劉林強(qiáng) 韓笑 楊蘭 閆青地 胡偉 靳羽瑩 于潔 楊召恩 李付廣
摘要:【目的】挖掘影響棉花花色多態(tài)性的代謝物質(zhì)和候選基因。【方法】以陸地棉黃色花品種中棉所24和粉色花品系中遺紅為研究材料,取花瓣變色前后的花蕾進(jìn)行花色苷含量測定和轉(zhuǎn)錄組測序分析?!窘Y(jié)果】在開花前,中棉所24和中遺紅的花蕾顏色已表現(xiàn)出差異,隨著花蕾的發(fā)育,花色差異逐漸增大,其中天竺葵素-3-O-葡萄糖苷、矢車菊素-3-O-半乳糖苷、矢車菊素-3-O-葡萄糖苷和矢車菊素-3-O-(6''-O-丙二酰)-葡萄糖苷在中遺紅花蕾中特異性積累。對(duì)中棉所24和中遺紅花蕾中差異表達(dá)基因(differentially expressed gene, DEG)進(jìn)行聯(lián)合分析,共獲得8 790個(gè)上調(diào)表達(dá)基因和8 521個(gè)下調(diào)表達(dá)基因,它們在液泡質(zhì)子ATP酶(V型ATP酶)復(fù)合體、類黃酮生物合成過程等通路富集。進(jìn)一步分析發(fā)現(xiàn),花色苷合成相關(guān)的基因在2個(gè)材料中的表達(dá)水平并無明顯差異,而調(diào)控花色苷合成、轉(zhuǎn)運(yùn)以及液泡酸堿平衡的基因Gh_A07G083500、bHLH基因Gh_D11G130400、GST基因Gh_A07G079800和V型ATP酶基因Gh_A09G123000、Gh_A08G012100和Gh_D09G115200在中遺紅中高水平表達(dá)?!窘Y(jié)論】本研究構(gòu)建了粉花花色形成的調(diào)控通路,鑒定了與棉花花色相關(guān)的候選基因,為棉花育種提供基因資源。
關(guān)鍵詞:陸地棉;花色苷;轉(zhuǎn)錄組;花蕾
Comparison of the transcriptomes between pink flower buds and yellow flower buds in upland cotton
Liu Linqiang, Han Xiao, Yang Lan, Yan Qingdi, Hu Wei, Jin Yuying, Yu Jie, Yang Zhaoen*, Li Fuguang*
(Institute of Cotton Research, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China)
Abstract: [Objective]? This study aims to detect the metabolites and candidate genes which affect the polymorphsim of cotton flower color. [Method] Before and after petal color was changed, the flower buds of yellow flower cotton variety CCRI 24 and pink flower cotton line Zhongyihong were extracted to perform anthocyanin content detection and RNA-seq analysis. [Result] Before flowering, the color of CCRI 24 buds and Zhongyihong buds was different, and the difference was gradually increased with the development of buds. Among them, pelargonidin-3-O-glucoside, cyanidin-3-O-galactoside, cyanidin-3-O-glucoside (Kuromanin) and cyanidin-3-O-(6''-O-malonyl)-glucoside were specifically accumulated in Zhongyihong buds. A total of 8 790 up-regulated and 8 521 down-regulated genes were obtained by differentially expressed gene (DEG) analysis between CCRI 24 and Zhongyihong, which were enriched in pathways such as proton-transporting V-type ATPase complex and flavonoid biosynthesis. Further analysis showed that there was no significant difference in the expression of genes related to anthocyanin synthesis between the two materials, while Gh_A07G083500, bHLH gene Gh_D11G130400, GST gene Gh_A07G079800, and V-type ATPase genes Gh_A09G123000, Gh_A08G012100, and Gh_D09G115200 involved in regulating anthocyanin synthesis, transporting and vacuolar acid-base balance were highly expressed in CCRI 24. [Conclusion] This study demonstrated the gene expression pathway of pink flower formation, and identified several candidate genes related to the flower color of cotton, which provide genetic resources for cotton breeding.
Keywords: upland cotton (Gossypium hirsutum L.); anthocyanin; transcriptome; flower bud
花是植物重要的生殖器官,起著繁衍后代的作用?;ò昃哂胁煌伾?,能夠吸引昆蟲鳥獸幫忙傳遞花粉完成受精過程[1]。此外,花色還可以保護(hù)植物免受紫外線輻射、病原體入侵和草食動(dòng)物攝食[2]。
類胡蘿卜素、甜菜堿和類黃酮的積累導(dǎo)致植物形成不同的顏色,其中花色苷類黃酮的積累是花色形成的主要原因[3]?;ㄉ諒V泛分布在植物器官中,在位于內(nèi)質(zhì)網(wǎng)上一系列酶的催化作用下從苯丙烷類化合物衍生而來[4]。編碼花色苷合成的基因在許多植物中被廣泛分離,其可以分為兩類,一類是苯丙氨酸代謝相關(guān)基因,包括苯丙氨酸裂解酶(phenylalanine ammonia-lyase, PAL)、肉桂酸-4-羥化酶(cinnamate-4-hydroxylase, C4H)、4-香豆酸輔酶A連接酶(4-coumarate coenzyme A ligase, 4CL)、查耳酮合酶(chalcone synthase, CHS);另一類是黃酮類代謝相關(guān)基因,包括查爾酮異構(gòu)酶(chalcone isomerase, CHI)、黃烷酮3-羥化酶(flavanone 3-hydroxylase, F3H)、類黃酮 3'-羥化酶(flavonoid 3'-hydroxylase, F3'H)、二氫黃酮醇4-還原酶(dihydroflavonol 4-reductase, DFR)、花青素合酶(anthocyanidin synthase, ANS)和UDP-類黃酮糖基轉(zhuǎn)移酶(UDP-glycose flavonoid glycosyltransferase, UFGT)?;ㄉ蘸铣珊笤诠入赘孰腟-轉(zhuǎn)移酶(glutathione-S-transferase, GST)的協(xié)助下,由ATP結(jié)合盒轉(zhuǎn)運(yùn)蛋白(ATP-binding cassette transporter, ABC)將花色苷從內(nèi)質(zhì)網(wǎng)轉(zhuǎn)運(yùn)到液泡中儲(chǔ)存起來[5-6]。
研究表明,花色苷生物合成途徑的調(diào)控涉及多個(gè)轉(zhuǎn)錄因子,包括R2R3型MYB、WD40和bHLH(基本螺旋-環(huán)-螺旋,basic helix-loop-
helix)蛋白[7],這些蛋白質(zhì)共同形成三元復(fù)合物MYB-bHLH-WD40,該三元復(fù)合物與花色苷合成相關(guān)結(jié)構(gòu)基因的啟動(dòng)子結(jié)合,增強(qiáng)相關(guān)基因的表達(dá)[8]。在這些調(diào)節(jié)因子中,R2R3-MYB是引起花色改變的關(guān)鍵轉(zhuǎn)錄因子[9-10]。例如:ZmC1是植物中首個(gè)報(bào)道的MYB類轉(zhuǎn)錄因子,可調(diào)控玉米花色苷的合成[11]。隨后的系列研究發(fā)現(xiàn),MYB轉(zhuǎn)錄因子在多種植物中調(diào)控花色苷代謝過程,例如擬南芥中的AtMYB75(AT1G56650)、AtMYB90(AT1G66390)、AtMYB113(AT1G66370)和AtMYB114(AT1G66380)[12-15],水稻中的OsC1(Os06g10350)[16-17],葡萄中的VvMYBA1(VIT_202s0033g00380)和VvMYBA2(VIT_02s0033g00390)以及蘋果中的MdMYB3(MDP-0000187872)、MdMYB10(MDP0000259614)和MdMYB110a(MD17G1261000)[18-22],都屬于激活型轉(zhuǎn)錄因子,對(duì)花色苷代謝途徑具有正向調(diào)控作用。此外,抑制型MYB轉(zhuǎn)錄因子也參與花色苷的代謝調(diào)控,例如擬南芥AtMYBL2、矮牽牛PhMYB27和PhMYBx等與激活型MYB轉(zhuǎn)錄因子產(chǎn)生拮抗作用,避免花色苷的過度積累[23-24]。
棉屬(Gossypium spp.)包含50多個(gè)種,花色具有極高的多樣性,有白色、黃色、粉色和紅色等。陸地棉花色以黃色為主,開花后隨著花色苷在花瓣中的積累,花色發(fā)生改變?;ㄉ丈锖铣上嚓P(guān)基因的上調(diào)表達(dá)刺激花色苷的合成和積累,最終導(dǎo)致棉花的花色發(fā)生改變[25]。本研究從陸地棉核心資源材料中篩選獲得1個(gè)粉花材料——中遺紅,通過對(duì)花蕾中花色苷含量測定和轉(zhuǎn)錄組分析,比較粉花的中遺紅與黃花的中棉所24在花蕾變色前后花色苷類色素含量,鑒定2種材料在相同發(fā)育時(shí)期和同一材料在不同發(fā)育時(shí)期的差異表達(dá)基因(differentially expressed gene, DEG),對(duì)DEG進(jìn)行功能富集分析,并重點(diǎn)對(duì)花色苷合成、調(diào)控及轉(zhuǎn)運(yùn)相關(guān)的基因進(jìn)行分析,篩選關(guān)鍵候選基因,為深入研究棉花花色的遺傳機(jī)制提供基因資源和材料資源。
1 材料與方法
1.1 試驗(yàn)材料
本研究以陸地棉黃花品種中棉所24和粉花品系中遺紅為試驗(yàn)材料,種植于中國農(nóng)業(yè)科學(xué)院棉花研究所三亞大茅南繁基地(109°65′E, 18°34′N)。每個(gè)材料種植6行,行長5 m,行距80 cm、株距20 cm。2019年10月27日種植,次年1月中旬觀察花色變化。依據(jù)花蕾顏色變化和大小,分為變色前B1、B2和變色后A1、A2、A3、A4、A5、A6、A7、A8、A9、A10和A11共13個(gè)發(fā)育時(shí)期(圖1)。上午10:00,分別選取變色前B1時(shí)期和紅色趨于穩(wěn)定的A9時(shí)期的花蕾,5個(gè)單株的花蕾混為1個(gè)樣品,取樣后用錫箔紙包住,立即放入液氮中速凍,并置于-80 ℃超低溫冰箱保存,用于轉(zhuǎn)錄組測序和花色苷類代謝物分析。每個(gè)處理設(shè)3個(gè)生物學(xué)重復(fù)。以W-B1和W-A9分別表示中棉所24的B1和A9時(shí)期的花蕾,以P-B1和P-A9分別表示中遺紅B1和A9時(shí)期的花蕾。取B1時(shí)期的花蕾以及A9時(shí)期的花蕾、根、莖、葉,檢測基因表達(dá)情況,每個(gè)材料設(shè)3個(gè)生物學(xué)重復(fù)。
1.2 花色苷含量的測定
將花色變化前B1時(shí)期和變化后A9時(shí)期的花蕾進(jìn)行冷凍干燥和研磨。稱取100 mg粉末溶解于1.2 mL的70%(體積分?jǐn)?shù))甲醇提取液中,溶解后的樣品于4 ℃冰箱過夜,期間渦旋震蕩6次以提高提取率。浸提后于12 000? r·m-1離心10 min,經(jīng)0.22 μm微孔濾膜過濾,得到濾液,利用超高效液相色譜和串聯(lián)質(zhì)譜進(jìn)行花色苷類色素含量測定[28]。
1.3 總RNA提取及轉(zhuǎn)錄組測序
利用天根生化科技(北京)有限公司的RNA提取試劑盒(貨號(hào):DP441)提取樣品的總RNA。對(duì)獲得的總RNA進(jìn)行質(zhì)量檢測,檢測合格的樣品利用Oligo(dT)富集mRNA,并通過 Fragmentation 緩沖劑使其短片段化,以短片段mRNA合成雙鏈cDNA,純化后進(jìn)行末端修復(fù)、加堿基A、加測序接頭,進(jìn)行PCR擴(kuò)增,最后使用因美納(Illumina)NovaSeq 6000測序平臺(tái)進(jìn)行測序。
1.4 mRNA-seq數(shù)據(jù)分析
為了保證后續(xù)信息分析的可靠性,剔除原始序列中的接頭和低質(zhì)量的讀長(reads)序列,獲得高質(zhì)量的干凈序列(clean reads)。使用Hisat2[26]軟件將干凈序列比對(duì)到陸地棉TM-1的參考基因組上(G.hirsutum_TM-1_ICR, https://grand.cricaas.com.cn/),利用Stringtie軟件進(jìn)行基因表達(dá)量的分析,以TPM(transcripts per kilobase of exon model per million mapped reads,每千個(gè)堿基的轉(zhuǎn)錄每百萬映射讀取的轉(zhuǎn)錄本)對(duì)表達(dá)量進(jìn)行均一化處理,用Feature count進(jìn)行不同基因座上序列讀長數(shù)目(reads count)統(tǒng)計(jì)。
1.5 差異基因的篩選
利用R語言包DESeq2對(duì)中遺紅和中棉所24的表達(dá)基因進(jìn)行差異分析[27]。使用Benjamini Hochberg方法校正P值,以校正后的P值小于0.05和log2(FC)(fold change, 差異表達(dá)倍數(shù))絕對(duì)值大于等于1為標(biāo)準(zhǔn)篩選差異表達(dá)基因。
1.6 GO富集分析和KEGG代謝通路分析
使用perl腳本提取TM-1基因組的基因注釋,獲得DEG的功能注釋。使用BioConduct的GO.seq包,利用超幾何檢驗(yàn)進(jìn)行DEG的功能富集分析和KEGG代謝通路分析。
1.7 候選基因表達(dá)分析
利用Primer3 plus設(shè)計(jì)引物(表1),參照GenStar公司的2×RealStar Green Fast Mixture試劑盒(貨號(hào):A301-01)說明書,進(jìn)行實(shí)時(shí)定量聚合酶鏈?zhǔn)椒磻?yīng)(quantitative real-time polymerase chain reaction, qRT-PCR)檢測。擴(kuò)增體系為20 μL(1 μL cDNA,上下游引物各0.5 μL,10 μL 2× RealStar Green Fast Mixture,8.0 μL ddH2O)。反應(yīng)程序?yàn)椋?5 ℃預(yù)變性2 min,95 ℃變性15 s,60 ℃退火15 s,72 ℃延伸10 s,40個(gè)循環(huán)。以棉花Gh_D03G042200(GhHistone)為內(nèi)參基因,每個(gè)取樣時(shí)間點(diǎn)設(shè)3次生物學(xué)重復(fù),每個(gè)樣品設(shè)置3次技術(shù)重復(fù)。使用2-ΔΔCt方法進(jìn)行表達(dá)量的計(jì)算。
2 結(jié)果與分析
2.1 棉花花蕾不同發(fā)育時(shí)期的著色情況
對(duì)中棉所24和中遺紅不同發(fā)育時(shí)期的花蕾進(jìn)行調(diào)查,并根據(jù)花色變化和花蕾大小將中遺紅和中棉所24的花色差異分為變色前(B1和B2)和變色后(A1~A11)兩個(gè)階段13個(gè)時(shí)期(圖1A和1C)。在開花前(圖1A和1C)和開花當(dāng)天(圖1B),中棉所24的花蕾和花瓣均呈現(xiàn)黃色,而中遺紅的花蕾和花瓣顏色在發(fā)育過程中呈動(dòng)態(tài)變化,紅色逐漸加深。在B1和B2時(shí)期,中遺紅的花蕾和花瓣顏色與中棉所24并無明顯差別;而中遺紅花蕾和花瓣顏色自A1開始呈現(xiàn)出淺粉色,并且隨著發(fā)育進(jìn)程推進(jìn)從A1~A8時(shí)期顏色逐漸加深,A9~A11時(shí)期花蕾顏色趨于穩(wěn)定。
花色苷是棉花花蕾顯色的主要原因,花瓣中的花色苷主要可以分為矢車菊素、飛燕草素、錦葵花素、天竺葵素、矮牽牛素和芍藥花素等6大類,其中矢車菊素和天竺葵素在酸性液泡中呈現(xiàn)紅色是花瓣顯色的主要原因[29]。分別對(duì)中遺紅和中棉所24花色變化前的B1時(shí)期、快速著色期A9時(shí)期的花蕾進(jìn)行花色苷類類色素含量檢測,共檢測到11種花色苷色素(表2),在B1時(shí)期,與中棉所24花蕾相比,中遺紅花蕾中矢車菊素-3-O-(6''-O-丙二酰)-葡萄糖苷含量明顯增高,其它10種花色苷色素的含量無顯著差異;在A9時(shí)期,矢車菊素-3-O-葡萄糖苷、矢車菊素-3-O-半乳糖苷、天竺葵素-3-O-葡萄糖苷和矢車菊素-3-O-(6''-O-丙二酰)-葡萄糖苷4種花色苷類色素在中遺紅花蕾中的含量明顯高于中棉所24花蕾中的含量,表明這些色素的積累可能是粉花花色形成的主要原因。
2.2 測序數(shù)據(jù)質(zhì)量分析
經(jīng)過嚴(yán)格的質(zhì)量控制后,RNA-seq共獲得3.1億對(duì)雙末端序列,共計(jì)91.55 Gb的序列數(shù)據(jù),GC含量為43.63%~43.99%,Q20堿基均大于97.5%,Q30堿基均大于93.74%(表3),說明測序的錯(cuò)誤率較低,數(shù)據(jù)質(zhì)量符合后期數(shù)據(jù)分析的要求。
2.3 基因表達(dá)量分析
分析不同樣品生物學(xué)重復(fù)之間的皮爾遜相關(guān)系數(shù)(圖2),除了P-B1-2和P-B1-3的相關(guān)系數(shù)較低為0.86外,其他同一樣品的不同生物學(xué)重復(fù)之間具有很高相關(guān)性,相關(guān)系數(shù)均大于等于0.90;同一發(fā)育時(shí)期的不同樣品間也具有較高的相關(guān)性,相關(guān)系數(shù)均大于等于0.78。以上結(jié)果表明,試驗(yàn)測序樣品的生物學(xué)重復(fù)性好、數(shù)據(jù)可靠。此外,同一發(fā)育時(shí)期不同花色的花蕾轉(zhuǎn)錄組間的相關(guān)系數(shù)(0.78≤r≤0.99)大于同一材料不同發(fā)育時(shí)期的花蕾轉(zhuǎn)錄組間的相關(guān)系數(shù)(0.28≤r≤0.54),說明棉花花蕾生長發(fā)育對(duì)基因表達(dá)的影響遠(yuǎn)大于花色對(duì)基因表達(dá)的影響。
為了驗(yàn)證轉(zhuǎn)錄組中基因表達(dá)水平的結(jié)果,選取6個(gè)DEG進(jìn)行qRT-PCR分析。由圖3可知,qRT-PCR檢測的6個(gè)基因的表達(dá)量的變化趨勢與其在轉(zhuǎn)錄組的趨勢基本一致,兩者相關(guān)性很高(r為0.75~1.00),表明轉(zhuǎn)錄組數(shù)據(jù)較為可靠。
2.4 差異表達(dá)基因的篩選
在4個(gè)測序樣品間共檢測出17 311個(gè)DEG,包括8 790個(gè)上調(diào)基因和8 521個(gè)下調(diào)的基因。在花色變化前2個(gè)材料間(P-B1/W-B1)有768個(gè)DEG,在花色變化后(P-A9/W-A9)2個(gè)材料間僅有99個(gè)DEG。同一材料的花蕾不同發(fā)育時(shí)期間進(jìn)行比較,P-A9/P-B1組和W-A9/W-B1組的DEG數(shù)量分別為14 776和12 149個(gè)(表4)。
為了全面評(píng)估DEG對(duì)花色的影響,篩選在P-A9/W-A9組和P-A9/P-B1組中同時(shí)差異表達(dá)的基因共55個(gè),包含20個(gè)上調(diào)DEG和35個(gè)下調(diào)DEG(圖4)。進(jìn)一步分析發(fā)現(xiàn),調(diào)控花色苷生物合成的MYB轉(zhuǎn)錄因子的編碼基因Gh_A07G083500和參與將花色苷由細(xì)胞質(zhì)轉(zhuǎn)運(yùn)到液泡中的谷胱甘肽-S-轉(zhuǎn)移酶的編碼基因Gh_A07G079800均上調(diào)表達(dá)。對(duì)這2個(gè)基因的表達(dá)模式進(jìn)行分析發(fā)現(xiàn),Gh_A07G083500和Gh_A07G079800在中遺紅的根和葉中的相對(duì)表達(dá)量都低于其在中棉所24中的表達(dá)水平,但在中遺紅花蕾中的相對(duì)表達(dá)量顯著高于其在中棉所24花蕾中的相對(duì)表達(dá)量(圖5)。
2.5 差異表達(dá)基因的功能富集
為了進(jìn)一步分析花色發(fā)育中DEG的功能,取粉花與黃花花色變化前后以及粉花2個(gè)發(fā)育時(shí)期的DEG的集合,并對(duì)所得的基因集合減去黃花2個(gè)發(fā)育時(shí)期的DEG,獲得可能與花色發(fā)育相關(guān)的DEG,包括2 215個(gè)上調(diào)表達(dá)基因和2 947個(gè)下調(diào)表達(dá)基因。
對(duì)這些DEG進(jìn)行GO富集分析,發(fā)現(xiàn)它們主要富集在細(xì)胞骨架、光合作用、質(zhì)子-運(yùn)輸V型ATP酶(液泡質(zhì)子ATP酶,V型ATP酶)復(fù)合物的組裝、類黃酮生物合成過程、4 -香豆酸-CoA連接酶活性、黃酮生物合成過程的正調(diào)控、類黃酮-3',5'-羥化酶活性和苯丙氨酸代謝等GO條目(圖6)。其中,V型ATP酶復(fù)合物的組裝通路包括3個(gè)參與液泡內(nèi)質(zhì)子轉(zhuǎn)運(yùn)、調(diào)節(jié)液泡pH的V型ATP酶基因Gh_A09G123000、Gh_A08G012100和Gh_D09G115200;編碼調(diào)控黃酮類生物合成的bHLH轉(zhuǎn)錄因子Gh_D11G130400。研究表明,V型ATP酶和bHLH轉(zhuǎn)錄因子主要與液泡pH和類黃酮代謝調(diào)節(jié)相關(guān),影響植物器官呈色[31-32]。
對(duì)DEG進(jìn)行KEGG分析,上調(diào)DEG富集到氧化磷酸化、吞噬體、氨基酸糖和核苷酸糖代謝、胞吞作用、淀粉和蔗糖代謝、糖酵解/糖異生等16條代謝通路(表5),下調(diào)DEG富集到光合作用、卟啉與葉綠素代謝、抗壞血酸和醛酸代謝、淀粉和蔗糖代謝、二萜類生物合成等13條代謝通路(表6)。然而上述代謝通路在花色苷合成和花色形成中的功能仍不清楚,需要進(jìn)一步的研究。
2.6 花青素代謝通路中基因表達(dá)情況
對(duì)花色苷合成通路中的基因的表達(dá)量進(jìn)行分析(圖7),發(fā)現(xiàn)在黃花和粉花2個(gè)材料中花色苷合成途徑中關(guān)鍵酶基因的表達(dá)量無明顯差異,說明花色苷合成不是花色差異的原因。進(jìn)一步對(duì)花色苷轉(zhuǎn)運(yùn)相關(guān)基因進(jìn)行分析(圖7),發(fā)現(xiàn)僅有花色苷轉(zhuǎn)運(yùn)相關(guān)的谷胱甘肽-S-轉(zhuǎn)移酶基因Gh_A07G079800在粉花A9時(shí)期明顯上調(diào)表達(dá),與2.4中qRT-PCR結(jié)果一致,推測該基因參與的花色苷轉(zhuǎn)運(yùn)與粉花的花色形成密切相關(guān)。
3 討論
花色苷在植物中廣泛存在,苯丙氨酸是花色苷生物合成的前體物質(zhì)[33],苯丙氨酸代謝通路相關(guān)基因表達(dá)模式的差異導(dǎo)致花色苷種類的多樣性。本研究通過對(duì)粉花材料中遺紅與黃花材料中棉所24的花蕾進(jìn)行轉(zhuǎn)錄組測序并分析,結(jié)果表明,苯丙氨酸合成相關(guān)基因的表達(dá)量在2個(gè)材料間沒有明顯差異(圖7),而調(diào)控花色苷轉(zhuǎn)運(yùn)的MYB基因Gh_A07G083500、bHLH基因Gh_D11G130400、谷胱甘肽-S-轉(zhuǎn)移酶基因Gh_A07G079800和3個(gè)編碼V型ATP酶的基因Gh_A08G012100、Gh_D09G115200和Gh_A09G123000在中遺紅中高水平表達(dá),是粉花形成的重要候選基因。
植物中多種轉(zhuǎn)錄因子在花色苷的生物合成中起重要作用[34],MYB-bHLH-WD40復(fù)合物調(diào)控花色苷的合成與轉(zhuǎn)運(yùn)[35-36]。本研究篩選的Gh_A07G083500基因與擬南芥中的AtPAP1為同源基因。在擬南芥中過表達(dá)AtPAP1,導(dǎo)致花色苷在其根、莖、葉和花中積累[12]。AtPAP1在其他物種中的同源基因過表達(dá)也會(huì)導(dǎo)致花色苷含量增多,DCmyb113在胡蘿卜中過表達(dá),導(dǎo)致整個(gè)植株花色苷劇增,從而呈現(xiàn)深紅色[37]。Li等[38]在紅色棉花T586定位了R1紅色基因GhMYB113,在綠色棉花中過表達(dá)該基因會(huì)產(chǎn)生紅色棉花植株,而GhMYB113轉(zhuǎn)錄因子與Gh_A07G083500為同源基因。Gh_D11G130400也是1種重要的轉(zhuǎn)錄因子,屬于MYC家族,具有螺旋-環(huán)-螺旋(helix-loop-helix, HLH)結(jié)構(gòu)域,氨基酸序列比對(duì)結(jié)果顯示,Gh_D11G130400與擬南芥AtbHLH /TT8最為相似,后者調(diào)節(jié)花色苷的生物合成,由此我們推測Gh_A07G083500和Gh_D11G130400與中遺紅的花瓣顏色形成相關(guān)。
研究表明,花色苷必須沉積在酸性的液泡中才能顯示出鮮艷的顏色[39-40]。因此將花色苷運(yùn)輸?shù)揭号輰?duì)植物花瓣器官的顯色至關(guān)重要。Francisco等[5]用生物化學(xué)的方法在葡萄中驗(yàn)證了ABC蛋白參與花色苷的運(yùn)輸,該轉(zhuǎn)運(yùn)過程必須依賴于谷胱甘肽轉(zhuǎn)移酶,擬南芥中AtGSTF(TT19)作為載體將花色苷從胞質(zhì)轉(zhuǎn)移到液泡膜表面[41]。此外,從荔枝中分離出的花色苷轉(zhuǎn)運(yùn)體LcGST4能夠回補(bǔ)擬南芥tt19突變體,并且該轉(zhuǎn)運(yùn)體受到LcMYB1轉(zhuǎn)錄因子的調(diào)控[42]。本研究通過轉(zhuǎn)錄組學(xué)分析,篩選到1個(gè)與擬南芥AtTT19 同源的基因Gh_A07G079800,在中遺紅粉色花蕾中高水平表達(dá),可能與花色苷的代謝途徑相關(guān),其具體生物學(xué)功能還有待進(jìn)一步驗(yàn)證。
液泡的pH會(huì)改變花色苷的吸收光譜,從而改變組織和器官的顏色。在液泡膜上,不同類型的V型ATP酶控制著液泡的pH[31]。花色苷在酸性條件下(pH<3)呈穩(wěn)定的紅色,在弱酸性條件下(3<pH<6)時(shí)呈藍(lán)色且穩(wěn)定性顯著下降[43]。Hu等[31]在蘋果中用生化的方法證明了MdMYB1/10轉(zhuǎn)錄因子直接調(diào)節(jié)2個(gè)編碼V型ATP酶的基因MdVHA-B1和MdVHA-B2的表達(dá);MdVHA-B1在蘋果的愈傷組織、果實(shí)、花瓣以及煙草中過表達(dá),可以引起液泡酸化和花色苷積累。通過轉(zhuǎn)錄組分析,我們篩選到了3個(gè)編碼V型ATP酶的基因Gh_A08G012100、Gh_D09G115200和Gh_A09G123000,它們在粉色花蕾中高水平表達(dá),使液泡中H+含量增加,pH值降低,這可能是導(dǎo)致花瓣顏色變化的原因之一。
綜上所述,我們構(gòu)建了棉花花蕾中花色苷的調(diào)控和轉(zhuǎn)運(yùn)的模型(圖8)。MYB轉(zhuǎn)錄因子和bHLH轉(zhuǎn)錄因子形成復(fù)合物參與調(diào)控GST,將花色苷從內(nèi)質(zhì)網(wǎng)經(jīng)液泡膜上的ABC轉(zhuǎn)運(yùn)蛋白運(yùn)到液泡中;同時(shí)該復(fù)合物也提高了Gh_A08G012100、Gh_D09G115200和Gh_A09G123000編碼產(chǎn)物(H+-ATP酶)的活性,使大量H+運(yùn)輸?shù)郊?xì)胞液泡中,導(dǎo)致液泡中pH降低,在兩者的共同作用下,使花瓣呈現(xiàn)出不同的顏色。
4 結(jié)論
以陸地棉黃花品種中棉所24和粉花品系中遺紅開花前后(B1和A9時(shí)期)的花蕾為材料,進(jìn)行代謝物分析,共鑒定出11種花色苷,其中4種在粉花A9時(shí)期花蕾中明顯富集。進(jìn)一步對(duì)2個(gè)材料B1時(shí)期和A9時(shí)期的花蕾進(jìn)行轉(zhuǎn)錄組測序分析,發(fā)現(xiàn)花色苷合成通路的基因在2個(gè)材料中表達(dá)并無明顯差異,而調(diào)控類黃酮類物質(zhì)合成的Gh_A07G083500和Gh_D11G130400、花色苷轉(zhuǎn)運(yùn)Gh_A07G079800以及液泡酸堿平衡相關(guān)的Gh_A08G012100、Gh_D09G115200和Gh_D09G123000)等相關(guān)基因差異表達(dá)。本研究構(gòu)建了棉花粉花形成的表達(dá)調(diào)控通路,篩選出調(diào)控棉花粉色花形成的候選基因,為研究棉花花色的遺傳和分子機(jī)制研究提供參考。
參考文獻(xiàn):
[1] Stintzing F C, Carle R. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition[J/OL]. Trends in Food Science and Technology, 2004, 15(1): 19-38[2020-12-04]. https://doi.org/10.1016/j.tifs.2003.07.004.
[2] Mouradov A, Spangenberg G. Flavonoids: a metabolic network mediating plants adaptation to their real estate[J/OL]. Frontiers in Plant Science, 2014, 5(10): 620[2020-12-04]. https://doi.org/10.3389/fpls.2014.00620.
[3] Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids[J/OL]. The Plant Journal, 2008, 54(4): 733-749[2020-12-04]. https://doi.org/10.1111/j.1365-313X.2008.03447.x.
[4] Belwal T, Singh G, Jeandet P, et al. Anthocyanins, multi-functional natural products of industrial relevance: recent biotechnological advances[J/OL]. Biotechnology Advances, 2020, 43(1): 107600[2020-12-04]. https://doi.org/10.1016/j.biotechadv.2020.107600.
[5] Francisco R M, Regalado A, Ageorges A, et al. ABCC1, an ATP binding cassette protein from grape berry, transports anthocyanidin 3-O-glucosides[J/OL]. The Plant Cell, 2013, 25(5): 1840-1854[2020-12-04]. https://doi.org/10.1105/tpc.112.102152.
[6] Alfenito M R, Souer E, Goodman C D, et al. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases[J/OL]. The Plant Cell, 1998, 10(7): 1135-1149[2020-12-04]. https://doi.org/10.1105/tpc.10.7.1135.
[7] Xu W, Lepiniec L, Dubos C. New insights toward the transcriptional engineering of proanthocyanidin biosynthesis[J/OL]. Plant Signaling and Behavior, 2014, 9(4): e28736[2020-12-04]. https://doi.org/10.4161/psb.28736.
[8] Xu W, Grain D, Bobet S, et al. Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed[J/OL]. New Phytologist, 2014, 202(1): 132-144[2020-12-04]. https://doi.org/10.1111/nph.12620.
[9] Lai Y S, Li H X, Yamagishi M. A review of target gene specificity of flavonoid R2R3-MYB transcription factors and a discussion of factors contributing to the target gene selectivity[J/OL]. Frontiers in Biology, 2013, 8(6): 577-598[2020-12-04]. https://doi.org/10.1007/s11515-013-1281-z.
[10] Dubos C, Stracke R, Grotewold E, et al. MYB transcription factors in Arabidopsis[J/OL]. Trends in Plant Science, 2010, 15(10): 573-581[2020-12-04]. https://doi.org/10.1016/j.tplants.2010.06.005.
[11] Paz-Ares J, Ghosal D, Wienand U, et al. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators[J/OL]. The Embo Journal, 1987, 6(12): 3553-3558[2020-12-04]. https://doi.org/10.1002/j.1460-2075.1987.tb02684.x.
[12] Borevitz J O, Xia Y J, Blount J, et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis[J/OL]. The Plant Cell, 2000, 12(12): 2383-2393[2020-12-04]. https://doi.org/10.1105/tpc.12.12.2383.
[13] Zimmermann I M, Heim M A, Weisshaar B, et al. Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like bHLH proteins[J/OL]. The Plant Journal, 2004, 40(1): 22-34[2020-12-04]. https://doi.org/10.1111/j.1365-313X.2004.02183.x.
[14] Gonzalez A, Zhao M, Leavitt J M, et al. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings[J/OL]. The Plant Journal, 2008, 53(5): 814-827[2020-12-04]. https://doi.org/10.1111/j.1365-313X.2007.03373.x.
[15] Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana[J/OL]. Current Opinion in Plant Biology, 2001, 4(5): 447-456[2020-12-04]. https://doi.org/10.1016/s1369-5266(00)00199-0.
[16] Saitoh K, Onishi K, Mikami I, et al. Allelic diversification at the C(OsC1) locus of wild and cultivated rice: nucleotide changes associated with phenotypes[J/OL]. Genetics, 2004, 168(2): 997-1007[2020-12-04]. https://doi.org/10.1534/genetics.103.018390.
[17] Sun X, Zhang Z, Chen C, et al. The C-S-A gene system regulates hull pigmentation and reveals evolution of anthocyanin biosynthesis pathway in rice[J/OL]. Journal of Experimental Botany, 2018, 69(7): 1485-1498[2020-12-04]. https://doi.org/10.1093/jxb/ery001.
[18] Chagne D, Kui L W, Espley R V, et al. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes[J/OL]. Plant Physiology, 2013, 161(1): 225-239[2020-12-04]. https://doi.org/10.1104/pp.112.206771.
[19] Vimolmangkang S, Han Y, Wei G, et al. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development[J/OL]. BMC Plant Biology, 2013, 13(1): 176[2020-12-04]. https://doi.org/10.1186/1471-2229-13-176.
[20] Azuma A, Kobayashi S, Mitani N, et al. Genomic and genetic analysis of Myb-related genes that regulate anthocyanin biosynthesis in grape berry skin[J/OL]. Theoretical and Applied Genetics, 2008, 117(6): 1009-1019[2020-12-04]. https://doi.org/10.1007/s00122-008-0840-1.
[21] Espley R V, Hellens R P, Putterill J, et al. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10[J/OL]. The Plant Journal, 2007, 49(3): 414-427[2020-12-04]. https://doi.org/10.1111/j.1365-313X.2006.02964.x.
[22] Li Z T, Dhekney S A, Gray D J. Use of the VvMybA1 gene for non-destructive quantification of promoter activity via color histogram analysis in grapevine (Vitis vinifera) and tobacco[J/OL]. Transgenic Research, 2011, 20(5): 1087-1097[2020-12-04]. https://doi.org/10.1007/s11248-010-9482-6.
[23] Albert N W, Davies K M, Lewis D H, et al. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in Eudicots[J/OL]. The Plant Cell, 2014, 26(3): 962-980[2020-12-04]. https://doi.org/10.1105/tpc.113.122069.
[24] Matsui K, Umemura Y, Ohme-Takagi M. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis[J/OL]. The Plant Journal, 2008, 55(6): 954-967[2020-12-04]. https://doi.org/10.1111/j.1365-313X.2008.03565.x.
[25] Tan J, Wang M, Tu L, et al. The flavonoid pathway regulates the petal colors of cotton flower[J/OL]. PLoS One, 2013, 8(8): e72364[2020-12-04]. https://doi.org/10.1371/journal.pone.0072364.
[26] Pertea M, Kim D, Pertea G M, et al. Transcript-level expression analysis of RNA-seq experiments with HISAT, stringtie and ballgown[J/OL]. Nature Protocols, 2016, 11(9): 1650-1667[2020-12-04]. https://doi.org/10.1038/nprot.2016.095.
[27] Robinson M D, Mccarthy D J, Smyth G K. edgeR: a bioconductor package for differential expression analysis of digital gene?expression data[J/OL]. Bioinformatics, 2010, 26(1): 139-140[2020-12-04]. https://doi.org/10.1093/bioinformatics/btp616.
[28] Wang Y T, Li S P, Zhu Z Q, et al. Transcriptome and chemical analyses revealed the mechanism of flower color formation in Rosa rugosa[J/OL]. Frontiers in Plant Science, 2022, 3(1): 231[2023-08-29]. https://doi.org/10.3389/fpls.2022.1021521.
[29] Freyre R, Uzdevenes C, Gu L, et al. Genetics and anthocyanin analysis of flower color in mexican petunia[J/OL]. Journal of the American Society for Horticultural Science, 2015, 140(1): 45-49[2020-12-04]. https://doi.org/10.21273/JASHS.140.1.45.
[30] Zhang Q, Zhang J, Gong M, et al. Transcriptome analysis of the gene expression profiles associated with fungal keratitis in mice based on RNA-Seq[J/OL]. Investigative Ophthalmology and Visual Science, 2020, 61(6): 32[2020-12-04]. https://doi.org/ 10.1167/iovs.61.6.32.
[31] Hu D G, Sun C H, Ma Q J, et al. MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples[J/OL]. Plant Physiology, 2016, 170(3): 1315-1330[2020-12-04]. https://doi.org/10.1104/pp.15.01333.
[32] Xie X B, Li S, Zhang R F, et al. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples[J/OL]. Plant Cell Environment, 2012, 35(11):1884-1897[2020-12-04]. https://doi.org/10.1111/j.1365-3040.2012.02523.x.
[33] 龐紅霞, 祝長青, 覃建兵. 植物花青素生物合成相關(guān)基因研究進(jìn)展[J]. 種子, 2010, 29(3): 60-64.?Pang Hongxia, Zhu Changqing, Qin Jianbing. Advancement of plant genes related with anthocyanins synthetic biology[J]. Seed, 2010, 29(3): 60-64.
[34] Falcone M L, Rius S P, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications[J/OL]. Frontiers in Plant Science, 2012, 3(1): 222[2020-12-04]. https://doi.org/10.3389/fpls.2012.00222.
[35] Wu Y, Guo J, Zhou Q, et al. De novo transcriptome analysis revealed genes involved in flavonoid biosynthesis, transport and regulation in Ginkgo biloba[J/OL]. Industrial Crops and Products, 2018, 124: 226-235[2020-12-04]. https://doi.org/10.1016/j.indcrop.2018.07.060.
[36] Allan A C, Hellens R P, Laing W A. MYB transcription factors that colour our fruit[J/OL]. Trends in Plant Science, 2008, 13(3): 99-102[2020-12-04]. https://doi.org/10.1016/j.tplants.2007.11.012.
[37] Xu Z S, Yang Q Q, Feng K, et al. DcMYB113, a root-specific R2R3-MYB, conditions anthocyanin biosynthesis and modification in carrot[J/OL]. Plant Biotechnology Journal, 2020, 18(7): 1585-1597[2020-12-04]. https://doi.org/10.1111/pbi.13325.
[38] Li X, Ouyang X, Zhang Z, et al. Over-expression of the red plant gene R1 enhances anthocyanin production and resistance to bollworm and spider mite in cotton[J/OL]. Molecular Genetics and Genomics, 2019, 294(2): 469-478[2020-12-04]. https://doi.org/10.1007/s00438-018-1525-3.
[39] Winkel B. Flavonoid biosynthesis. a colorful model for genetics, biochemistry, cell biology, and biotechnology[J/OL]. Plant Physiology, 2001, 126(2): 485-493[2020-12-04]. https://doi.org/10.1104/pp.126.2.485.
[40] Yamazaki M, Yamagishi E, Gong Z Z, et al. Two flavonoid glucosyltransferases from Petunia hybrida: molecular cloning, biochemical properties and developmentally regulated expression[J/OL]. Plant Molecular Biology, 2002, 48(4): 401-411[2020-12-04]. https://doi.org/10.1023/a:1014043214943.
[41] Sun Y, Li H, Huang J R. Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts[J/OL]. Molecular Plant, 2012, 5(2): 387-400[2020-12-04]. https://doi.org/10.1093/mp/ssr110.
[42] Hu B, Zhao J, Lai B, et al. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn.[J/OL]. Plant Cell Reports, 2016, 35: 831-843[2023-9-11]. https://doi.org/10.1007/s00299-015-1924-4.
[43] Levi M, Scarminio L, Poppi R, et al. Three-way chemometric method study and UV-vis absorbance for the study of simultaneous degradation of anthocyanins in flowers of the Hibiscus rosa-sinensys species[J/OL]. Talanta, 2004, 62(2): 299-305[2020-12-04]. https://doi.org/10.1016/j.talanta.2003.07.015.