国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

斯坦納-萊莫定理的λ-推廣

2022-11-14 17:07孫四周
中學(xué)數(shù)學(xué)雜志 2022年8期
關(guān)鍵詞:斯坦納平分線交點(diǎn)

孫四周

(江蘇省蘇州市吳江盛澤中學(xué) 215228)

初等幾何中有個(gè)名氣非常響的定理——斯坦納-萊莫(Steiner-Lehmer)定理[1],內(nèi)容如下:

如果一個(gè)三角形的兩條內(nèi)角平分線相等,則該三角形是等腰三角形.

歐幾里得將該結(jié)論作為定理收入了《幾何原本》,對(duì)于其證明卻只字未提.直到1840年經(jīng)萊莫(C.L.Lehmus)重新提起,斯坦納(J.Steiner)首先給出了證明,引起了數(shù)學(xué)界極大反響,從此而被稱為“斯坦納-萊莫定理”.此后百余年,全世界的各種雜志上經(jīng)??梢钥吹秸撟C這個(gè)定理的文章,至今已有接近百種證明.1980年,美國《數(shù)學(xué)教師》月刊還登載了這個(gè)定理的研究現(xiàn)狀.這個(gè)定理能夠保持如此持久的熱度,主要是因?yàn)樗稀爸ɡ怼钡奶卣?,比如:表述非常簡單,結(jié)論看似顯然而證明卻往往涉及更深刻的內(nèi)容.

有趣的是,2012年文[2]用中國古人所擅長的“割補(bǔ)求積法”在不添加任何輔助線的情況下,給出一個(gè)簡潔(也可以說是“中國化”)的證明.并引申出13個(gè)定理,拓寬了它的應(yīng)用.本文將向另一個(gè)方向出發(fā),首先把“角平分線”換成“三等分角線”,進(jìn)而給出任意等分角的推廣(本文中單字母表示角時(shí)意義如下:A=∠BAC,B=∠ABC,C=∠BCA).

1 三等分角的Steiner-Lehmer定理

圖1

證明由S△ABD+S△ACD=S△BAE+S△BCE知,

如果A>B,則①式左邊為正,右邊為負(fù);如果A

類似地,對(duì)于三等分角的另外一條分角線,Steiner-Lehmer定理也成立.即

證明同上,略.

如果改成“四等分角”“五等分角”……“n等分角”,是否還成立呢?經(jīng)研究發(fā)現(xiàn),結(jié)論是肯定的.事實(shí)上我們有更一般的推廣.

2 Steiner-Lehmer定理的λ-推廣

圖2

定理3△ABC中,D,E分別是邊CB,CA上的點(diǎn),且∠BAD=λA,∠ABE=λB,其中λ是常數(shù)且λ∈(0,1),則AD=BE的充要條件是CA=CB.

此定理的證明比較繁瑣,為了體現(xiàn)其層次性和關(guān)鍵技巧,我們先證下面的兩個(gè)引理,再將證明逐漸展開.

引理1若λ∈(0,1),A,B是△ABC的內(nèi)角,則A>B的充要條件是sinλA>sinλB.

證明只要證明當(dāng)x∈(0,π)時(shí),f′(x)>0恒成立即可.

記g(x)=sinλx-λsinx,則g′(x)=λcosλx-λcosx=λ(cosλx-cosx),因?yàn)?<λxcosx.故g′(x)>0恒成立,即g(x)在(0,π)上遞增.又g(0)=0,故當(dāng)x∈(0,π)時(shí),g(x)>0.從而知f′(x)>0恒成立,即知f(x)在(0,π)上單調(diào)遞增.證畢.

由引理1,2知,若A>B,則上式左邊為正,右邊為負(fù),矛盾;若A

3 Steiner-Lehmer定理的等價(jià)形式

圖3

在定理3中,研究線段AD與BE的交點(diǎn)S(圖3),以及由此產(chǎn)生的線段SA和SB,也是一個(gè)很有意義的課題,并且可以得到一系列有價(jià)值的結(jié)果.

定理4△ABC中,D,E分別是邊CB,CA上的點(diǎn),且∠BAD=λA,∠ABE=λB,其中λ是常數(shù)且λ∈(0,1),AD,BE的交點(diǎn)是S,則SA=SB的充要條件是AD=BE.

證明一方面,在△ABS中,SA=SB?λA=λB?A=B.另一方面,△ABC中,AD=BE?A=B(定理3).綜合即知SA=SB?AD=BE.證畢.

綜合定理2和定理4,立刻知:

定理5△ABC中,D,E分別是邊CB,CA上的點(diǎn),且∠BAD=λA,∠ABE=λB,其中λ是常數(shù)且λ∈(0,1),AD,BE的交點(diǎn)是S,則SA=SB的充要條件是CA=CB.

(1)鉆孔放樣。在確定帷幕灌漿軸線的過程中,嚴(yán)格按施工圖紙進(jìn)行測量放樣。應(yīng)用木樁對(duì)孔的位置進(jìn)行標(biāo)識(shí),合理控制樁距,相鄰樁距之間的距離控制在20m,在正式開鉆前,為了保證孔位和設(shè)計(jì)位置之間的距離≤50mm,應(yīng)用米尺再次進(jìn)行復(fù)核。

定理6△ABC的內(nèi)角平分線AD,BE的交點(diǎn)是S,若SA=SB,則CA=CB(圖3).

按照定理6的構(gòu)圖原則,我們構(gòu)造更具一般意義的圖形,可得:

圖4

根據(jù)歐幾里得第五公設(shè)知,射線AC′與BC′的交點(diǎn)C′在C的同側(cè).

(1)如果0<λ<1,則C′在△ABC的內(nèi)部,即為定理5,已證;

(2)如果λ=1,則C′與C重合,顯然;

猜你喜歡
斯坦納平分線交點(diǎn)
玩轉(zhuǎn)角的平分線
歐拉線的逆斯坦納點(diǎn)性質(zhì)初探
角平分線形成的角
多用角的平分線證題
閱讀理解
斯坦納定理的證明及應(yīng)用
借助函數(shù)圖像討論含參數(shù)方程解的情況
折疊莫忘角平分線
試析高中數(shù)學(xué)中橢圓與雙曲線交點(diǎn)的問題
Faster Approximation for Rectilinear Bottleneck Steiner Tree Problem
桐梓县| 蚌埠市| 新安县| 郓城县| 岫岩| 吉隆县| 广水市| 文安县| 调兵山市| 鲁甸县| 乐亭县| 株洲县| 平武县| 赤水市| 萨迦县| 龙里县| 临湘市| 江西省| 商水县| 青州市| 高淳县| 手游| 筠连县| 高密市| 察哈| 虞城县| 承德市| 犍为县| 新建县| 横山县| 太湖县| 雅江县| 石家庄市| 龙南县| 济源市| 湖南省| 民丰县| 天水市| 凤城市| 赤峰市| 英吉沙县|