí)驗(yàn),通過攝像機(jī)連續(xù)拍攝的運(yùn)動(dòng)序列圖,獲得了實(shí)驗(yàn)樣機(jī)尾鰭的擺動(dòng)軌跡擬合曲線,與優(yōu)化后的理論曲線對(duì)比,進(jìn)一步驗(yàn)證了仿海豹尾部推進(jìn)機(jī)構(gòu)設(shè)計(jì)與分析的正確性.
仿海豹尾部推進(jìn)機(jī)構(gòu);線驅(qū)動(dòng);柔性鉸鏈;運(yùn)動(dòng)學(xué)分析;D-H參數(shù)法
水下滑翔機(jī)[1]作為一種新型水下機(jī)器人,具有低能耗、長(zhǎng)續(xù)航能力、低噪聲和低成本等優(yōu)點(diǎn),但其航速低、機(jī)動(dòng)性和抗流能力差.近年來,隨著水下滑翔機(jī)應(yīng)用領(lǐng)域的擴(kuò)大,對(duì)其運(yùn)動(dòng)性能,尤其是對(duì)機(jī)動(dòng)性和抗流能力提出了更多和更高需求.當(dāng)前的解決方案多為在水下滑翔機(jī)尾部加裝螺旋槳推進(jìn)器[2-4],但螺旋槳的高能耗、大噪音對(duì)水下滑翔機(jī)原有優(yōu)勢(shì)有所損傷.由于仿生推進(jìn)具有高速、高效、靈活、低噪等特點(diǎn)[5],因此,本文研究將仿生推進(jìn)與水下滑翔機(jī)融合,以提升其運(yùn)動(dòng)性能.
仿生推進(jìn)的研究可追溯至1926年,Breder等[6]根據(jù)魚類在推進(jìn)時(shí)所使用的部位不同,將魚類的運(yùn)動(dòng)方式分為身體-尾鰭模式(body and caudal fin,BCF)與中央鰭/對(duì)鰭模式(median and/or paired fin,MPF).BCF模式是大多數(shù)魚類所采用的游動(dòng)模式,通過擺動(dòng)或波動(dòng)部分身體及尾鰭,利用水流的反作用力實(shí)現(xiàn)向前游動(dòng),在高速巡游時(shí)具有較高的游動(dòng)效率.BCF模式研究較多的是魚類仿生推進(jìn),例如,Chhabra等[7]仿照黃鰭金槍魚,研制了渦流控制無人水下航行器VCUUV,采用液壓驅(qū)動(dòng)的4關(guān)節(jié)尾鰭裝置,游動(dòng)速度可達(dá)1.2m/s,轉(zhuǎn)向速率可達(dá)75°/s;梁建宏等[8]研制了兩關(guān)節(jié)仿生水下航行器SPC-Ⅲ,外形與魚雷相近,在擺動(dòng)頻率為2Hz時(shí),通過尾鰭推進(jìn)可獲得1.1m/s的航速,最小轉(zhuǎn)彎半徑為0.75倍體長(zhǎng).除魚類外,Nakashima等[9]研制了兩關(guān)節(jié)自推進(jìn)式機(jī)器海豚,外形仿海豚流線型,尾部具有兩個(gè)關(guān)節(jié),分別用空氣馬達(dá)與彈簧驅(qū)動(dòng),最大游速可達(dá)1.2m/s,效率可達(dá)0.35.MPF模式主要以背鰭、腹鰭、胸鰭和臀鰭作為推進(jìn)部位,在低速狀態(tài)下具有較高的機(jī)動(dòng)性、穩(wěn)定性及游動(dòng)效率.Zhou等[10-11]研制了仿生蝠鲼實(shí)驗(yàn)樣機(jī)RoMan-Ⅱ,通過鰭條拍動(dòng)產(chǎn)生推進(jìn)力,可實(shí)現(xiàn)原地轉(zhuǎn)動(dòng)及后退動(dòng)作,穩(wěn)定時(shí)速度為0.5m/s.田偉程[12]研制了一款四鰭拍動(dòng)仿生海龜,可實(shí)現(xiàn)原地轉(zhuǎn)向,最大前進(jìn)速度可達(dá)1m/s.
綜上,現(xiàn)有仿生推進(jìn)研究大多面向各種魚類、海豚、海龜?shù)?,與之相比,海豹體型呈紡錘形,長(zhǎng)徑比與水下滑翔機(jī)更為接近,可通過兩片尾鰭的靈活擺動(dòng)產(chǎn)生較大推進(jìn)力,以較高的游動(dòng)速度驅(qū)動(dòng)龐大的身軀,最高游動(dòng)速度可達(dá)1.42m/s,最高效率可達(dá)0.85[13].因此,本文提出以海豹為原型的仿生設(shè)計(jì),通過對(duì)海豹尾部骨骼結(jié)構(gòu)及其擺動(dòng)規(guī)律的研究,設(shè)計(jì)仿海豹尾部結(jié)構(gòu)及運(yùn)動(dòng)規(guī)律的仿生推進(jìn)機(jī)構(gòu),分析并優(yōu)化設(shè)計(jì)的仿生推進(jìn)機(jī)構(gòu)參數(shù),通過實(shí)驗(yàn)驗(yàn)證了本文提出的仿生推進(jìn)機(jī)構(gòu)的合理性.
海豹屬于鰭足目海洋哺乳動(dòng)物,主要生活在南北極兩地.其身體呈紡錘型,周圍由肥厚的皮脂包裹,四肢呈鰭狀.海豹的最大身體直徑位于0.5~0.6倍體長(zhǎng)處,長(zhǎng)徑比約為3.7~4.6[13],處于海洋生物的最佳長(zhǎng)徑比范圍3~7[14]之內(nèi),具有大體積小阻力的外形優(yōu)越性.海豹在水中推進(jìn)主要依靠尾部擺動(dòng),胸鰭主要提供轉(zhuǎn)向功能[13].如圖1所示,海豹尾部主要由腰椎、骨盆、脛骨、尾鰭組成[15].其中,腰椎由脊椎和椎間盤組成,用于連接骨盆與胸腔,使骨盆可繞海豹軀體做橫向擺動(dòng)動(dòng)作.海豹股骨較短且扁平,可近似作為髖關(guān)節(jié)用以連接脛骨與骨盆.海豹尾鰭趾骨兩側(cè)較長(zhǎng),中間較短,整體呈月牙狀[15],通過踝關(guān)節(jié)連接于脛骨后方,可同時(shí)實(shí)現(xiàn)尾鰭的伸展及側(cè)向擺動(dòng)?動(dòng)作.
圖1?海豹骨骼結(jié)構(gòu)
海豹的游動(dòng)方式更接近于BCF模式.在游動(dòng)時(shí),海豹會(huì)橫向擺動(dòng)腰椎,通過骨盆振動(dòng)帶動(dòng)脛骨及尾鰭擺動(dòng),提高后肢推進(jìn)力.成年海豹游動(dòng)速度變化范圍為0.60~1.42m/s,擺動(dòng)頻率變化范圍約為0.5~1.3Hz,隨游動(dòng)速度呈線性增加.其單側(cè)尾鰭的平均擺動(dòng)幅值約為306~333mm,與游動(dòng)速度無關(guān).在腰椎的帶動(dòng)下,海豹尾部的綜合擺動(dòng)幅值約為455mm.其尾鰭尾尖的平均橫向擺動(dòng)速度隨游動(dòng)速度的增加而增加,變化范圍為0.49~0.94m/s[13].海豹尾部的整個(gè)擺動(dòng)周期可分為動(dòng)力沖程和恢復(fù)沖程(如圖2所示),兩個(gè)沖程分別約占總擺動(dòng)周期的50%[16].動(dòng)力沖程與恢復(fù)沖程的擺動(dòng)規(guī)律相同,方向相反.兩沖程起始階段,后方尾鰭由收縮狀態(tài)逐漸展開(如圖2(a)-1、圖2(b)-5所示),前方脛骨與尾鰭繞踝關(guān)節(jié)向內(nèi)做小幅度彎曲動(dòng)作(如圖2(a)-2、圖2(b)-6所示);兩沖程達(dá)到中期階段時(shí),前方尾鰭趾骨逐漸內(nèi)收,鰭面近乎弧形收縮至最小(如圖2(a)-3、圖2(b)-7所示);兩沖程結(jié)束階段,前方尾鰭完全收縮,后方尾鰭鰭面完全展開且與水平面近乎保持垂直狀態(tài)(如圖2(a)-4、圖2(b)-8所示).
圖2?海豹尾部運(yùn)動(dòng)方式
依據(jù)海豹尾部骨骼結(jié)構(gòu)及運(yùn)動(dòng)方式分析,設(shè)計(jì)的仿海豹尾部推進(jìn)機(jī)構(gòu)(以下簡(jiǎn)稱推進(jìn)機(jī)構(gòu))如圖3所示,主要包括:脊椎框架單元、骨盆單元、脛骨單元以及柔性尾鰭單元,分別對(duì)應(yīng)于海豹尾部的胸腔、骨盆、脛骨以及由趾骨支撐的月牙形尾鰭.推進(jìn)機(jī)構(gòu)的外形輪廓與海豹尾部一致,分為第1段剛性外殼體、第2段柔性外殼體以及第3段剛性外殼體,可通過第2段柔性外殼體實(shí)現(xiàn)柔性變形.
圖3?仿海豹尾部推進(jìn)機(jī)構(gòu)三維模型
由于海豹尾鰭為雙關(guān)節(jié)尾鰭,且通過尾鰭的不對(duì)稱周期性擺動(dòng)實(shí)現(xiàn)推進(jìn).因此推進(jìn)機(jī)構(gòu)具有較多的旋轉(zhuǎn)關(guān)節(jié).在關(guān)節(jié)連接上,若采用傳統(tǒng)鉸接機(jī)械結(jié)構(gòu),則在裝配時(shí)會(huì)產(chǎn)生裝配間隙,增加機(jī)構(gòu)的摩擦損耗,降低機(jī)械效率,并且難以實(shí)現(xiàn)海豹尾部柔順的擺動(dòng)動(dòng)作.與之相比,柔性機(jī)構(gòu)結(jié)構(gòu)簡(jiǎn)單、無配合間隙、無摩擦與磨損,可通過彈性變形實(shí)現(xiàn)能量的存儲(chǔ)與轉(zhuǎn)化[17].因此,本文提出一種線驅(qū)動(dòng)與柔性鉸鏈相結(jié)合的仿生推進(jìn)機(jī)構(gòu),其關(guān)節(jié)采用柔性鉸鏈機(jī)構(gòu),通過兩側(cè)彈性元件的對(duì)稱布置,僅通過單一驅(qū)動(dòng)舵機(jī)即可實(shí)現(xiàn)海豹尾部的周期性擺動(dòng)動(dòng)作,如圖3(b)所示,推進(jìn)機(jī)構(gòu)整體呈對(duì)稱結(jié)構(gòu),采用線驅(qū)動(dòng),通過舵機(jī)帶動(dòng)線盤控制拉線并經(jīng)各單元的內(nèi)置定滑輪導(dǎo)向?qū)崿F(xiàn)驅(qū)動(dòng).脊椎框架單元與骨盆單元間通過“X”型交叉簧片式柔性鉸鏈[18]連接,對(duì)應(yīng)于海豹的椎間盤關(guān)節(jié).在拉線的驅(qū)動(dòng)下可使骨盆單元相對(duì)脊椎框架單元做橫向往復(fù)擺動(dòng)動(dòng)作.骨盆單元與脛骨單元間通過“Y”型交叉簧片式柔性鉸鏈[18]連接,對(duì)應(yīng)于海豹兩側(cè)的髖關(guān)節(jié),通過脛骨單元內(nèi)側(cè)拉線的拉緊與松弛可使脛骨單元相對(duì)骨盆單元做小幅度橫向往復(fù)擺動(dòng)動(dòng)作.柔性尾鰭單元包括踝關(guān)節(jié)及伸展尾鰭,伸展尾鰭通過踝關(guān)節(jié)連接于脛骨單元兩側(cè)后方,與海豹尾鰭相同,可實(shí)現(xiàn)繞踝關(guān)節(jié)的內(nèi)曲及隨擺動(dòng)的展弦比變化.同時(shí),伸展尾鰭設(shè)有內(nèi)置彈簧片,外側(cè)由硅橡膠包裹,在水流的作用下可實(shí)現(xiàn)與海豹尾鰭相同的單側(cè)弧形內(nèi)收動(dòng)作.
圖4?機(jī)構(gòu)驅(qū)動(dòng)原理示意
表1?仿海豹尾部推進(jìn)機(jī)構(gòu)D-H參數(shù)
Tab.1 D-H parameters of bio-inspired propulsion mechanism
由圖4幾何關(guān)系可得
由海豹運(yùn)動(dòng)特征分析知,其尾部擺動(dòng)幅值與游動(dòng)速度無關(guān),而擺動(dòng)頻率與游動(dòng)速度可近似為線性關(guān)?系[13],即
由轉(zhuǎn)換矩陣進(jìn)行機(jī)構(gòu)運(yùn)動(dòng)傳遞,即
(4)
將D-H表參數(shù)代入可得
則點(diǎn)在世界坐標(biāo)系00中的坐標(biāo)為
Tab.2?Parametersofswing angles
圖5 末端點(diǎn)D的向坐標(biāo)隨等效連桿AB擺動(dòng)角的變化
圖6?末端點(diǎn)D的向坐標(biāo)隨等效連桿BC擺動(dòng)角的變化
圖7?末端點(diǎn)D的向坐標(biāo)隨等效連桿CD擺動(dòng)角的變化
約束條件為
由幾何關(guān)系知
約束條件為
為進(jìn)一步驗(yàn)證優(yōu)化結(jié)果的正確性,根據(jù)文獻(xiàn)[13],在相同游動(dòng)速度下對(duì)推進(jìn)機(jī)構(gòu)與海豹尾部的擺動(dòng)軌跡進(jìn)行比較.已知文獻(xiàn)[13]中海豹尾部的游動(dòng)速度為1.42m/s,由式(3)可知,此時(shí)海豹尾部擺動(dòng)頻率
Tab.3 Parameters of swing angles after optimization
圖8?推進(jìn)機(jī)構(gòu)末端點(diǎn)擺動(dòng)軌跡
圖9 推進(jìn)機(jī)構(gòu)末端擺動(dòng)軌跡與海豹尾鰭末端擺動(dòng)軌跡對(duì)比(游動(dòng)速度m/s)
圖10?不同頻率下點(diǎn)D的向坐標(biāo)變化曲線
圖11 推進(jìn)機(jī)構(gòu)末端點(diǎn)與海豹尾鰭末端點(diǎn)側(cè)向擺動(dòng)速度對(duì)比
根據(jù)分析結(jié)果,設(shè)計(jì)實(shí)驗(yàn)樣機(jī)(如圖12所示),在空氣中進(jìn)行擺動(dòng)實(shí)驗(yàn).圖13所示為當(dāng)推進(jìn)機(jī)構(gòu)擺動(dòng)頻率為0.5Hz時(shí)利用攝像機(jī)連續(xù)拍攝的運(yùn)動(dòng)序列圖.由圖13可知,推進(jìn)機(jī)構(gòu)兩側(cè)尾鰭分別在1/4和3/4周期擺動(dòng)至最外側(cè)極限位置,在1/2周期和整周期時(shí)歸位至中位位置,與推進(jìn)機(jī)構(gòu)擺動(dòng)軌跡分析及海豹尾部擺動(dòng)規(guī)律一致.
圖12?推進(jìn)機(jī)構(gòu)實(shí)物
圖13?實(shí)驗(yàn)樣機(jī)的運(yùn)動(dòng)序列
圖14?實(shí)驗(yàn)樣機(jī)擺動(dòng)軌跡擬合曲線與理論曲線對(duì)比
圖15?擺動(dòng)幅值隨擺動(dòng)頻率變化曲線
通過實(shí)驗(yàn)樣機(jī)擺動(dòng)實(shí)驗(yàn),證明了推進(jìn)機(jī)構(gòu)擺動(dòng)軌跡分析的正確性以及所確定的各項(xiàng)參數(shù)的合理性,為線驅(qū)動(dòng)仿海豹尾部推進(jìn)機(jī)構(gòu)進(jìn)一步的動(dòng)態(tài)研究奠定了研究基礎(chǔ).
(4)通過實(shí)驗(yàn)樣機(jī)的擺動(dòng)實(shí)驗(yàn),驗(yàn)證了在不同擺動(dòng)頻率下,推進(jìn)機(jī)構(gòu)擺動(dòng)軌跡與理論分析一致,可基本實(shí)現(xiàn)海豹尾部擺動(dòng)動(dòng)作,驗(yàn)證了推進(jìn)機(jī)構(gòu)設(shè)計(jì)方案的合理性以及正確性.
在未來的工作中,將對(duì)所設(shè)計(jì)的線驅(qū)動(dòng)仿海豹尾部推進(jìn)機(jī)構(gòu)進(jìn)行流體仿真,探究其擺動(dòng)頻率、游動(dòng)速度、推進(jìn)力之間的關(guān)系,并通過實(shí)驗(yàn)驗(yàn)證結(jié)論的正確性.采用更換尾鰭的方式對(duì)比分析剛性尾鰭與柔性尾鰭對(duì)擺動(dòng)時(shí)產(chǎn)生推進(jìn)力的影響,同時(shí)分析影響推進(jìn)機(jī)構(gòu)機(jī)械效率的因素,驗(yàn)證仿海豹尾部推進(jìn)機(jī)構(gòu)的高效性.
[1] 何柏巖,杜金輝,楊紹瓊,等. 基于 VMD-LSSVM 的水下滑翔機(jī)深平均流預(yù)測(cè)[J]. 天津大學(xué)學(xué)報(bào)(自然科學(xué)與工程技術(shù)版),2021,54(4):388-396.
He Baiyan,Du Jinhui,Yang Shaoqiong,et al. Prediction of underwater glider depth-averaged current velocity based on VMD-LSSVM[J]. Journal of Tianjin University(Science and Technology),2021,54(4):388-396(in Chinese).
[2] Claustre H,Beguery L,Patrice P L A. SeaExplorer glider breaks two world records multisensor UUV achieves global milestones for endurance,distance[J]. Sea Technology,2014,55(3):19-22.
[3] Wood S L,Mierzwa C E. State of technology in autonomous underwater gliders[J]. Marine Technology Society Journal,2013,47(5):84-96.
[4] Alvarez A,Caffaz A,Caiti A,et al. Fòl(fā)aga:A low-cost autonomous underwater vehicle combining glider and AUV capabilities[J]. Ocean Engineering,2009,36(1):24-38.
[5] Triantafyllou M S,Triantafyllou G S. An efficient swimming machine[J]. Scientific American,1995,272(3):64-70.
[6] Breder C M. The locomotion of fishes[J]. Zoological. 1926,4:159-291.
[7] Chhabra A N K. Maneuvering and stability performance of a robotic tuna[J]. Integrative & Comparative Biology,2002,42(1):118-126.
[8] 梁建宏,鄭衛(wèi)豐,文?力,等. 兩關(guān)節(jié)仿生水下航行器SPC-Ⅲ的推進(jìn)與機(jī)動(dòng)性[J]. 機(jī)器人,2010,32(6):726-731,740.
Liang Jianhong,Zheng Weifeng,Wen Li,et al. Propulsion and maneuverability of two-joint bionic underwater vehicle SPC-Ⅲ[J]. Robot,2010,32(6):726-731,740(in Chinese).
[9] Nakashima M,Tokuo K,Ono K. Experimental study of a two-joint dolphinlike propulsion mechanism[J]. Transactions of the Japan Society of Mechanical Engineers Part B,2000,66(643):703-709.
[10] Zhou C,Low K H. Better endurance and load capacity:An improved design of manta ray robot(RoMan-II)[J]. Journal of Bionic Engineering,2010,7(Suppl):137-144.
[11] Zhou C,Low K H. Design and locomotion control of a biomimetic underwater vehicle with fin propulsion[J]. IEEE/ASME Transactions on Mechatronics,2012,17(1):25-35.
[12] 田偉程. 多鰭水下仿生機(jī)器人的結(jié)構(gòu)設(shè)計(jì)與運(yùn)動(dòng)控制[D]. 北京:北京航空航天大學(xué),2012.
Tian Weicheng. Structure Design and Motion Control of Multi-Fin Underwater Bionic Robot[D]. Beijing:Beijing University of Aeronautics and Astronautics,2012(in Chinese).
[13] Fish F E,Innes S,Ronald K. Kinematics and estimated thrust production of swimming harp and ringed seals[J]. Journal of Experimental Biology,1988(137):157-173.
[14] Davis R W. Marine Mammals[M]. New York:Academic Press,2019.
[15] Berta A,Sumach J L,Kovacs K M. Marine mammals:Evolutionary biology(2nd edition)[J]. Polar Research,2007,45(1):88.
[16] Gordon K R. Locomotor behaviour of the walrus(odobenus)[J]. Journal of Zoology,2010,195(3):349-367.
[17] Howell L L. Compliant Mechanisms[M]. New York:John Wiley & Sons,2001.
[18] 余躍慶,李清清. 一種新型柔性鉸鏈的設(shè)計(jì)、制作與試驗(yàn)研究[J]. 機(jī)械工程學(xué)報(bào),2018,54(13):79-85.
Yu Yueqing,Li Qingqing. Design,manufacture and experimental research of a new type of flexible hinge[J]. Chinese Journal of Mechanical Engineering,2018,54(13):79-85(in Chinese).
Design and Kinematics Analysis of a Wire-Driven Propulsion Mechanism Inspired by the Seal Aft Fin
Liu Yuhong,Liu Shuhe,Deng Shihan,Li Houcun,F(xiàn)eng Dengxue
(School of Mechanical Engineering,Tianjin University,Tianjin 300072,China)
Bionic propulsions have attracted much attention due to their advantages of fast speed,high efficiency,good maneuverability,and low noise pollution. Based on the research on the biological structure and movement characteristics of the seal aft fin,a swing propulsion mechanism is proposed and designed based on the wire-drivenprinciple and a flexible hinge mechanism. The mechanism includes a spine frame unit,a pelvis unit,a tibia unit and a flexible seal aft fin unit. The joints adopt flexible hinges,and with the symmetrical arrangement of elastic elements on both sides,the bionic propulsion mechanism can be driven by a single steering gear to realize periodic swing. The D-H parameter method was used to conduct the kinematics analysis for the bio-inspired propulsion mechanism,and the coordinates of the seal aft fin endpoint in the absolute coordinate system were determined. The effect of the swing angle parameters(swing angle,swing amplitude and initial angle)of the equivalent connecting rod of the bionic propulsion mechanism on the swing amplitude of the propulsion mechanism is studied. According to the results,the swing angles of the equivalent connecting rods were optimized by the sequential quadratic programming method,and the best motion parameters consistent with the swing amplitude of the seal aft fin were obtained. At the same swimming speed as the seal,the swing trajectory of the seal aft fin unit basically matches that of the biological seal,which verifies the correctness of the optimization analysis. The swing experiment of the prototype is carried out in the air. The swing trajectory of the experimental prototype is obtained through the motion sequence diagrams continuously taken by the camera,which is compared with the optimized theoretical trajectory. The correctness of the design and analysis of the bio-inspired propulsion mechanism inspired by the seal aft fin was further verified.
propulsion mechanism inspired by the seal aft fin;wire-driven;flexible hinge;kinematics analysis;D-H parameter method
10.11784/tdxbz202009012
TH113.2
A
0493-2137(2022)02-0133-10
2020-09-04;
2020-12-28.
劉玉紅(1971—??),女,博士,教授.Email:m_bigm@tju.edu.cn
劉玉紅,yuhong_liu@tju.edu.cn.
國(guó)家自然科學(xué)基金資助項(xiàng)目(51675372,51721003);天津市自然科學(xué)基金資助項(xiàng)目(18JCTPJC49100).
the National Natural Science Foundation of China(No. 51675372,No. 51721003),the Natural Science Foundation of Tianjin,China(No. 18JCTPJC49100).
(責(zé)任編輯:王曉燕)
天津大學(xué)學(xué)報(bào)(自然科學(xué)與工程技術(shù)版)2022年2期