齊慶歡 廖煥如 張慶 師曉含 周玉嫚
摘要:針對現(xiàn)有抗菌紡織品加工方法存在問題,利用靜電紡噴技術(shù),將接枝有機硅季銨鹽的氧化石墨烯(GO-QAS)均勻噴射在棉網(wǎng)表面,經(jīng)后序集聚加捻,構(gòu)建GO-QAS/棉復(fù)合紗線。結(jié)果表明:當(dāng)紡絲電壓為35 kV、棉網(wǎng)厚度為3 mm、GO-QAS質(zhì)量濃度為4 mg/mL時,GO-QAS在靜電力作用下能夠穩(wěn)定噴射在棉網(wǎng)表面,同時GO-QAS包裹卷繞在棉纖維表面;進一步集聚加捻獲得的GO-QAS/棉復(fù)合紗線也顯示了優(yōu)異的力學(xué)性能,并對大腸桿菌和金黃葡萄球菌具有大于99.99%的抗菌性?;陟o電紡噴工藝路線,通過對氧化石墨烯不同的功能改性,還可制備多重功能因子組合的復(fù)合紗線,從而實現(xiàn)紗線的多功能改性。
關(guān)鍵詞:功能紗線;靜電紡噴;氧化石墨烯;有機硅季銨鹽;復(fù)合紗線;抗菌
中圖分類號:TS195.644
文獻標(biāo)志碼:A
文章編號:1009-265X(2023)02-0139-07
由于服裝等紡織品是抵御外界細菌侵害的第一道屏障,可有效免交叉感染、預(yù)防疾病傳播、保證人體健康,因此抗菌紡織品相比其他功能紡織品表現(xiàn)出更多的需求,且抗菌紡織品在醫(yī)用、服用、日用、產(chǎn)業(yè)用等領(lǐng)域均顯示廣泛的應(yīng)用前景[1]。
目前,廣泛使用的抗菌紡織品制備方法為原纖法和后整理法。原纖法是在紡絲過程中,將功能因子添加到聚合物中,經(jīng)不同紡絲工藝制得功能纖維后,再進行紡織品織造[2-4];后整理加工法即在后整理過程中采用功能整理劑處理織物,從而賦予其功能,主要包括表面涂層法、浸軋法、微膠囊法和接枝法[5-8]。然而,采用這兩種方法加工抗菌紡織品時,會存在抗菌性能或耐久性差、工藝復(fù)雜、環(huán)境污染、成本高、易脫落等問題。
除此之外,抗菌劑的選擇也至關(guān)重要?,F(xiàn)有抗菌劑主要分為金屬離子型、光觸媒型和有機陽離子型3種體系。金屬離子型通過金屬離子與細菌蛋白質(zhì)中的巰基結(jié)合,引起蛋白變性,從而抑制細菌生長,如納米銀、納米銅等[9-11];光觸媒型通過光激發(fā)產(chǎn)生具有強氧化性的活性氧自由基,破壞細菌細胞的分子結(jié)構(gòu),達到抗菌抑菌作用,如納米金屬氧化物Ti2O、ZnO等[12];有機陽離子型通過靜電作用和疏水作用與細菌的細胞膜結(jié)合,破壞細胞膜正常運轉(zhuǎn)系統(tǒng),達到抗菌抑菌效果,如季銨鹽、吡啶鹽、抗菌肽等[13]。雖然上述三類抗菌劑均展示了優(yōu)異的抗菌效果,但是存在制備工藝復(fù)雜、生物安全性、易溶出等問題。
氧化石墨烯(GO)因呈現(xiàn)薄的片層結(jié)構(gòu)且表面包含大量的含氧基團,能夠為功能化修飾材料提供活性位點,而成為優(yōu)良的藥物載體被廣泛應(yīng)用于生物、藥物傳輸?shù)阮I(lǐng)域[14-16]。如果將GO作為載物平臺,在其表面負載季銨鹽類抗菌劑,構(gòu)建一種具有抗菌功能的氧化石墨烯,可有效解決現(xiàn)有有機陽離子型抗菌劑存在問題。因此,本文基于靜電噴射原理,采用接枝有機硅季銨鹽的GO作為抗菌劑,提出一種嵌入功能氧化石墨烯的復(fù)合紗線制備方法,獲得具有抗菌性能的紗線。
1實驗
1.1實驗材料
氧化石墨烯分散液(GO,2 mg/mL,溶劑乙醇),蘇州碳豐科技有限公司;有機硅季銨鹽(二甲基十八烷基[3-三甲氧基硅丙基]氯化銨,簡稱QAS,液體,純度60%)、無水乙醇(分析純),上海阿拉丁化學(xué)試劑有限公司;金黃色葡萄球菌(S.aureus)和大腸桿菌(E.coli),由河南匯博醫(yī)療股份有限公司免費提供。
1.2GO-QAS分散液的制備
首先將QAS加入GO分散液中(GO和QAS質(zhì)量比1∶1),在75℃下磁力攪拌4 h;然后離心洗滌3次(轉(zhuǎn)速4000 r/min);最后將無水乙醇加入洗滌后的GO-QAS抗菌劑中,超聲分散5 min,得到濃度為4 mg/mL的GO-QAS分散液。
1.3負載GO-QAS抗菌劑的復(fù)合棉網(wǎng)的制備
利用自制靜電紡噴裝置制備負載GO-QAS抗菌劑的復(fù)合棉網(wǎng),如圖1所示。首先,退繞的棉網(wǎng)經(jīng)過接收電極板下方卷繞在卷繞裝置上;然后,GO-QAS分散液在電場力的作用下噴覆在棉網(wǎng)表面;最后,卷繞成卷,形成負載GO-QAS抗菌劑的復(fù)合棉網(wǎng)。靜電紡噴工藝參數(shù)為:紡絲電壓35 kV,紡絲間距20 cm,紡絲線運動速度20 cm/min,棉網(wǎng)卷繞速度20 cm/min,棉網(wǎng)厚度3 mm。
1.4GO-QAS/棉復(fù)合紗線的制備
負載GO-QAS抗菌劑的復(fù)合棉網(wǎng)經(jīng)喇叭集束器集聚成束,進而卷繞加捻成GO-QAS/棉復(fù)合紗線,如圖2所示。其中,卷繞裝置的旋轉(zhuǎn)速度為50 r/min,棉卷退繞速度與紗線卷繞速度相同。
1.5測試與表征
利用掃描電子顯微鏡(SEM,復(fù)納科學(xué)儀器(上海)有限公司)觀察樣品的形貌結(jié)構(gòu)。利用傅里葉紅外光譜(FT-IR,美國Thermo Fisher Scientific公司)和X射線光電子能譜(XPS,島津kratos公司)表征GO、QAS和GO-QAS的化學(xué)結(jié)構(gòu)組成。利用強度測試儀(INSTRON,美國英斯特朗公司)表征紗線的力學(xué)性能,樣品長度50 mm,測試速度20 mm/min。采用金黃色葡萄球菌(S.aureus)和大腸桿菌(E.coli)作為指示菌,進行抗菌性能測試[17];通過固體培養(yǎng)基中的菌落數(shù)計算抑菌率。
2結(jié)果與分析
2.1GO-QAS抗菌劑形貌結(jié)構(gòu)分析
片狀GO表面含有大量羥基,能夠為功能化修飾材料提供活性位點。本文選用有機硅季銨鹽(QAS)作為發(fā)揮抗菌性能的主要物質(zhì),通過QAS的硅氧烷與GO表面羥基之間發(fā)生偶聯(lián)反應(yīng)[18],將QAS共價接枝在GO表面,形成GO-QAS抗菌劑,其化學(xué)反應(yīng)過程如圖3(a)所示。接枝改性后的GO-QAS依然維持了GO較好的分散性和褶皺形態(tài)結(jié)構(gòu),如圖3(b)―(c)所示,為后續(xù)均勻地靜電噴覆在棉網(wǎng)表面奠定基礎(chǔ)。與GO相比,GO-QAS在2800~3000 cm-1之間出現(xiàn)了明顯的QAS的CH3和CH2的伸縮振動峰,且在1100~900 cm-1處出現(xiàn)了Si—O的伸縮振動峰;同時,GO-QAS的XPS譜圖上也出現(xiàn)了除283.08 eV處的C1s和533.08 eV處的O1s之外的N1s、Si2p和Cl2p;GO-QAS的紅外光譜和XPS譜圖綜合表明QAS成功接枝在GO表面,如圖3(d)—(e)所示。
2.2負載GO-QAS的復(fù)合棉網(wǎng)形貌分析
負載GO-QAS抗菌劑之前,單純的棉網(wǎng)呈白色,單根棉纖維沿纖維長度方向呈不規(guī)則天然轉(zhuǎn)曲,纖維與纖維之間獨立存在,如圖4(a)所示。當(dāng)通過自制靜電防噴裝置將GO-QAS抗菌劑自下而上噴覆在純棉網(wǎng)表面時,棉網(wǎng)表面由白色轉(zhuǎn)變成褐黑色。由于紡絲電壓、棉網(wǎng)厚度和GO-QAS抗菌劑濃度會影響電場強度分布和溶液性質(zhì),因此上述3個參數(shù)對GO-QAS抗菌劑噴射過程影響較大。當(dāng)紡絲電壓為35 kV、棉網(wǎng)厚度為3 mm、GO-QAS抗菌劑濃度為4 mg/mL時,GO-QAS抗菌劑在棉網(wǎng)表面覆蓋均勻,沒有出現(xiàn)塊狀團聚的GO-QAS抗菌劑。進一步通過掃描電子顯微鏡觀察負載GO-QAS的復(fù)合棉網(wǎng)可以發(fā)現(xiàn),大片GO-QAS抗菌劑較好地包裹在棉纖維表面,從而形成了核殼纖維結(jié)構(gòu),如圖4(b)所示。由于GO-QAS抗菌劑尺寸較大,少部分GO-QAS抗菌劑在包裹完纖維后還連接或嵌入在棉纖維中間。GO-QAS抗菌劑能夠卷曲包裹在棉纖維表面的原因主要是:棉纖維屬于纖維素纖維,表面含有較多羥基,能夠與GO-QAS抗菌劑產(chǎn)生氫鍵作用[19]。當(dāng)GO-QAS抗菌劑在電場力作用下噴覆到棉網(wǎng)表面時,GO-QAS抗菌劑首先靜電力的作用直接吸附到棉纖維表面,然后受GO-QAS抗菌劑與棉纖維之間的氫鍵作用,誘導(dǎo)GO-QAS抗菌劑發(fā)生卷曲,隨著溶劑的逐漸揮發(fā)最終牢固包裹在棉纖維表面。
2.3GO-QAS/棉復(fù)合紗線形貌
采用相同的集聚加捻工藝制備純棉紗和GO-QAS/棉復(fù)合紗線。負載GO-QAS抗菌劑之前,自制純棉紗呈現(xiàn)典型的棉紗結(jié)構(gòu)特征,紗中纖維取向排列,單根纖維天然扭轉(zhuǎn),如圖5(a)所示。而在GO-QAS/棉復(fù)合紗線中,GO-QAS抗菌劑一部分包裹在棉纖維表面,另一部分均勻嵌入在棉纖維之間,如圖5(b)所示。進一步通過GO-QAS/棉復(fù)合紗線的截面電鏡也可發(fā)現(xiàn),GO-QAS抗菌劑由紗線內(nèi)部向外部均勻分布,且是由包裹的和嵌入的兩部分組成,如圖5(c)所示。GO-QAS抗菌劑在紗線內(nèi)部的均勻分布對紗線抗菌性能的影響至關(guān)重要,因為較少的GO-QAS抗菌劑不利于抗菌性能的發(fā)揮,處于纖維內(nèi)部的GO-QAS抗菌劑也不利于抗菌性能的立即作用。
2.4GO-QAS/棉復(fù)合紗線力學(xué)性能
紗線的力學(xué)性能影響其實際使用性能,力學(xué)性能較差,無法滿足其實際應(yīng)用。GO-QAS/棉復(fù)合紗線的力學(xué)性能如圖6所示。混合GO-QAS抗菌劑后,該混合紗線斷裂伸長和斷裂強度增強,其原因主要是GO自身具有較好的力學(xué)性能,GO-QAS抗菌劑包裹在纖維表面有利于提高纖維力學(xué)性能;同時GO-QAS抗菌劑混合在纖維之間,增加了纖維與纖維之間的摩擦力,二者共同作用提高善了紗線的力學(xué)性能。
2.5GO-QAS/棉復(fù)合紗線抗菌性能
圖7為對照組(Control)、GO/棉復(fù)合紗線、QAS/棉復(fù)合紗線和GO-QAS/棉復(fù)合紗線對S.aureus和E.coli的抗菌效果和抗菌率。其中,GO/棉復(fù)合紗線和QAS/棉復(fù)合紗線采用與GO-QAS/棉復(fù)合紗線相同的制備工藝,GO分散液和QAS分散液的濃度均為2 mg/mL,溶劑為無水乙醇。結(jié)果表明,GO/棉復(fù)合紗線對S.aureus和E.coli不具有抑制作用,QAS/棉復(fù)合紗線對S.aureus和E. col具有一定的抗菌性,但明顯低于GO-QAS/棉復(fù)合紗對S.aureus和E.coli的抑制作用,如圖7所示;GO-QAS/棉復(fù)合紗對S.aureus和E.coli的抑菌率高達99.99%以上,如圖8所示。GO-QAS/棉復(fù)合紗線優(yōu)異的抗菌性主要來自紗中均勻分布的GO-QAS對細菌的抑制作用。由于片狀GO比表面積大,且一片GO同時可以接枝多個QAS分子,使得QAS與細菌均勻接觸的概率增加;當(dāng)GO-QAS與細菌接觸后,QAS能夠破壞細菌的細胞壁,造成菌體內(nèi)酶、代謝物等溢出,進而導(dǎo)致細菌死亡,實現(xiàn)殺菌、抑菌作用[20]。而QAS/棉復(fù)合紗線對S.aureus和E. col的抗菌性低于GO-QAS/棉復(fù)合紗的原因主要是:本文的抗菌紗線是采用由下而上靜電紡噴技術(shù)實現(xiàn)的,當(dāng)沒有GO作為載體時,在噴射過程中小分子QAS可能會沉積在纖維之間的空隙,導(dǎo)致無法完全附著在棉纖維表面;或者QAS液滴直接噴射在纖維表面,導(dǎo)致干燥后QAS團聚在纖維表面,無法均勻分布在棉紗中,不利于QAS均勻發(fā)揮抗菌性能,最終導(dǎo)致較低的抗菌性能。
3結(jié)論
本文采用接枝QAS的GO作為抗菌劑,利用靜電紡噴技術(shù),將GO-QAS由下而上噴覆在棉網(wǎng)表面,經(jīng)后續(xù)集聚加捻成紗,制備了GO-QAS/棉復(fù)合紗線;表征了GO-QAS抗菌劑的形貌和化學(xué)結(jié)構(gòu),分析了GO-QAS/棉復(fù)合棉網(wǎng)和紗線的形貌特征,測試了GO-QAS/棉復(fù)合紗線的力學(xué)性能,探討了GO-QAS/棉復(fù)合紗線的抗菌機理,結(jié)論如下:
a)QAS能夠接枝在GO表面,且維持了GO較好的分散性和褶皺形態(tài)結(jié)構(gòu)。
b)當(dāng)紡絲電壓為35 kV、棉網(wǎng)厚度在3 mm、GO-QAS抗菌劑濃度為4 mg/mL時,GO-QAS抗菌劑能夠均勻地噴覆在棉網(wǎng)表面;進一步集聚加捻獲得的GO-QAS/棉復(fù)合紗線顯示規(guī)整的紗線結(jié)構(gòu),且GO-QAS抗菌劑包裹卷繞在棉纖維表面或嵌入在纖維中間;同時,GO-QAS/棉復(fù)合紗線的力學(xué)性能顯著優(yōu)于純棉紗。
c)GO-QAS/棉復(fù)合紗線顯示了優(yōu)異的抗菌性能,對S.aureus和E.coli的抗菌率大于99.99%。
參考文獻:
[1]翟麗莎,王宗壘,周敬伊,等.紡織用抗菌材料及其應(yīng)用研究進展[J].紡織學(xué)報,2021,42(9):170-179.
ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, et al. Research progress of antibacterial materials for textiles and their applications[J]. Journal of Textile Research, 2021, 42(9): 170-179.
[2]南清清,曾慶紅,袁竟軒,等.抗菌功能紡織品的研究進展[J].紡織學(xué)報,2022,43(6):197-205.
NAN Qingqing, ZENG Qinghong, YUAN Jingxuan, et al. Advances on antibacterial textiles[J]. Journal of Textile Research, 2022, 43(6): 197-205.
[3]SHEILA S, RASHIDIAN M, DORRANIAN D. Preparation of antibacterial textile using laser ablation method[J]. Optics & Laser Technology, 2018, 99: 145-153.
[4]NORTJIE E, BASITERE M, MOYO D, et al. Extraction methods, quantitative and qualitative phytochemical screening of medicinal plants for antimicrobial textiles: A review[J]. Plants, 2022, 11(15): 2011.
[5]李艷艷,趙立環(huán),楊玉潔.MXene及其復(fù)合材料的抗菌紡織品研究進展[J/OL].復(fù)合材料學(xué)報,2022:1-15[2022-08-14].DOI:10.13801/j.cnki.fhclxb.20220627.002.
LI Yanyan, ZHAO Lihuan, YANG Yujie. Research progress on antibacterial textiles of MXene and its composite materials[J/OL]. Acta Materiae Compositae Sinica, 2022:1-15[2022-08-14].DOI:10.13801/j.cnki.fhclxb.20220627.002.
[6]MARKOVIC D, ZILLE A, RIBEIRO A I, et al. Antibacterial Bio-nanocomposite textile material produced from natural resources[J]. Nanomaterials, 2022, 12(15): 2539.
[7]RIAN S, NAZ S, YOUNUS A, et al. Layer by layer deposition of PEDOT, silver and copper to develop durable, flexible, and EMI shielding and antibacterial textiles[J]. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 2022, 650: 129486.
[8]王榮國,王進美.紡織品抗菌劑及其整理方法[J].合成纖維,2021,50(8):24-26,37.
WANG Rongguo, WANG Jinmei. Antimicrobial finishing of textiles and its finishing method[J]. Synthetic Fiber in China, 2021, 50(8): 24-26, 37.
[9]NGUYEN N T, VO T L. Fabrication of silver nanoparticles using Cordyline fruticosa L. leave extract endowing silk fibroin modified viscose fabric with durable antibacterial property[J]. Polymers, 2022, 14(12): 2409.
[10]CHEN N F, LIAO Y H, LIN P Y, et al. Investigation of the characteristics and antibacterial activity of polymer-modified copper oxide nanoparticles[J]. International Journal of Molecular Sciences, 2021, 22(23): 12913.
[11]QIU Q H, CHEN S, LI Y, et al. Functional nanofibers embedded into textiles for durable antibacterial properties[J]. Chemical Engineering Journal, 2020, 384: 123241.
[12]ALI S S, MOAWAD M S, HUSSEIN M A, et al. Efficacy of metal oxide nanoparticles as novel antimicrobial agents against multi-drug and multi-virulent Staphylococcus aureus isolates from retail raw chicken meat and giblets[J]. Inter-national Journal of Food Microbiology, 2021, 344: 109116.
[13]Rodrigues A G, de Oliveira Gonalves P J R, Ottoni C A, et al. Functional textiles impregnated with biogenic silver nanoparticles from Bionectria ochroleuca and its antimicrobial activity[J]. Biomedical Microdevices, 2019, 21(3): 56.
[14]HU W B, PENG C, LUO W, et al. Graphene-based anti-bacterial paper[J]. Acs Nano, 2010, 4(7): 4317-4323.
[15]Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS Nano, 2010, 4(10): 5731-5736.
[16]KIM T I, KWON B, YOON J, et al. Antibacterial activities of graphene oxide-molybdenum disulfide nanocomposite films[J]. ACS Applied Materials & Interfaces, 2017, 9(9): 7908-7917.
[17]YU W, LI X, HE J, et al. Graphene oxide-silver nanocomposites embedded nanofiber core-spun yarns for durable antibacterial textiles[J]. Journal of Colloid and Interface Science, 2021, 584: 164-173.
[18]LIU C H, LIAO X, SHAO W L, et al. Hot-melt adhesive bonding of polyurethane/fluorinated polyurethane/alkylsilane-functionalized graphene nanofibrous fabrics with enhanced waterproofness, breathability, and mechanical properties[J]. Polymers, 2020, 12(4): 836.
[19]RAMALINGAM P K H, K R. FTIR studies of hydrogen bonding interaction between the hydroxyl and carbonyl liquids[J]. Advances in Applied Science Research, 2016, 6(12): 44-52.
[20]殷珊珊.長鏈季銨鹽的合成及其對聚酰胺6纖維的抗菌改性[D].杭州:浙江理工大學(xué),2020:5-6.
YIN Shanshan. Antibacterial Modification of Polyamide 6 Fiber by Synthetic Long Chain Quaternary Ammonium Salt[D]. Hangzhou: Zhejiang Sci-Tech University, 2020: 5-6.
Construction and performance of GO-QAS/cotton blended yarn
QI Qinghuan, LIAO Huanru, ZHANG Qing, SHI Xiaohan, ZHOU Yuman
(Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, China)
Abstract:
Antibacterial textiles are the first barrier for human body to resist external bacteria and play an important role in improving personal hygiene environment and ensuring human health. Especially after the outbreak of COVID-19 in 2020, antibacterial textiles are favored by more and more people because they can inhibit the propagation of microorganisms, avoid cross infection of bacteria, and prevent the spread of diseases, thus resulting in a substantial increase in demand. As the yarn is the basic component of textiles, it is a simple and effective way to directly construct antibacterial textiles through antibacterial yarns. However, the processing methods of antibacterial yarns widely used in industry have many problems, such as heavy pollution, high energy consumption and unstable antibacterial performance. Therefore, it is of great research value to further develop the green processing method of antibacterial yarns and improve the yarns' antibacterial property.
In view of the existing problems of antibacterial yarns and their processing methods, a new method for fabricating antibacterial blended yarns embedded in graphene is proposed in this paper from the perspective of physical modification based on the principle of electro-spraying. Namely, an organic silicon quaternary ammonium salt (QAS) is first grafted onto graphene oxide by coupling reaction to synthesize nano-composite antimicrobial agents (GO-QAS), in which QAS and GO are respectively used as main antibacterial substance and functional modification carrier. Then, GO-QASs are uniformly sprayed onto the cotton web by electrostatic action to form a GO-QAS/cotton hybrid web. Finally, the GO-QAS/cotton hybrid web is aggregated and twisted into a GO-QAS/cotton blended yarn with antibacterial function. The morphology and chemical structure of GO-QAS antibacterial agent are characterized by scanning electron microscope, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The distribution rule and existing form of GO-QAS antibacterial agent in yarn are analyzed by morphology observation. The mechanical property of GO-QAS/cotton blended yarn is tested through a strength tester. The antibacterial properties of GO-QAS/cotton blended yarns are researched by antibacterial experiments. The results show that the GO-QAS antibacterial agent has good dispersibility and can be sprayed evenly on the surface of the cotton web. Moreover, the GO-QAS/cotton blended yarn obtained by further agglomerating and twisting the composite web shows excellent yarn structure and mechanical property. In the GO-QAS/cotton blended yarn, the GO-QAS antibacterial agent is wrapped on the surface of cotton fibers or embedded in the middle of the fibers. In addition, the GO-QAS antibacterial agent is evenly distributed from the inside to the outside of the yarn. Benefited by the distribution of GO-QAS antibacterial agents in the yarn, the GO-QAS/cotton blended yarn shows high antibacterial activity against E.coli and S.aureus, which is greater than 99.99%.
Compared with the reported processing methods of antibacterial yarns, using electrostatically spraying functional graphene to prepare antibacterial yarn is a physical modification method. This method is simple in process, less pollution and low energy consumption. In addition, through the different functional modification of graphene oxide, the blended yarn with multiple functions can be prepared in one step, which can easily realize the multi-functional modification of yarns. The research results have important guiding significance for the innovation and upgrading of functional textiles and their green processing technologies.
Keywords:
functional yarn; electro-spraying; graphene oxide; organic silicon quaternary ammonium salt; blended yarn; antibacterial property
收稿日期:20220815
網(wǎng)絡(luò)出版日期:20221213
基金項目:河南省科技攻關(guān)項目(202102210060);中原工學(xué)院學(xué)科實力提升計劃“學(xué)科青年碩導(dǎo)培育計劃
作者簡介:齊慶歡(1999—),女,河南駐馬店人,碩士研究生,主要從事功能紡織品性能方面的研究。
通信作者:周玉嫚, E-mail: ymzhou@zut.edu.cn