摘 要:本文通過對(duì)一道橢圓中三點(diǎn)共線聯(lián)考題的多個(gè)角度深度探究,探尋此類問題的通性通法.
關(guān)鍵詞:橢圓;三點(diǎn)共線;聯(lián)考題;探究
中圖分類號(hào):G632?? 文獻(xiàn)標(biāo)識(shí)碼:A?? 文章編號(hào):1008-0333(2023)19-0056-04
收稿日期:2023-04-05
作者簡介:付增民(1978-),男,山東省東平人,本科,中學(xué)一級(jí)教師,從事數(shù)學(xué)教學(xué)研究.
基金項(xiàng)目:浙江省2022年度教育科學(xué)規(guī)劃研究課題“基于“變頻”育人模式的高中校本課程建設(shè)的實(shí)踐研究”(項(xiàng)目編號(hào):2022SC142);金華市2022年度教育科學(xué)規(guī)劃研究課題“深度學(xué)習(xí)視域下高中生數(shù)學(xué)思維能力提高的策略研究”(項(xiàng)目編號(hào):JB2022328)
三點(diǎn)共線問題是數(shù)學(xué)中的重要題型之一,而圓錐曲線中的三點(diǎn)共線問題則是高考及各地模擬考試考查的重點(diǎn),如2021年新高考Ⅱ卷的第20題考查的就是以橢圓為載體的三點(diǎn)共線充要條件的證明[1].
許多典型的數(shù)學(xué)問題,其中蘊(yùn)含的背景或規(guī)律需要挖掘或推廣延伸,因而我們平時(shí)的解題:一是要重視問題的變式,通過變式去從“變”的現(xiàn)象中發(fā)現(xiàn)“不變”的本質(zhì),從“不變”中探求規(guī)律;二是適宜地將問題推廣延伸為一般性的結(jié)論用于解決相關(guān)問題.唯有如此,才能逐步培養(yǎng)學(xué)生靈活多變的思維品質(zhì),提高其數(shù)學(xué)核心素養(yǎng),培養(yǎng)其探索精神和創(chuàng)新意識(shí),從而真正把對(duì)能力的培養(yǎng)落到實(shí)處.
參考文獻(xiàn):
[1] 張世凡,李勇.悟真題內(nèi)涵 促拓展探究:2021年新高考全國Ⅱ卷數(shù)學(xué)第20題拓展探究[J].理科考試研究,2022,29(05):25-27.
[責(zé)任編輯:李 璟]