黃琳 李彬 胡作為
摘要:目的 探討人參皂苷Rg3通過抑制哺乳動物雷帕霉素靶蛋白(mTOR)通路介導(dǎo)的磷酸戊糖途徑(PPP),對肺癌細(xì)胞放射敏感性的影響。方法 以0、10、20、40、60、80 mg/L的人參皂苷Rg3處理肺癌細(xì)胞A549;MTT法檢測細(xì)胞增殖情況;將細(xì)胞分為對照組(正常培養(yǎng),不照射)、放射組(X射線照射處理)、人參皂苷Rg3組(60 mg/L人參皂苷Rg3,不照射)、聯(lián)合組(X射線照射+60 mg/L人參皂苷Rg3)、激活劑組(X射線照射+60 mg/L人參皂苷Rg3+100 nmol/L mTOR通路激活劑MHY1485);均為加入相對應(yīng)藥物培養(yǎng)48 h后放射組、聯(lián)合組和激活劑組采用8 Gy X射線照射。平板克隆實驗檢測各組細(xì)胞克隆形成率;酶聯(lián)免疫吸附試驗(ELISA)測定各組細(xì)胞葡萄糖-6-磷酸脫氫酶(G6PD)、還原型煙酰胺腺嘌呤二核苷酸磷酸(NADPH)水平;DCFH-DA熒光探針法檢測細(xì)胞內(nèi)活性氧(ROS)水平;流式細(xì)胞儀檢測細(xì)胞凋亡;γ-H2AX免疫熒光染色分析DNA損傷修復(fù)情況;Western blot檢測細(xì)胞中mTOR、p-mTOR、增殖細(xì)胞核抗原(PCNA)、Bcl-2相關(guān)X蛋白(Bax)、胱天蛋白酶3(caspase-3)、γ-H2AX蛋白的表達(dá)。結(jié)果 人參皂苷Rg3以劑量依賴性的方式抑制A549細(xì)胞的增殖(P<0.05);與對照組比較,放射組、人參皂苷Rg3組細(xì)胞克隆形成率、G6PD、ROS、NADPH水平下降,p-mTOR/mTOR、PCNA蛋白表達(dá)水平降低,細(xì)胞凋亡率、γ-H2AX焦點數(shù)、Bax、caspase-3、γ-H2AX蛋白表達(dá)水平升高(P<0.05);與放射組、人參皂苷Rg3組比較,聯(lián)合組細(xì)胞克隆形成率、G6PD、ROS、NADPH水平下降,p-mTOR/mTOR、PCNA蛋白表達(dá)水平降低,細(xì)胞凋亡率、γ-H2AX焦點數(shù)、Bax、caspase-3、γ-H2AX蛋白表達(dá)升高(P<0.05);與聯(lián)合組比較,激活劑組細(xì)胞克隆形成率、G6PD、ROS、NADPH水平升高,p-mTOR/mTOR、PCNA蛋白表達(dá)水平升高,細(xì)胞凋亡率、γ-H2AX焦點數(shù)、Bax、caspase-3、γ-H2AX蛋白表達(dá)水平降低(P<0.05)。結(jié)論 人參皂苷Rg3發(fā)揮抑制肺癌作用可能是通過抑制mTOR介導(dǎo)的PPP實現(xiàn)的。
關(guān)鍵詞:人參皂苷Rg3;肺腫瘤;輻射耐受性;輻射增敏藥;磷酸戊糖途徑;哺乳動物雷帕霉素靶蛋白
中圖分類號:R285,R734.2 文獻(xiàn)標(biāo)志碼:A DOI:10.11958/20222018
The radiosensitizing effect of ginsenoside Rg3 on lung cancer cells by inhibiting mTOR pathway-mediated pentose phosphate pathway
HUANG Lin, LI Bin, HU Zuowei
Department of Oncology, Wuhan NO.1 Hospital, Wuhan 430000, China
Corresponding Author E-mail: 827823053@qq.com
Abstract: Objective To investigate the influence of ginsenoside Rg3 on the radiosensitivity of lung cancer cells by inhibiting the pentose phosphate pathway (PPP) mediated by mammalian target of rapamycin (mTOR) pathway. Methods A549 lung cancer cells were treated with 0, 10, 20, 40, 60, 80 mg/L ginsenoside Rg3. The proliferation of A549 cells was detected by MTT method. Cells were divided into the control group (normal culture, no irradiation), the radiation group (X-ray irradiation), the ginsenoside Rg3 group (60 mg/L ginsenoside Rg3, no irradiation), the combination group (X-ray irradiation +60 mg/L ginsenoside Rg3) and the activator group (X-ray irradiation +60 mg/L ginsenoside Rg3+100 nmol/L mTOR pathway activator MHY1485). All of groups were irradiated by 8 GyX ray after 48 h of culture with corresponding drugs. Plate cloning experiment was applied to detect the formation rate of cell clones in each group. Enzyme-linked immunosorbent assay (ELISA) was applied to determine levels of glucose-6-phosphate dehydrogenase (G6PD) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) in cell supernatant of each group. DCFH-DA fluorescent probe method was applied to detect the level of intracellular reactive oxygen species (ROS). Cell apoptosis was detected by flow cytometry. γ-H2AX immunofluorescence staining was applied to analyze DNA damage repair. Western blot assay was applied to detect expression levels of mTOR, p-mTOR, proliferating cell nuclear antigen (PCNA), Bcl-2-associated X protein (Bax), caspase-3 and γ-H2AX protein in cells. Results Ginsenoside Rg3 inhibited the proliferation of A549 cells in a dose-dependent manner (P<0.05). Compared with the control group, the cell clone formation rate, G6PD, ROS, NADPH levels, p-mTOR/mTOR and PCNA protein expressions were significantly decreased in the radiation group and the ginsenoside Rg3 group, and the cell apoptosis rate, γ-H2AX foci number, Bax, caspase-3, γ-H2AX protein expressions were significantly increased (P<0.05). Compared with the radiation group and the ginsenoside Rg3 group, the cell clone formation rate, G6PD, ROS, NADPH levels, p-mTOR/mTOR, and PCNA protein expressions were significantly decreased in the combination group, the cell apoptosis rate, γ-H2AX foci number, Bax, caspase-3, γ-H2AX protein expressions were significantly increased (P<0.05). Compared with the combination group, the cell clone formation rate, G6PD, ROS, NADPH levels, p-mTOR/mTOR and PCNA protein expressions were significantly increased in the activator group, and the cell apoptosis rate, γ-H2AX foci number, Bax, caspase-3, γ-H2AX protein expressions were significantly decreased (P<0.05). Conclusion The inhibitory effect of ginsenoside Rg3 on lung cancer cells may be realized through inhibition of PPP mediated by mTOR.
Key words: Ginsenoside Rg3; lung neoplasms; radiation tolerance; radiation-sensitizing agents; pentose phosphate pathway; mammalian target of rapamycin
肺癌是全球最常見的惡性疾病之一,近年來,其發(fā)病率和死亡率迅速上升[1]。肺癌分為小細(xì)胞肺癌和非小細(xì)胞肺癌(NSCLC),其中以NSCLC較為多見[2]。放療是肺癌的主要治療方法之一,手術(shù)切除加放療可延長患者無病生存期和總生存期[3]。放療效果會受各方面影響,如何在不增加不良反應(yīng)的前提下進(jìn)一步增強放射治療效果,提高患者的生活質(zhì)量是國內(nèi)外研究熱點[4-5]。研究發(fā)現(xiàn),人參皂苷Rg3是一種潛在的治療NSCLC的天然藥物[6-7]。人參皂苷Rg3能減弱放化療不良反應(yīng),增強肺癌細(xì)胞對放射的敏感性[8-9]。此外,抑制哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)通路介導(dǎo)的糖酵解作用可增強NSCLC細(xì)胞的放療敏感性[10]。Tsouko等[11]發(fā)現(xiàn),mTOR介導(dǎo)的磷酸戊糖途徑(pentose phosphate pathway,PPP)在前列腺癌細(xì)胞的生長中發(fā)揮促進(jìn)作用。下調(diào)mTOR通路可抑制PPP和脂肪生成,從而降低黑色素瘤對維穆拉非尼的耐藥性[12]。但人參皂苷Rg3能否通過抑制mTOR通路介導(dǎo)的PPP影響肺癌細(xì)胞對放射的敏感性尚不明確。本研究旨在探討人參皂苷Rg3通過抑制mTOR通路介導(dǎo)的PPP,對肺癌細(xì)胞放射增敏的影響。
1 材料與方法
1.1 主要試劑及儀器
人肺癌細(xì)胞A549購于上海匹拓生物科技有限公司。人參皂苷Rg3、mTOR通路激活劑MHY1485購于北京伊塔生物科技有限公司;MTT試劑購于美國Sigma公司;兔源一抗Bcl-2相關(guān)X蛋白(Bax)、胱天蛋白酶3(caspase-3)、增殖細(xì)胞核抗原(PCNA)及辣根過氧化物酶標(biāo)記的羊抗兔二抗均購于英國Abcam公司;兔源一抗磷酸化γ-H2AX組蛋白H2AX、mTOR、p-mTOR均購于Proteintech中國公司;葡萄糖-6-磷酸脫氫酶(glucose-6-phosphate de-hydrogenase,G6PD)、酶聯(lián)免疫吸附試驗(ELISA)試劑盒、還原型煙酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate,NADPH)ELISA試劑盒購于上海富雨生物科技有限公司;DCFH-DA活性氧(ROS)熒光探針購于北京索萊寶科技有限公司;蛋白提取試劑盒購自亞科因(武漢)生物公司;DNA損傷檢測試劑盒(γ-H2AX免疫熒光法)購于廣州威佳科技有限公司;多功能全自動酶標(biāo)儀購于南京德鐵實驗設(shè)備有限公司;離心機購于艾本德中國有限公司;電泳儀購于美國Bio-Rad公司;流式細(xì)胞儀購于美國BD公司;srt100放療劑量儀購于北京康科達(dá)有限公司。
1.2 細(xì)胞培養(yǎng)
將A549細(xì)胞置于DMEM的培養(yǎng)基中,在恒溫培養(yǎng)箱中常規(guī)培養(yǎng),培養(yǎng)條件為37 ℃、5%CO2。定期觀察,及時更換新的培養(yǎng)基,當(dāng)細(xì)胞融合度達(dá)到85%以上時,用0.25%胰蛋白酶消化傳代,收集對數(shù)生長期的細(xì)胞進(jìn)行實驗。
1.3 MTT法檢測細(xì)胞增殖情況
將對數(shù)生長期A549細(xì)胞以1×104個/孔,接種到96孔板中,放入5%CO2、37 ℃細(xì)胞培養(yǎng)箱中孵育,設(shè)6個復(fù)孔,培養(yǎng)24 h后吸去原培養(yǎng)液,加入含0、10、20、40、60、80 mg/L人參皂苷Rg3[13]的培養(yǎng)液48 h后,加入MTT溶液20 μL/孔,再培養(yǎng)4 h后,加入二甲基亞砜150 μL/孔,在搖床上充分振蕩后,在酶標(biāo)儀上于490 nm波長處檢測各孔的吸光度(A490)值,細(xì)胞增殖抑制率(%)=[(A對照-A實驗)/(A對照-A空白)]×100%。
1.4 平板克隆實驗檢測各組細(xì)胞克隆形成能力
將對數(shù)生長期A549細(xì)胞接種在直徑60 mm細(xì)胞培養(yǎng)板中,將A549細(xì)胞分為對照組(正常培養(yǎng),不照射)、放射組(X射線照射)、人參皂苷Rg3組(60 mg/L人參皂苷Rg3,不照射)、聯(lián)合組(X射線照射+60 mg/L人參皂苷Rg3)、激活劑組(X射線照射+60 mg/L人參皂苷Rg3+100 nmol/L MHY1485[14])。培養(yǎng)24 h,待細(xì)胞貼壁后加入相對應(yīng)藥物培養(yǎng)48 h后,放射組、聯(lián)合組及激活劑組給予8 Gy X射線照射,照射后立即更換培養(yǎng)液,繼續(xù)培養(yǎng)14 d,甲醇固定細(xì)胞10 min,吉姆薩液染色30 min,水洗,干燥,計數(shù)克隆細(xì)胞數(shù)。計算細(xì)胞克隆形成率=克隆細(xì)胞數(shù)/接種細(xì)胞數(shù)×100%。
1.5 細(xì)胞G6PD、ROS、NADPH水平測定
將各組A549細(xì)胞懸液制成勻漿后按照G6PD、NADPH ELISA試劑盒檢測說明書,檢測細(xì)胞內(nèi)G6PD、NADPH水平,用DCFH-DA探針通過流式細(xì)胞術(shù)檢測細(xì)胞ROS的水平。
1.6 流式細(xì)胞儀檢測細(xì)胞凋亡
將各組A549細(xì)胞以預(yù)冷的PBS洗滌2次,添加100 μL結(jié)合緩沖液懸浮各組A549細(xì)胞,再分別添加Annexin V-FITC和PI染液5 μL,充分混勻,于室溫下避光染色15 min,離心棄上清液,加入0.5 mL PBS重懸細(xì)胞,使用流式細(xì)胞儀檢測細(xì)胞凋亡情況。
1.7 γ-H2AX免疫熒光染色分析DNA損傷修復(fù)情況
將對數(shù)生長期A549細(xì)胞爬片接種至培養(yǎng)皿中,培養(yǎng)24 h后,待細(xì)胞貼壁后按1.4描述的方法對各組進(jìn)行相應(yīng)處理,再培養(yǎng)48 h,用4 Gy X射線照射各組細(xì)胞,照射結(jié)束記為0 h,照射后立即更換培養(yǎng)液,3 h后收集細(xì)胞進(jìn)行固定和免疫熒光染色。用含DAPI的抗熒光淬滅封片液進(jìn)行封片,利用熒光顯微鏡觀察并拍照,計算每個細(xì)胞γ-H2AX平均焦點數(shù)。
1.8 Western blot檢測細(xì)胞中mTOR、p-mTOR、PCNA、Bax、caspase-3、γ-H2AX蛋白表達(dá)
提取各組A549細(xì)胞的總蛋白,定量后進(jìn)行聚丙烯酰胺凝膠電泳。轉(zhuǎn)膜后室溫條件下封閉2 h,最后再分別加入mTOR(1∶1 000)、p-mTOR(1∶1 000)、PCNA(1∶2 000)、Bax(1∶2 000)、caspase-3(1∶2 000)、γ-H2AX(1∶1 000)一抗在4 ℃條件下孵育過夜,加入二抗(1∶4 000)在室溫條件下孵育90 min,使用GAPDH作為內(nèi)源性對照。最后分析各個蛋白條帶的灰度值,計算各蛋白的相對表達(dá)水平。
1.9 統(tǒng)計學(xué)方法
采用Graphpad Prism 7.0軟件進(jìn)行數(shù)據(jù)分析。計量資料以x±s表示。多組間比較采用單因素方差分析,組間多重比較采用SNK-q檢驗。P<0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 人參皂苷Rg3對細(xì)胞的增殖的影響
經(jīng)0、10、20、40、60、80 mg/L人參皂苷Rg3處理的A549細(xì)胞增殖抑制率(%)分別為0、10.21±2.16、14.89±2.48、28.57±3.48、42.58±4.21和58.64±4.38,10、20、40、60、80 mg/L人參皂苷Rg3處理的A549細(xì)胞增殖抑制率相比0 mg/L人參皂苷Rg3處理下,以劑量依賴性的方式升高(n=6,F(xiàn)=288.244,P<0.05),人參皂苷Rg3對A549細(xì)胞的IC50為69.18 mg/L,本研究選取60 mg/L人參皂苷Rg3進(jìn)行后續(xù)實驗。
2.2 各組細(xì)胞克隆形成率變化
對照組、放射組、人參皂苷Rg3組、聯(lián)合組、激活劑組細(xì)胞克隆形成率(%)分別為98.23±4.82、76.54±3.74、54.31±3.58、37.82±3.43和58.61±3.66,差異有統(tǒng)計學(xué)意義(n=6,F(xiàn)=212.563,P<0.05)。與對照組比較,放射組、人參皂苷Rg3組細(xì)胞克隆形成率降低(P<0.05);與放射組、人參皂苷Rg3組比較,聯(lián)合組細(xì)胞克隆形成率降低(P<0.05);與聯(lián)合組比較,激活劑組細(xì)胞克隆形成率升高(P<0.05)。
2.3 各組細(xì)胞凋亡水平變化
對照組、放射組、人參皂苷Rg3組、聯(lián)合組和激活劑組細(xì)胞凋亡率(%)分別為10.36±2.14、18.48±3.10、23.25±2.68、45.58±3.45和24.65±3.21,差異有統(tǒng)計學(xué)意義(n=6,F(xiàn)=117.396,P<0.05)。與對照組相比較,放射組、人參皂苷Rg3組細(xì)胞凋亡率升高(P<0.05);與放射組、人參皂苷Rg3組比較,聯(lián)合組細(xì)胞凋亡率升高(P<0.05),與聯(lián)合組比較,激活劑組細(xì)胞凋亡率降低(P<0.05),見圖1。
2.4 各組細(xì)胞內(nèi)G6PD、ROS、NADPH水平比較
與對照組比較,放射組、人參皂苷Rg3組G6PD、ROS、NADPH水平降低(P<0.05);與放射組、人參皂苷Rg3組比較,聯(lián)合組G6PD、ROS、NADPH水平降低(P<0.05);與聯(lián)合組比較,激活劑組G6PD、ROS、NADPH水平升高(P<0.05)。見表1。
2.5 各組細(xì)胞中γ-H2AX焦點數(shù)比較
對照組、放射組、人參皂苷Rg3組、聯(lián)合組和激活劑組γ-H2AX焦點數(shù)(個/視野)分別為3.14±0.70、22.15±2.17、27.68±2.54、43.32±3.46和25.71±2.68,差異有統(tǒng)計學(xué)意義(n=6,F(xiàn)=201.470,P<0.05)。與對照組比較,放射組、人參皂苷Rg3組細(xì)胞內(nèi)γ-H2AX焦點數(shù)增加(P<0.05);與放射組、人參皂苷Rg3組比較,聯(lián)合組細(xì)胞內(nèi)γ-H2AX焦點數(shù)增加(P<0.05);與聯(lián)合組比較,激活劑組細(xì)胞內(nèi)γ-H2AX焦點數(shù)減少(P<0.05),見圖2。
2.6 各組細(xì)胞mTOR、p-mTOR、PCNA、Bax、caspase-3、γ-H2AX蛋白表達(dá)水平比較
與對照組比較,放射組、人參皂苷Rg3組p-mTOR/mTOR、PCNA蛋白表達(dá)水平降低,Bax、caspase-3、γ-H2AX蛋白表達(dá)水平升高(P<0.05);與放射組、人參皂苷Rg3組比較,聯(lián)合組p-mTOR/mTOR、PCNA蛋白表達(dá)水平降低,Bax、caspase-3、γ-H2AX蛋白表達(dá)水平升高(P<0.05);與聯(lián)合組比較,激活劑組p-mTOR/mTOR、PCNA蛋白表達(dá)水平升高,Bax、caspase-3、γ-H2AX蛋白表達(dá)水平降低(P<0.05)。見圖3、表2。
3 討論
肺癌已成為人類癌癥死亡的主要原因之一,嚴(yán)重威脅著患者的生活質(zhì)量和生命安全[15]。尋找安全有效的治療肺癌藥物具有重要意義。人參皂苷Rg3是人參中的主要活性成分,具有廣泛藥理作用,如抗疲勞、抗氧化、降血糖、增強免疫功能等[7]。此外,人參皂苷Rg3在腫瘤的預(yù)防和治療中發(fā)揮重要的作用,不僅可以抑制乳腺癌[16]、消化系統(tǒng)腫瘤[17]、肺癌等癌癥的發(fā)生發(fā)展,還可提高肺癌對放療的敏感性[8-9,18]。γ-H2AX蛋白是DNA損傷標(biāo)志物,其產(chǎn)生的數(shù)量與DNA雙鏈斷裂呈正相關(guān)[19]。PCNA蛋白可以反映細(xì)胞增殖狀態(tài),其表達(dá)水平越高,表明細(xì)胞增殖越快。caspase-3是細(xì)胞凋亡過程中的剪切酶,Bax是細(xì)胞中的凋亡蛋白,在細(xì)胞發(fā)生凋亡時,Bax、caspase-3蛋白表達(dá)量水平顯著升高[20-21]。本研究發(fā)現(xiàn),人參皂苷Rg3通過抑制A549細(xì)胞的增殖,降低PCNA蛋白表達(dá)和細(xì)胞克隆形成率,提高Bax、caspase-3、γ-H2AX蛋白表達(dá)和細(xì)胞凋亡率,增加γ-H2AX焦點數(shù),從而發(fā)揮抑制肺癌作用,聯(lián)合X射線照射效果更強。
G6PD是PPP的限速酶,PPP產(chǎn)生的NADPH作為供氫體參與脂肪酸、氧化還原等代謝過程。G6PD在正常細(xì)胞的表達(dá)及活性被嚴(yán)格控制,而在腫瘤細(xì)胞其活性被異常激活,G6PD穩(wěn)定敲低可以抑制癌細(xì)胞的遷移[22]。PPP通過提供DNA損傷修復(fù)原料及NADPH,在DNA損傷修復(fù)過程中起重要作用[23]。研究發(fā)現(xiàn),清燥救肺湯(主要成分枇杷葉、麥冬、黨參片等)通過抑制G6PD和NADPH氧化酶表達(dá)、減少ROS含量,抑制PPP,從而發(fā)揮抑制肺癌的作用[24]。本研究中人參皂苷Rg3與X射線照射抑制DNA損傷修復(fù)可能是通過降低G6PD、NADPH及ROS水平來實現(xiàn)的。另有研究表明,抑制mTOR介導(dǎo)的PPP在抑制腫瘤生長,克服耐藥性方面發(fā)揮重要作用[11-12]。Marquard等[25]研究發(fā)現(xiàn),激活的mTOR信號通路可能通過增強DNA修復(fù)機制,與放療敏感性和細(xì)胞抑制藥物的耐藥性有關(guān),而使用mTOR的抑制劑后,可顯著抑制細(xì)胞和小鼠模型中的腫瘤細(xì)胞增殖,增強放射敏感性。本研究發(fā)現(xiàn),使用mTOR激活劑不但可以減弱人參皂苷Rg3聯(lián)合X射線照射對A549細(xì)胞增殖及DNA損傷修復(fù)的抑制作用,而且還能減弱對細(xì)胞凋亡的促進(jìn)及放射敏感性的增強作用,提示人參皂苷Rg3發(fā)揮抑制肺癌的作用可能是通過抑制mTOR介導(dǎo)的PPP實現(xiàn)的。
綜上所述,人參皂苷Rg3可能通過抑制mTOR介導(dǎo)的PPP,抑制A549細(xì)胞增殖、促進(jìn)細(xì)胞凋亡、加速細(xì)胞DNA損傷,進(jìn)而增強A549細(xì)胞對放療的敏感性。但本研究僅在細(xì)胞水平上進(jìn)行驗證,后續(xù)將在體內(nèi)進(jìn)行進(jìn)一步探索。
參考文獻(xiàn)
[1] BADE B C,DELA CRUZ C S. Lung Cancer 2020:epidemiology,etiology,and prevention[J]. Clin Chest Med,2020,41(1):1-24. doi:10.1016/j.ccm.2019.10.001.
[2] HOWLADER N,F(xiàn)ORJAZ G,MOORADIAN M J,et al. The effect of advances in lung-cancer treatment on population mortality[J]. N Engl J Med,2020,383(7):640-649. doi:10.1056/NEJMoa1916623.
[3] HUI Z,MEN Y,HU C,et al. Effect of postoperative radiotherapy for patients with pIIIA-N2 non-small cell lung cancer after complete resection and adjuvant chemotherapy:the phase 3 PORT-C randomized clinical trial[J]. JAMA Oncol,2021,7(8):1178-1185. doi:10.1001/jamaoncol.2021.1910.
[4] JIE X,F(xiàn)ONG W P,ZHOU R,et al. USP9X-mediated KDM4C deubiquitination promotes lung cancer radioresistance by epigenetically inducing TGF-β2 transcription[J]. Cell Death Differ,2021,28(7):2095-2111. doi:10.1038/s41418-021-00740-z.
[5] LIU Y,CROWE W N,WANG L,et al. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases[J]. Nat Commun,2019,10(1):5108. doi:10.1038/s41467-019-13094-5.
[6] 王愛華,劉維,金玥,等. 人參皂苷Rg3:一種潛在的治療非小細(xì)胞肺癌的天然藥物[J]. 中華中醫(yī)藥學(xué)刊,2022,40(2):156-159,272. WANG A H,LIU W,JIN Y,et al. Ginsenoside Rg3:a potential natural drug in treatment of non-small cell lung cancer[J]. Chinesearchives of traditional chinese medicine,2022,40(2):156-159,272. doi:10.13193/j.issn.1673-7717.2022.02.03.
[7] 喬雪涵,岳麗玲,朱文斌. 人參皂苷Rg3的抗腫瘤作用研究現(xiàn)狀[J]. 中國臨床藥理學(xué)雜志,2021,37(10):272-1276. QIAO X H,YUE L L,ZHU W B. Research progress of ginsenoside Rg3 in anticancer effects[J]. Chin J Clin Pharmacol,2021,37(10):272-1276. doi:10.13699/j.cnki.1001-6821.2021.10.032.
[8] 黃琳,李彬,胡作為. 人參皂苷Rg3通過調(diào)控PXN-AS1促進(jìn)肺癌放射增敏的機制探討[J]. 中西醫(yī)結(jié)合研究,2022,14(4):239-242,252. HUANG L,LI B,HU Z W. Mechanism of ginsenoside Rg3 promoting radiosensitization in lung cancer by regulating PXN-AS1[J]. Research of Integrated Traditional Chinese and Western MedicineAug,2022,14(4):239-242,252. doi:10.3969/j.issn.1674-4616.2022.04.006.
[9] YANG M,SHEN C,ZHU S J,et al. Chinese patent medicine Aidi injection for cancer care:an overview of systematic reviews and meta-analyses[J]. J Ethnopharmacol,2022,282:114656. doi:10.1016/j.jep.2021.114656.
[10] 張樸花,徐志廣. 苦參堿通過抑制mTOR通路介導(dǎo)的糖酵解作用增強非小細(xì)胞肺癌細(xì)胞的放療敏感性[J]. 中藥材,2020,43(10):2559-2564. ZHANG P H,XU Z G. Matrine enhances the radiosensitivity of non-small cell lung cancer cells by inhibiting mTOR pathway-mediated glycolysis[J]. Journal of Chinese Medicinal Materials,2020,43(10):2559-2564. doi:10.13863/j.issn1001-4454.2020.10.040.
[11] TSOUKO E,KHAN A S,WHITE M A,et al. Regulation of the pentose phosphate pathway by an androgen receptor-mTOR-mediated mechanism and its role in prostate cancer cell growth[J]. Oncogenesis,2014,3(5):e103. doi:10.1038/oncsis.2014.18.
[12] WANG L,OTKUR W,WANG A,et al. Norcantharidin overcomes vemurafenib resistance in melanoma by inhibiting pentose phosphate pathway and lipogenesis via downregulating the mTOR pathway[J]. Front Pharmacol,2022,13:906043. doi:10.3389/fphar.2022.906043.
[13] 孟子琪,張睿,吳旭微,等. 人參皂苷Rg3靶向Wnt/β-連環(huán)蛋白信號通路調(diào)控胃癌順鉑耐藥性[J]. 中國醫(yī)學(xué)科學(xué)院學(xué)報,2022,44(3):366-376. MENG Z Q,ZHANG R,WU X W,et al. Ginsenoside Rg3 regulates cisplatin resistance in gastrsc cancer by Wnt/β-catenin signaling pathway[J]. Acta Academiae Medicinae Sinicae,2022,44(3):366-376. doi:10.3881/j.issn.1000-503X.14775
[14] 姚劉旭,滕文彬,黃素琴,等. mTOR/P70S6K/HIF-1α信號通路在脂多糖誘導(dǎo)Caco-2細(xì)胞屏障損傷中的作用及機制[J]. 中國病理生理雜志,2022,38(1):122-129. YAO L X,TENG W B,HUANG S Q,et al. Role of mTOR/P70S6K/HIF-1α signaling pathway in Caco-2 cell barrier injury induced by lipopolysaccharide[J]. Chinese Journal of Pathophysiology,2022,38(1):122-129. doi:10.3969/j.issn.1000-4718.2022.01.016.
[15] TOUMAZIS I,BASTANI M,HAN S S,et al. Risk-based lung cancer screening:a systematic review[J]. Lung Cancer,2020,147:154-186. doi:10.1016/j.lungcan.2020.07.007.
[16] NAKHJAVANI M,HARDINGHAM J E,PALETHORPE H M,et al. Ginsenoside Rg3:potential molecular targets and therapeutic indication in metastatic breast cancer[J]. Medicines(Basel),2019,6(1):17-36. doi:10.3390/medicines6010017.
[17] PAN L,ZHANG T,SUN H,et al. Ginsenoside Rg3(Shenyi Capsule) combined with chemotherapy for digestive system cancer in China:a meta-analysis and systematic review[J]. Evid Based Complement Alternat Med,2019,2019:2417418. doi:10.1155/2019/2417418.
[18] LIANG Y,ZHANG T,JING S,et al. 20(S)-Ginsenoside Rg3 inhibits lung cancer cell proliferation by targeting EGFR-mediated Ras/Raf/MEK/ERK pathway[J]. Am J Chin Med,2021,49(3):753-765. doi:10.1142/S0192415X2150035X.
[19] PLAPPERT-HELBIG U,LIBERTINI S,F(xiàn)RIEAUFF W,et al. Gamma-H2AX immunofluorescence for the detection of tissue-specific genotoxicity in vivo[J]. Environ Mol Mutagen,2019,60(1):4-16. doi:10.1002/em.22238.
[20] GONZáLEZ-MAGA?A A,BLANCO F J. Human PCNA structure,function and interactions[J]. Biomolecules,2020,10(4):570-588. doi:10.3390/biom10040570.
[21] WANG Z,CHEN X,LIU N,et al. A nuclear long non-coding RNA LINC00618 accelerates ferroptosis in a manner dependent upon apoptosis[J]. Mol Ther,2021,29(1):263-274. doi:10.1016/j.ymthe.2020.09.024.
[22] 白宏剛,張巧,況應(yīng)敏,等. 葡萄糖-6-磷酸脫氫酶穩(wěn)定敲低對腎透明細(xì)胞癌細(xì)胞遷移的抑制作用[J]. 醫(yī)學(xué)研究生學(xué)報,2018,31(7):697-702. BAI H G,ZHANG Q,KUANG Y M,et al. Stable G6PD knockdown inhibits the migration of renal cell carcinoma cells[J].J Med Postgra,2018,31(7):697-702. doi:10.16571/j.cnki.1008-8199.2018.07.006.
[23] 郭翠,唐然,江世杰,等. 耐輻射異常球菌磷酸戊糖途徑對DNA損傷修復(fù)的影響[J]. 核農(nóng)學(xué)報,2016,30(2):252-258. GUO C,TANG R,JIANG S J,et al. Effects of pentose phosphate pathway on DNA damage repair in deinococcus radiodurans[J]. Journal of Nuclear Agricultural Sciences,2016,30(2):252-258. doi:10.11869/j.issn.100-8551.2016.02.0252.
[24] 陳江濤,余功,謝斌. 清燥救肺湯對肺癌磷酸戊糖能量代謝途徑的關(guān)鍵酶G6PD活性及其調(diào)控因子的影響[J]. 中國實驗方劑學(xué)雜志,2020,26(4):59-63. CHEN J T,XU G,XIE B. Effect of Qingzao Jiufei Tang on enzymatic activity and regulatory factor of key enzyme G6PD in pentose phosphate energy metabolism pathway in lung cancer[J]. Chinese Journal of Experimental Traditional Medical Formulae,2020,26(4):59-63. doi:10.13422/j.cnki.syfjx.20200426.
[25] MARQUARD F E,J?CKER M. PI3K/AKT/mTOR signaling as a molecular target in head and neck cancer[J]. Biochem Pharmacol,2020,172:113729. doi:10.1016/j.bcp.2019.113729.
(2022-12-08收稿 2023-02-10修回)
(本文編輯 李志蕓)