王冰 王蘭 秦向陽
摘要:為了探討含笑內酯(MCL)緩解痛風性關節(jié)炎(GA)的潛在靶點及相關作用機制.運用網絡藥理學技術,檢索數(shù)據(jù)庫獲取MCL和GA相關靶點,篩選兩者交集靶點,構建蛋白互作圖并篩選核心靶點.進行基因本體(GO)和信號通路(KEGG)富集分析,繪制“MCL-靶點-通路-GA”網絡圖并對MCL和核心靶點進行分子對接驗證.結果共篩選出MCL相關靶點778個,GA相關靶點351個,交集靶點58個.預測TNF和IL-1Β(IL-1β)等24個靶點為MCL緩解GA的核心靶點.GO分析確定生物過程(BP)相關條目294條,細胞組分(CC)相關條目38條,分子功能(MF)相關條目57條.KEGG分析得到105條信號通路,涉及炎癥、代謝、感染及腫瘤等多種相關通路.分子對接結果表明MCL可通過氫鍵與TNF和IL-1Β(IL-1β)等核心靶點緊密結合,其中MCL與IL-1Β(IL-1β)結合最緊密.初步預測了MCL緩解GA的核心靶點及涉及的生物學過程和信號通路,并進行了分子對接驗證,為進一步體內外實驗提供了思路.
關鍵詞:網絡藥理學; 分子對接; 含笑內酯; 痛風性關節(jié)炎
中圖分類號:R285.5文獻標志碼: A
Study on mechanism of micheliolide in alleviating gouty arthritis based on
network pharmacology and molecular docking technology
WANG Bing WANG Lan QIN Xiang-yang(1.School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi′an 710021, China; 2.The 986th Hospital, Xijing Hospital, The Air Force Military Medical University, Xi′an 710032, China; 3.School of Pharmacy, The Air Force Military Medical University, Xi′an 710032, China)
Abstract:To investigate the potential targets and related mechanisms of micheliolide (MCL) in alleviating gouty arthritis (GA).The network pharmacology technology was used to retrieve MCL and GA related targets,screen their intersection targets,construct protein interaction maps and screen core targets.Enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was conducted,the ″MCL-target-pathway-GA″ network diagram was drawn,and molecular docking verification of MCL and core target was conducted.Results A total of 778 MCL related targets,351 GA related targets and 58 intersection targets were screened out.Twenty-four targets? were predicted to be the core targets of MCL inalleviating GA,such as TNF,IL-1B(IL-1β) and so on.GO analysis confirmed 294 items related to biological process (BP),38 items related to cellular components (CC) and 57 items related to molecular function (MF).KEGG analysis revealed 105 signaling pathways,including inflammation,metabolism,infection and tumor.The molecular docking results showed that MCL binds tightly to the core target of TNF and IL-1B (IL-1β) by hydrogen bonding,and the MCL binds most tightly to the core target of IL-1B (IL-1β).The core targets and related biological processes and signaling pathways of MCL alleviating GA were preliminarily predicted,and molecular docking verification was carried out,providing ideas for further in vivo and in vitro experiments.
Key words:network pharmacology; molecular docking; micheliolide; gouty arthritis
0引言
痛風性關節(jié)炎(Gouty Arthritis,GA)是一種代謝性免疫疾病,機體內血尿酸水平過高引起尿酸鹽(Monosodiumurate,MSU)結晶過飽和析出,沉積于關節(jié)腔導致關節(jié)紅腫熱痛,活動受限,嚴重者還可出現(xiàn)關節(jié)畸形殘疾[1,2].隨著生活水平的提高,患病率明顯上升,已成為臨床多發(fā)?。?,4].中醫(yī)藥有著悠久的歷史和豐富的臨床經驗,中西醫(yī)結合治療GA被越來越廣泛的應用于臨床[5],療效顯著的相關藥物有待進一步研究其作用機制.
含笑內酯(Micheliolide,MCL)是一種倍半萜類的天然產物,主要從臺灣含笑(Michelia compressa)[6]、云南含笑(Michelia yunnanensis Franch)[7]、黃蘭(Michelia champaca)[6]和廣玉蘭(Magnolia grandiflora)[8,9]等木蘭科植物中提取分離得到.《中藥大辭典(第二版)》[10]和《中華本草》[11]中記載云南含笑清熱解毒,主治咽喉炎,鼻炎,結膜炎和腦漏;黃蘭祛風濕,利咽喉,主治風濕痹痛和咽喉腫痛;廣玉蘭祛風散寒,行氣止痛,主治頭痛和脘腹脹痛.近代研究表明 MCL對炎癥[12,13]和癌癥[14,15]具有良好的療效,本課題組前期研究也發(fā)現(xiàn)MCL能抑制急性腹膜炎小鼠血清中多種炎癥因子的表達,改善肺和肝損傷[16].MCL結構改良后得到的衍生物66PR可改善小鼠炎癥性腸病[17].
網絡藥理學(Network Pharmacology)由英國藥理學家Andrew L Hopkins首次提出并系統(tǒng)闡述[18].通過網絡藥理學分析可提高新藥臨床試驗的成功率,大大節(jié)約藥物開發(fā)成本[19].分子對接技術(Molecular Docking)通過計算機模型小分子配體和受體生物大分子的匹配程度,預測他們之間的相互作用,篩選出最優(yōu)構象[20].在藥物設計與篩選、藥理分析中有廣泛應用.
研究發(fā)現(xiàn)MCL可治療類風濕關節(jié)炎[21]和強直性脊柱炎[22],說明MCL對關節(jié)炎類疾病具有治療效果,本課題組進行了初步的預實驗,發(fā)現(xiàn)MCL可緩解小鼠痛風性關節(jié)炎.為了提高后期藥理實驗成功率,本研究擬采用網絡藥理學的方法初步探索含笑內酯緩解痛風性關節(jié)炎的作用機制,并結合分子對接技術進行驗證,為進一步的體內外實驗提供參考.
1材料與方法
1.1查詢與預測MCL相關靶點
在PubChem(https://pubchem.ncbi.nlm.nih.gov)數(shù)據(jù)庫中檢索MCL的2D和3D化學結構.通過TargetNet (http://targetnet.scbdd.com),Swiss Target Prediction ( http://www.swisstargetprediction.ch ),SuperPred (https://prediction.charite.de)和ChEMBL (https://www.ebi.ac.uk/chembl)數(shù)據(jù)庫預測MCL相關靶點,并用Uniport(https://www.uniprot.org/)數(shù)據(jù)庫對篩選出的靶點進行標準化.
1.2查詢與預測GA相關靶點
在DisGeNET(https://www.disgenet.org)和GeneCards (https://www.genecards.org)數(shù)據(jù)庫中輸入關鍵詞“Arthritis,Gouty”和“Gouty Arthritis”檢索GA相關靶點,并用Uniprot數(shù)據(jù)庫對篩選出的靶點進行標準化.
1.3獲取MCL-GA交集靶點
將獲取的MCL和GA相關靶點分別輸入Venny (https://bioinfogp.cnb.csic.es/tools/venny/)數(shù)據(jù)庫繪制韋恩圖,獲取兩者的交集靶點.
1.4構建蛋白互作網絡圖(PPI)及確定核心靶點
將在韋恩圖中篩選得到的交集靶點輸入String(https://string-db.org/)平臺,構建蛋白互作(Protein-Protein Interaction,PPI)網絡圖.運用Cytoscape(https://cytoscape.org/)軟件對PPI網絡圖進行美化并選出核心靶點.
1.5GO與KEGG通路富集分析
在DAVID(https://david.ncifcrf.gov/)數(shù)據(jù)庫進行核心靶點基因本位 (Gene Ontology,GO)富集分析和京都基因和基因組百科全書 (Kyoto Encyclopedia of Genes and Genomes,KEGG)通路富集分析.
1.6“化學成分-靶點-通路-疾病”網絡構建
使用Cytoscape軟件構建“MCL-靶點-通路-GA”網絡關系圖.
1.7分子對接驗證
從PDB (https://www.rcsb.org/)數(shù)據(jù)庫和ZINC (https://zinc.docking.org/) 數(shù)據(jù)庫分別下載核心靶點蛋白質結構和MCL結構.對結構進行前處理后,用AutoDock (https://autodock.scripps.edu/)軟件進行對接,并用Pymol (https://pymol.org/2/)軟件對最優(yōu)結合構象進行可視化分析.
2結果與討論
2.1MCL的2D和3D結構
將含笑內酯(micheliolide,MCL)輸入 PubChem數(shù)據(jù)庫,獲取其2D結構(圖1)和3D結構(圖2).
2.2篩選 MCL、GA相關靶點及交集靶點
從數(shù)據(jù)庫TargetNet,SuperPred,ChEMBL和Swiss Target Prediction中篩選去重后收集到與MCL相關的靶點共778個.從數(shù)據(jù)庫DisGeNET和GeneCards中篩選去重后收集到與GA相關的靶點共351個.導入Venny平臺做韋恩圖,獲取兩者交集靶點共58個(圖3).
2.3構建 PPI 網絡并確定MCL緩解GA的核心靶點將58個交集靶點提交至String數(shù)據(jù)庫,得到PPI網絡圖(圖4),該網絡共有58個節(jié)點,328條邊,平均度值(Degree)為11.3.為了更加清楚地體現(xiàn)核心靶點在PPI中的調控作用,通過Cytoscape軟件進行可視化分析,得到美化后的PPI網絡圖(圖5).根據(jù)度值大小進行排序,度值較高的則可能為核心靶點,TNF,IL-1Β(IL-1β)等24個靶點度值大于平均度值,在PPI網絡中發(fā)揮關鍵調控作用,預測為核心靶點.核心靶點及其度值如表1所示.
2.4GO功能富集分析
GO分析包括生物過程(Biological Process,BP)、細胞組分(Cellular Component,CC) 和分子功能(Molecular Function,MF)分析.共獲得BP相關條目294條,涉及細胞對脂多糖的反應,對炎癥反應的調節(jié),對細菌來源分子的反應,對含嘌呤化合物的反應,對有機磷的反應等.CC相關條目38條,涉及膜筏,膜微結構域,膜區(qū)等.MF相關條目57條,涉及RNA聚合酶II特異性DNA結合轉錄因子,DNA結合轉錄因子,藥物結合,核受體活性,配體激活轉錄因子活性等.根據(jù)富集度(Enrichment Score)篩選每項前10條繪制柱狀圖(圖6).結果顯示MCL緩解GA的機制主要與細胞受炎性刺激物刺激、生物合成過程調控、細胞周期調控等有關.其中炎癥反應是GA患者的主要問題,緩解炎癥反應是治療GA的主要方式.
2.5KEGG 信號通路分析
對MCL緩解GA的核心靶點進行KEGG分析,得到105條通路途徑,取排名靠前的30條通路做氣泡圖(圖7).前30條通路中涉及炎癥、代謝、感染及腫瘤等多種相關通路,其中涉及炎癥的主要通路有IL-17信號通路(IL-17 signaling pathway)、Nod樣受體信號通路(Nod-like receptor signaling pathway)、Toll樣受體信號通路(Toll-like receptor signaling pathway)、NF-κB信號通路(NF-kappaB signaling pathway)、TNF信號通路(TNF signaling pathway)、低氧誘導因子-1信號通路(HIF-1 signaling pathway)、血管內皮生長因子信號通路(VEGF signaling pathway)等.
2.6構建“成分-靶點-通路-疾病”網絡關系圖
為了進一步研究MCL、核心靶點、信號通路及GA之間的相互關系,將篩選的24個核心靶點和前30條信號通路導入Cytoscape軟件,構建“MCL-核心靶點-信號通路-GA”網絡圖(圖8).綠色菱形代表MCL,黃色圓圈代表核心靶點,藍色三角形代表相關信號通路,橙色正方形代表GA.灰色連線代表各點之間的作用關系,線條的數(shù)量與作用關系呈正相關.由圖可得,MCL緩解GA有多個治療靶點,同一靶點可調節(jié)多個信號通路,體現(xiàn)出MCL可多靶點和多信號通路協(xié)同緩解GA.
2.7分子對接驗證
根據(jù)GO富集分析得知炎癥反應是GA患者的主要問題,緩解炎癥反應是治療GA的主要方式.
KEGG分析得到與炎癥相關的主要通路有IL-17信號通路,Nod樣受體信號通路,Toll樣受體信號通路,NF-κB信號通路,TNF信號通路等,參與這些炎癥通路且蛋白互作度值較大的核心靶點有TNF,IL-1Β(IL-1β),CASP1,MAPK14,MMP9,PTGS2,RELA等.將這些度值大且與炎癥相關的靶點與MCL進行分子對接,以驗證預測結果的準確性.
結合能力用自由結合能大小評價,自由結合能越小,結合越緊密.對每個靶點最優(yōu)的對接構象進行可視化分析(圖9).MCL與不同靶點的最小自由結合能、氫鍵個數(shù)、結合殘基位點及氫鍵鍵長見表2所示.結果表明MCL可通過氫鍵與TNF,IL-1Β(IL-1β),CASP1,MAPK14,MMP9,PTGS2,RELA的氨基酸殘基緊密結合.MCL與IL-1Β(IL-1β)結合的氫鍵個數(shù)最多,結合能最小,結合最緊密.
白細胞介素-1β(IL-1Β,IL-1β)是促炎細胞因子家族中的重要成員,具有較強的促炎活性,是炎癥反應的重要介質[23],在痛風發(fā)病機制中發(fā)揮核心作用[24].NLRP3炎性小體是一種胞內多蛋白復合體,由Nod樣受體蛋白NLRP3,銜接蛋白ASC以及效應蛋白前體半胱天冬酶1 (pro-caspase-1)組成復合體.IL-1β的前體pro-IL-1β不具有生物活性,被半胱天冬酶1 (CASP1,Caspase-1)蛋白水解產生成熟的IL-1β后觸發(fā)炎癥反應并介導細胞焦亡[25].抑制炎癥小體NLRP3釋放IL-1β可有效緩解急性痛風的炎癥表現(xiàn)[26].Wu等[27]發(fā)現(xiàn)MCL通過調節(jié)NLRP3炎癥小體介導的細胞焦亡改善放射性腸炎.Tian等[22]發(fā)現(xiàn)MCL通過降低強直性脊柱炎模型小鼠NLRP3,caspase-1等的蛋白表達水平,調節(jié)NLRP3 / NF-κB信號通路,治療強直性脊椎炎.本研究分子對接實驗也表明MCL可與IL-1Β(IL-1β)和CASP1緊密結合,MCL與IL-1Β(IL-1β)蛋白結構中的ASN-47,ILE-71,LYS-75,GLY-73,LEU-76五個氨基酸殘基形成6個分子間氫鍵,結合緊密.預測MCL可通過抑制Nod樣受體NLRP3信號通路的IL-1Β(IL-1β),CASP1等核心靶點的表達,緩解痛風性關節(jié)炎的炎癥反應.
腫瘤壞死因子-α (TNF-α) 是細胞凋亡及免疫和炎癥反應的重要調節(jié)因子,在許多急慢性炎癥中發(fā)揮關鍵作用[28].通過調控TNF依賴的膜相關和細胞內蛋白信號復合物分子的泛素化和磷酸化[29],改善類風濕關節(jié)炎、強直性脊柱炎和克羅恩病等疾病[30].Toll樣受體4(TLR4)可參與識別疾病相關分子,激活促炎細胞因子[31].V-REL網狀內皮增生病毒癌基因同源物A(RELA)也是NF-κB通路的關鍵分子,具有調節(jié)炎癥,中性粒細胞凋亡的重要作用[32].絲裂原活化蛋白激酶(MAPK)能被多種炎性刺激激活,MAPK14也稱作p38-α,通過轉錄因子磷酸化而參與信息傳遞,調節(jié)炎癥反應[33].GA患者Toll樣受體信號通路的TLR4等受體通過識別沉積在關節(jié)處的過飽和的炎癥刺激MSU,進一步激活NF-κB信號通路,調控TNF-α等炎癥細胞因子的釋放,加速關節(jié)炎癥反應[34,35].Zhang等[36]發(fā)現(xiàn)MCL可抑制IL-1Β(IL-1β),TNF-a的分泌,影響PI3K/Akt/NF-κB通路和NLRP3炎癥小體的調控,從而緩解結核分枝桿菌誘導的炎癥反應,輔助治療結核病.Kalantary等[37] 發(fā)現(xiàn)MCL可降低TNF-α的基因表達,調節(jié)PI3K/Akt/NF-κB信號通路,對阿霉素誘導的心臟毒性具有保護作用.Lei等[38]發(fā)現(xiàn)MCL可抑制TNF-α,IL-1β,caspase-1和ROS的分泌,調節(jié)mROS/NF-κB/NLRP3信號通路,抑制脂多糖誘導的腎炎.本研究分子對接實驗也表明MCL可與TNF,MAPK14,RELA緊密結合,預測MCL可通過抑制Toll樣受體信號通路的TNF等核心靶點的表達,調節(jié)NF-κB信號通路,緩解痛風性關節(jié)炎的炎癥反應.
前列腺素內過氧化物合酶2(PTGS2)又叫環(huán)氧合酶2(COX-2),是前列腺素合成的關鍵酶,其介導的花生四烯酸代謝在炎癥性疾病中發(fā)揮著重要作用,密切參與炎癥反應[39].基質金屬蛋白酶9(MMP9)在骨發(fā)育和修復中發(fā)揮重要作用[40],也在炎癥細胞中表達并參與炎癥反應[41].白細胞介素17(IL-17)信號通路不僅參與炎癥調節(jié),還可通過誘導MMP9和COX-2,直接造成關節(jié)軟骨和滑膜破壞[42,43].Sun等[44]發(fā)現(xiàn)MCL可降低COX-2,TNF-a,IL-6和IL-1β的表達,激活IkBa/NF-κB/Akt通路,在神經炎癥相關的神經退行性疾病中發(fā)揮神經保護劑的作用.本研究分子對接實驗表明MCL可與PTGS2和 MMP9緊密結合,預測MCL可通過抑制PTGS2(COX2)等靶點的表達,參與IL-17信號通路,調控炎癥反應和軟骨細胞增殖分化與凋亡,減輕痛風性關節(jié)炎的炎癥反應和關節(jié)軟骨退化情況.
3結論
痛風性關節(jié)炎(GA)是一種炎癥性自身免疫性疾病,關節(jié)炎癥反應是GA患者的主要問題,控制炎癥反應是治療GA的可行方法.本研究借助網絡藥理學初步探索了MCL緩解痛風性關節(jié)炎的作用機制.篩選出TNF,IL-1Β(IL-1β)等24個靶點為MCL緩解GA的核心靶點,并用分子對接技術驗證了MCL可通過氫鍵與核心靶點TNF,IL-1Β(IL-1β),CASP1,MAPK14,MMP9,PTGS2和RELA的氨基酸殘基緊密結合,其中MCL與IL-1Β(IL-1β)的結合最緊密.預測到MCL緩解GA涉及炎癥、代謝、感染及腫瘤等多種相關通路,與調控炎癥相關的主要有IL-17,Nod樣受體,Toll樣受體,NF-κB和TNF信號通路等.為后續(xù)更深層次的體內外實驗研究驗證及臨床治療提供了思路及理論依據(jù).
參考文獻
[1] 徐鵬,劉樹民,于棟華,等.痛風性關節(jié)炎治療的研究進展[J].中國醫(yī)藥導報,2022,19(5):44-47.
[2] Wilson L,Saseen J J.Gouty arthritis:A review of acute management and prevention[J].Pharmacotherapy,2016,36(8):906-922.
[3] Keyer G.Gout arthritis:Pathogenesis,diagnostics and treatment[J].Deutsche Medizinische Wochenschrift,2020,145(14):991-1 005.
[4] Keller S F,Mandell B F.Management and cure of gouty arthritis[J].Rheumatic Disease Clinics of North America,2022,48(2):479-492.
[5] 鄭穎,唐紅珍.中醫(yī)藥治療痛風性關節(jié)炎臨床研究進展[J].國際中醫(yī)中藥雜志,2021,43(9):941-945.
[6] Gach K,Janecka A.α-Methylene-γ-lactones as a novel class of anti-leukemic agents[J].Anticancer Agents in Medicinal Chemistry,2014,14(5):688-694.
[7] 丁林芬,程彬,晏通,等.云南含笑果實中倍半萜類化學成分研究[J].中草藥,2017,48(13):2 608-2 613.
[8] Ding L F,Su J,Pan Z H,et al.Cytotoxic sesquiterpenoids from the leaves of Magnolia grandiflora[J].Phytochemistry,2018,155:182-190.
[9] 丁林芬,郭亞東,潘爭紅,等.荷花玉蘭葉中2個新的倍半萜[J].中草藥,2017,48(17):3 463-3 468.
[10] 南京中醫(yī)藥大學.中藥大辭典[M].2版.上海:上海科技出版社,2018.
[11] 國家中醫(yī)藥管理局《中華本草》編委會.中華本草第二冊[M].1版.上海:上海科技出版社,2006:879-895.
[12] Liu W T,Chen X W,Wang Y X,et al.Micheliolide ameliorates diabetic kidney disease by inhibiting Mtdh-mediated renal inflammation in type 2 diabetic db/db mice[J].Pharmacological Research,2019,150:104 506.
[13] Wu D M,Li J,Shen R,et al.Autophagy induced by micheliolide alleviates acute irradiation-induced intestinal injury via inhibition of the NLRP3 inflammasome[J].Frontiers in Pharmacology,2022,12:773 150.
[14] Tang X,Ding Q,Chen C,et al.Micheliolide inhibits gastric cancer growth in vitro and in vivovia blockade of the IL-6/STAT3 pathway[J].Pharmazie,2019,74(3):175-178.
[15] Viennois E,Xiao B,Ayyadurai S,et al.Micheliolide,a new sesquiterpene lactone that inhibits intestinal inflammation and colitis-associated cancer[J].Laboratory Investigation,2014,94(9):950-965.
[16] Qin X Y,Jiang X R,Jiang X,et al.Micheliolide inhibits LPS-induced inflammatory response and protects mice from LPS challenge[J].Scientific Reports,2016,6:23 240.
[17] Chen Y Z,Qin X Y,An Q X,et al.Mesenchymal stromal cells directly promote Inflammation by canonical NLRP3 and non-canonical caspase-11 inflammasomes[J].EBioMedicine,2018,32:31-42.
[18] Hopkins A L.Network pharmacology[J].Nature Biotechnology,2007,25(10):1 110-1 111.
[19] 蘇瑤,王蘭,常相娜,等.基于網絡藥理學及分子對接技術探討絞股藍防治肥胖的作用機制[J].食品工業(yè)科技,2022,43(4):12-23.
[20] 張金,王良鵬,趙佳文,等.1-苯基-1′H-螺[吲哚-3,2′-喹唑啉]-2,4′(H)-二酮及其衍生物抗炎活性及分子對接研究[J].陜西科技大學學報(自然科學版),2015,33(3):94-98.
[21] Xu H,Wang J,Wang C,et al.Therapeutic effects of micheliolide on a murine model of rheumatoid arthritis\[J\].Molecular Medicine Reports,2015,11(1):489-493.
[22] Tian Z G,Yao M,Chen J.Micheliolide alleviates ankylosing spondylitis (AS) by suppressing the activation of the NLRP3 inflammasome and maintaining the balance of Th1/Th2 via regulating the NF-κB signaling pathway[J].Annals of Translational Medicine,2020,8(16):991.
[23] Weber A,Wasiliew P,Kracht M.Interleukin-1beta (IL-1βeta) processing pathway[J].Science Signaling,2010,19(3):105.
[24] So A,Dumusc A,Nasi S.The role of IL-1 in gout:From bench to bedside[J].Rheumatology(Oxford),2018,57(suppl_1):i12-i19.
[25] Zhang J,Liu X,Wan C,et al.NLRP3 inflammasome mediates M1 macrophage polarization and IL-1β production in inflammatory root resorption[J].Journal of Clinical Periodontology,2020,47(4):451-460.
[26] Renaudin F,Orliaguet L,Castelli F,et al.Gout and pseudo-gout-related crystals promote GLUT1-mediated glycolysis that governs NLRP3 and interleukin-1β activation on macrophages[J].Annals of the Rheumatic Diseases,2020,79(11):1 506-1 514.
[27] Wu D M,Li J,Shen R,et al.Autophagy induced by micheliolide alleviates acute irradiation-induced intestinal injury via inhibition of the NLRP3 inflammasome[J].Frontiers in Pharmacology,2022,18(12):773 150.
[28] Holtmann M H,Neurath M F.Differential TNF-signaling in chronic inflammatory disorders[J].Current Molecular Medicine,2004,4(4):439-444.
[29] Varfolomeev E,Vucic D.Intracellular regulation of TNF activity in health and disease[J].Cytokine,2018,101:26-32.
[30] Holbrook J,Lara Reyna S,Jarosz Griffiths H,et al.Tumour necrosis factor signalling in health and disease[J].F1000 Research,2019,8:111.
[31] Campolo M,Paterniti I,Siracusa R,et al.TLR4 absence reduces neuroinflammation and inflammasome activation in Parkinson′s diseases in vivo model[J].Brain Behavior Immunity,2019,76:236-247.
[32] 耿云峰,杜鴻斌,劉琳琳,等.NF-κB家族成員RelA的翻譯后修飾及其生理病理作用的研究進展[J].生命科學,2020,32(5):431-438.
[33] Sanz Ezquerro J J,Cuenda A.p38 signalling pathway[J].International Journal of Molecular Sciences,2021,22(3):1 003.
[34] Liu Bryan R,Scott P,Sydlaske A,et al.Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation[J].Arthritis Rheumatology,2005,52(9):2 936-2 946.
[35] 蔣莉,周京國,青玉鳳,等.Toll樣受體2和Toll樣受體4及其信號通路在原發(fā)性痛風性關節(jié)炎發(fā)病機制中作用的研究[J].中華風濕病學雜志,2011,15(5):300-304.
[36] Zhang Q,Jiang X,He W,et al.MCL plays an anti-inflammatory role in mycobacterium tuberculosis-induced immune response by inhibiting NF-κB and NLRP3 inflammasome activation[J].Mediators of Inflammation,2017,2017:2 432 904.
[37] Kalantary Charvadeh A,Sanajou D,Hemmati Dinarvand M,et al.Micheliolide protects against doxorubicin-induced cardiotoxicity in mice by regulating PI3K/Akt/NF-kB signaling pathway[J].Cardiovascular Toxicology,2019,19(4):297-305.
[38] Lei X H,Li S T,Luo C W,et al.Micheliolide attenuates lipopolysaccharide-induced inflammation by modulating the mROS/NF-κB/NLRP3 axis in renal tubular epithelial cells[J].Mediators of Inflammation,2020,2020:3 934 769.
[39] Simon L S.Role and regulation of cyclooxygenase-2 during inflammation[J].The American Journal of Medicine,1999,106(5B):37S-42S.
[40] Burrage P S,Mix K S,Brinckerhoff C E.Matrix metalloproteinases:Role in arthritis[J].Frontiers in Bioscience,2006,11:529-543.
[41] Corry D B,Kiss A,Song L Z,et al.Overlapping and independent contributions of MMP2 and MMP9 to lung allergic inflammatory cell egression through decreased CC chemokines[J].Faseb Journal,2004,18(9):995-997.
[42] Shui X L,Lin W,Mao C W,et al.Blockade of IL-17 alleviated inflammation in rat arthritis and MMP-13 expression[J].European Review for Medical and Pharmacological Sciences,2017,21(10):2 329-2 337.
[43] Du B,Zhu M,Li Y,et al.The prostaglandin E2 increases the production of IL-17 and the expression of costimulatory molecules on γδ T cells in rheumatoid arthritis[J].Scandinavian Journal of Immunology,2020,91(5):e12 872.
[44] Sun Z,Li G,Tong T,et al.Micheliolide suppresses LPS-induced neuroinflammatory responses[J].PLOS One,2017,12(10):e0 186 592.
【責任編輯:蔣亞儒】