馬運婷 鄭月 王璐靜 沙立輝 趙新湘
摘要:非酒精性脂肪性肝病(NAFLD)可導(dǎo)致心肌損傷,是心功能不全的危險因素。心肌應(yīng)變(MS)檢測技術(shù)是近年快速發(fā)展的新技術(shù),已成為量化心肌形變、診斷及預(yù)測亞臨床心肌損傷的常用工具。MS不僅能準(zhǔn)確評估局部和整體心肌損傷,還能檢測出射血分數(shù)正常的NAFLD患者心功能改變。認識NAFLD造成的心肌損傷,通過MS檢測技術(shù)及時檢測、診斷及預(yù)測NAFLD患者心功能障礙,對預(yù)防NAFLD患者進展為不可逆心力衰竭具有重要臨床意義。就NAFLD造成心肌損傷的病理生理機制、MS檢測技術(shù)及MS檢測技術(shù)在NAFLD患者心房心室中的運用進行綜述。
關(guān)鍵詞:非酒精性脂肪肝??;超聲心動描記術(shù),多普勒;磁共振血管造影術(shù);心肌應(yīng)變;心肌損傷
中圖分類號:R455.1,R445.2文獻標(biāo)志碼:ADOI:10.11958/20221772
Research progress of myocardial strain detection technique in myocardial injury of
non-alcoholic fatty liver disease
MA Yunting, ZHENG Yue, WANG Lujing, SHA Lihui, ZHAO Xinxiang
Department of Radiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
Corresponding Author E-mail: zhaoxinxiang2918@outlook.com
Abstract: Non-alcoholic fatty liver disease (NAFLD) can lead to myocardial damage and is a risk factor for cardiac insufficiency. Myocardial strain (MS) detection is a new technique that has been rapidly developed in recent years and has become a common tool for quantifying myocardial deformation and diagnosing and predicting subclinical myocardial injury. MS can not only accurately assess local and global myocardial injury, but also detect changes of cardiac function in NAFLD patients with? normal ejection fraction. Understanding myocardial injury caused by NAFLD, timely detection, diagnosis and prediction of cardiac dysfunction in patients with NAFLD by MS detection technique are of great clinical significance in preventing the progression of irreversible heart failure. This article reviews the pathophysiological mechanisms of myocardial injury caused by NAFLD, MS detection techniques and the use of MS detection techniques in atria and ventricle in patients with NAFLD.
Key words: non-alcoholic fatty liver disease; echocardiography, doppler; magnetic resonance angiography; myocardial strain; myocardial damage
非酒精性脂肪性肝?。∟AFLD)是一種與代謝及遺傳密切相關(guān)的疾病,影響著全球約四分之一人口,隨著人們生活方式改變和肥胖人數(shù)增加,NAFLD的患病率也呈逐年上升趨勢[1]。既往研究顯示,NAFLD會增加冠狀動脈粥樣硬化、心肌病、心律失常及心力衰竭的風(fēng)險,從而導(dǎo)致心血管疾病發(fā)病率和死亡率增加[2]。此外,已有研究證實心血管疾病是NAFLD患者死亡的主要原因[3]。心肌應(yīng)變(myocardial strain,MS)是評估心臟功能的一個重要指標(biāo),具有早期檢測、診斷及預(yù)測亞臨床心功能損傷以及對心功能分級的優(yōu)勢。目前已有部分學(xué)者將MS檢測技術(shù)用于診斷及預(yù)測NAFLD患者心功能改變,但關(guān)于NAFLD患者心肌損傷的研究仍存在較多爭議。本文就MS檢測技術(shù)在NAFLD患者心肌損傷中的研究進展進行綜述,為NAFLD的臨床診治提供新思路。
1 NAFLD患者心肌損傷機制
NAFLD是心功能障礙的獨立影響因素,以舒張功能障礙為主。MS可以檢測及診斷出射血分數(shù)(ejection fraction,EF)正常的NAFLD患者的心功能改變。NAFLD導(dǎo)致心功能障礙的潛在病理、生理機制如下:(1)心肌代謝受損。在NAFLD患者中,過多的三酰甘油(triglyceride,TG)及游離脂肪酸被心肌細胞攝取,從而誘導(dǎo)心臟胰島素抵抗,導(dǎo)致心肌磷酸肌酸與腺苷三磷酸比值(PCr/ATP)降低,引起心肌代謝受損,從而導(dǎo)致心功能障礙[4]。Houghton等[5]研究亦發(fā)現(xiàn),在NAFLD患者中,肝臟的脂肪量、代謝控制水平都與心肌損傷程度有關(guān)。(2)自主神經(jīng)功能障礙。研究證實,NAFLD與心臟交感神經(jīng)和副交感神經(jīng)平衡受損有關(guān),主要表現(xiàn)為交感神經(jīng)活動增強和副交感神經(jīng)活動減弱[6-7]。然而,持續(xù)的交感神經(jīng)活動會導(dǎo)致左心室重構(gòu)、室性心動過速、心源性猝死及心肌細胞結(jié)構(gòu)和功能的改變;NAFLD的持續(xù)時間和嚴(yán)重程度直接影響自主神經(jīng)功能障礙的程度[5]。因此,隨著NAFLD患者嚴(yán)重程度增加,自主神經(jīng)功能障礙越嚴(yán)重,心臟結(jié)構(gòu)和功能也越易受損。(3)心外膜脂肪組織(epicardial adipose tissue,EAT)增厚。EAT是內(nèi)臟脂肪的特殊形式,正常生理狀況下,EAT發(fā)揮緩沖、抗炎、抗氧化及保溫作用,但過多的脂肪堆積會促使血管周圍保護性脂肪轉(zhuǎn)變?yōu)橛泻π灾荆瑥亩鴮?dǎo)致冠狀動脈病變及心室舒張功能障礙。有研究發(fā)現(xiàn)在NAFLD患者中,EAT的厚度和體積均會增加,且EAT的厚度不僅與NAFLD的嚴(yán)重程度有關(guān),還與NAFLD患者左心室舒張早期二尖瓣血流速度峰值(E峰)與二尖瓣心房收縮期血流速度峰值(A峰)的比值呈負相關(guān)[8-9]。
2 MS的常見參數(shù)及評估技術(shù)
MS指在外力作用下心肌發(fā)生形變的程度,通常以百分比(%)表示。心肌纖維主要由縱向纖維和環(huán)形纖維組成。在心動周期中,心肌運動時2種纖維共同參與心肌的縱向、周向、徑向及旋轉(zhuǎn)運動,從而產(chǎn)生相應(yīng)的應(yīng)變。應(yīng)變率(strain rate,SR)反映心肌發(fā)生形變的速度,不受周圍組織牽拉及整體位移的影響,可準(zhǔn)確反映心肌運動的細微變化[10]。目前,測量MS的參數(shù)主要有單純形變和SR。單純形變包括評估心室的縱向應(yīng)變(LS)、周向應(yīng)變(CS)、徑向應(yīng)變(RS)以及評估心房的儲存應(yīng)變(εs)、管道應(yīng)變(εe)、泵應(yīng)變(εa)。SR包括縱向收縮期應(yīng)變率(LSR-S)、周向收縮期應(yīng)變率(CSR-S)、徑向收縮期應(yīng)變率(RSR-S)、縱向舒張期應(yīng)變率(LSR-D)、周向舒張期應(yīng)變率(CSR-D)、徑向舒張期應(yīng)變率(RSR-D)、正向峰值應(yīng)變率(SRs)、早期負向峰值應(yīng)變率(SRe)、晚期負向峰值應(yīng)變率(SRa)。雖然傳統(tǒng)的左心室射血分數(shù)(LVEF)、心輸出量及室壁厚度等指標(biāo)可用來評估心肌的整體功能,但無法精確測量心肌形變,而MS在評估心肌局部和整體功能上優(yōu)勢突出。目前,用于評估MS的技術(shù)有超聲心動圖斑點追蹤(STE)技術(shù)、計算機體層成像特征追蹤(CT-FT)技術(shù)[11-12]、心臟磁共振(CMR)評估的組織標(biāo)記技術(shù)、特征追蹤成像(FTI)技術(shù)、心臟形變應(yīng)力算法分析(DRA)技術(shù)[13]及應(yīng)變編碼技術(shù)等。其中,STE在MS評估中應(yīng)用最廣泛,但其準(zhǔn)確性和可行性高度依賴于圖像質(zhì)量及檢查者的操作。近幾年,隨著CT技術(shù)在空間分辨率和減少輻射劑量等方面的提高,關(guān)于CT-FT技術(shù)的研究日漸增多[14]。CT-FT評估MS的方法與STE技術(shù)相似,均是通過識別多個追蹤點達到目的。研究顯示,CT-FT與已建立的應(yīng)變測量參數(shù)(CMR-FT和STE)有關(guān),且具有高度可重復(fù)性和一致性[12]。然而,患者在進行CT-FT檢查的過程中存在對比劑過敏的風(fēng)險,且CT-FT具有一定的輻射性,因此,CT-FT對MS的評估主要用于回聲窗較差和有CMR檢查禁忌的患者。CMR組織標(biāo)記技術(shù)是評估MS的金標(biāo)準(zhǔn),但因影像分辨率低及需要特殊的掃描序列及復(fù)雜的圖像采集限制了其臨床應(yīng)用。CMR-FT是一種新的后處理方法,可以回顧性地在標(biāo)準(zhǔn)平衡穩(wěn)態(tài)自由進動電影序列上勾畫心臟內(nèi)外膜,測量出心肌局部及整體的MS值,臨床操作便捷,被認為是評估心肌應(yīng)變的首選技術(shù)[15]。目前,用于評估NAFLD患者心功能的技術(shù)主要是STE,其次是CMR-FT。
3 基于STE評估的NAFLD患者心肌損傷
3.1 NAFLD患者左心室變化
在NAFLD患者中,左心室損傷初期,代償機制可以維持正常的每搏輸出量,因此早期LVEF并不會下降,而MS可以檢測到亞臨床的心肌微小形變,主要表現(xiàn)為應(yīng)變參數(shù)的改變(如LS、LSR降低)。Baktir等[16]利用二維斑點追蹤超聲心動圖(two-dimensional STE,2D-STE)評估28例經(jīng)肝活檢確診的無高血壓及糖尿病的NASH患者左心室功能時發(fā)現(xiàn),與健康對照組相比,NASH患者LVEF差異無統(tǒng)計學(xué)意義,但NASH患者LS、LSR及RS、RSR顯著降低,且RS、LS與患者的舒張壓、總膽固醇及低密度脂蛋白膽固醇水平無關(guān),提示左心室舒張功能改變與NASH獨立相關(guān)。Altekin等[17-18]利用2D-STE對非酒精性肝硬化患者的研究亦發(fā)現(xiàn),與健康對照組比較,即便非酒精性肝硬化患者的LVEF及每搏輸出量正常,但左心室的LS和LSR-S仍明顯降低,CS和CSR-S明顯增加,而2組RS、RSR-S差異并無統(tǒng)計學(xué)意義。因此,目前關(guān)于NAFLD患者LS、LSR的研究結(jié)果較一致,但關(guān)于RS、RSR、CS、CSR卻有不同的結(jié)論,主要原因可能是心內(nèi)膜下存在縱向纖維,縱向纖維對于心肌缺血、缺氧及壓力負荷等因素更加敏感,從而導(dǎo)致在疾病早期LS和LSR較敏感。Leung等[19]也證實,LS和LSR是亞臨床左心室功能障礙較敏感的指標(biāo)。
三維斑點追蹤超聲心動圖技術(shù)(3D-STE)縮短了檢查時間,并且能夠追蹤心肌斑點運動,檢測各個方向的MS,從而提供更準(zhǔn)確的MS信息[20]。EL Amrousy等[21]利用3D-STE對沒有任何心臟疾病的NAFLD患兒的研究顯示,與健康對照組和無NAFLD組相比,LVEF正常的NAFLD患兒整體縱向應(yīng)變(GLS)、整體周向應(yīng)變(GCS)、整體徑向應(yīng)變(GRS)及整體面積應(yīng)變(GAS)均降低,NAFLD嚴(yán)重程度與GLS呈高度負相關(guān)(r=-0.742,P<0.001),與GRS、GAS呈中度負相關(guān)(r分別為-0.515和-0.501,P<0.001),與GCS呈弱的負相關(guān)(r=-0.108,P=0.040)。Wang等[22-24]研究結(jié)論也與此相近。因此,NAFLD患者不僅存在亞臨床左心室功能障礙,且隨著NAFLD嚴(yán)重程度增加,左心室心功能越易受損。此外,VanWagner等[25]研究發(fā)現(xiàn),隨著時間的推移,NAFLD患者不僅左心室GLS、GCS出現(xiàn)惡化,LVEF也會降低。由此可見,在NAFLD患者中,左心室功能障礙可能在短時間內(nèi)出現(xiàn)惡化。因此,識別NAFLD患者亞臨床心肌損傷是必要的,有利于臨床早期干預(yù)。
Sonaglioni等[26]研究顯示,盡管2D-TTE評估的92例NAFLD患者左心室收縮功能正常,但仍有64.1%患者的GLS降低(大于20%);年齡、高血壓、LSM、GLS及他汀類藥物均是NAFLD患者亞臨床動脈粥樣硬化(頸總動脈內(nèi)膜厚度>9 mm)獨立影響因素,GLS大于20%是預(yù)測NAFLD患者亞臨床動脈粥樣硬化的最佳臨界值。由此可見,在NAFLD患者中,MS除了可以檢測NAFLD患者亞臨床心功能障礙之外,還可以預(yù)測亞臨床動脈粥樣硬化。
3.2 NAFLD患者左心房變化
在1個心動周期中,左心房(left atrial,LA)具有儲存、管道及泵功能。LASRe和LA主動射血分數(shù)(left atrial active ejection fraction,LAAEF)反映LA管道功能,并將血液從肺靜脈輸送到左心室,與左心室早期舒張功能有關(guān)。LASRa和LA被動射血分數(shù)(left atrial passive ejection fraction,LAPEF)反映LA的泵功能,并將LA剩余的血液泵入左心室,與左心室晚期舒張功能有關(guān)。LASRs反映LA儲存功能,該功能是將血液從LA推到左心室,與LA舒張功能和左心室收縮功能有關(guān)。由此可見,評估NAFLD患者LA功能的亞臨床改變,可為臨床早期發(fā)現(xiàn)和預(yù)防相關(guān)心血管疾病提供理論依據(jù)。
Chang等[27-28]研究顯示,在2型糖尿病合并NAFLD患者中,與無NAFLD組和輕度NAFLD組相比,中-重度NALFD患者LA管道功能降低,表現(xiàn)為LAPEF、LASRe、LASRs明顯降低;其次,LA助力泵功能增強,LA主動收縮以代償左心室舒張功能下降,表現(xiàn)為LAAEF和LASRa明顯增加;調(diào)整了混雜因素(糖化血紅蛋白和BMI)后,NAFLD與LASRs、LASRe及LASRa具有相關(guān)性。Lai等[29]研究顯示,與無NAFLD患者相比,低纖維化評分NAFLD組(纖維化評分<-1.455)的LASRs、LASRe降低,LASRa增加;與低纖維化評分NAFLD組相比,高纖維化評分NAFLD組(纖維化評分≥-1.455)LASRs、LASRe、LASRa均降低,但LASRa差異無統(tǒng)計學(xué)意義,校正了年齡、性別及代謝因素后,肝纖維化評分與LASRs、LASRe相關(guān)。
綜上所述,NAFLD會導(dǎo)致LA儲存功能及管道功能受損,但關(guān)于NAFLD對泵功能的影響目前尚存很大爭議,有待進一步大樣本的研究證實。
4 NAFLD患者右心功能變化
既往關(guān)于NAFLD對心臟的研究大多基于左心功能,但由于NAFLD不僅可引起肝細胞過量的脂質(zhì)積累,還可導(dǎo)致心肌細胞的脂質(zhì)沉積,從而引起左右心功能均受損,因此對于右心功能的研究也不容忽視。Bekler等[30]利用常規(guī)超聲心動圖參數(shù)對NAFLD患者進行研究發(fā)現(xiàn),NAFLD患者的右心室舒張功能受損,受損程度與NAFLD患者的肝硬化嚴(yán)重程度呈正相關(guān)。然而,在該研究中并未發(fā)現(xiàn)NAFLD患者的右心室收縮功能受損。一項利用2D-STE對90例經(jīng)肝活檢確診的NAFLD患者的研究顯示,NAFLD患者的右心室功能受損且NASH評分與右心室GLS呈負相關(guān),NAFLD是右心室功能受損的獨立影響因素[31]。Sonaglioni等[23]研究顯示,盡管92例NAFLD患者的心室收縮功能正常正常,但右心室GLS受損的患者達31.5%,右心房整體應(yīng)變受損患者達41.3%。以上研究提示,NAFLD患者存在亞臨床的右心功能受損,但目前關(guān)于NAFLD與右心功能的研究尚且較少,有待進一步探索。
5 基于CMR的MS評估NAFLD患者心肌損傷
CMR被認為是無創(chuàng)性評估心臟結(jié)構(gòu)和功能的參考標(biāo)準(zhǔn),可提供詳細的心臟功能指標(biāo),結(jié)合MR光譜技術(shù),還可以量化心肌細胞內(nèi)的TG[32]。Hallsworth等[33]利用CMR標(biāo)記技術(shù)和磁共振波譜技術(shù)評估NAFLD患者左心室結(jié)構(gòu)、功能、扭轉(zhuǎn)及能量代謝變化時發(fā)現(xiàn),與健康對照組相比,NAFLD患者的左心室能量代謝(PCr/ATP)無明顯改變,但左心室的室壁厚度及偏心率顯著升高,整體收縮期應(yīng)變及GCS增加,心肌順應(yīng)性下降,表明在NAFLD患者中,即使能量代謝無損傷,但左心室形態(tài)和功能已發(fā)生了變化。另有研究顯示,肥厚型心肌病患者GLS的降低與GCS降低有關(guān),且心肌的扭轉(zhuǎn)角度增加[34]。然而,Hallsworth等[33]對NAFLD患者的研究顯示,雖然NAFLD患者的GLS降低,但心內(nèi)膜下CS和GCS增加,且扭轉(zhuǎn)角度不變,意味著NAFLD患者的心內(nèi)膜下和心外膜下心肌收縮功能相對正常。通常情況下,如果心內(nèi)膜下收縮功能受損,通過心外膜下心肌收縮抵消扭轉(zhuǎn)的作用效果較差,將會導(dǎo)致扭轉(zhuǎn)角度增加。目前,已有研究將人工智能技術(shù)與CMR相結(jié)合。Hammouda等[35]開發(fā)了一種新的自動化算法并使之與CMR電影相結(jié)合來評估小鼠的心臟功能和應(yīng)變參數(shù),其限制了來自心臟運動噪聲的影響,可以準(zhǔn)確評估心肌應(yīng)變,且分析結(jié)果與MR標(biāo)記技術(shù)測得的數(shù)據(jù)無明顯差異。該人工智能與CMR的結(jié)合既體現(xiàn)了運用的可行性,又避免了臨床上對CMR標(biāo)記技術(shù)的需求。但目前尚鮮見關(guān)于CMR與人工智能結(jié)合評估NAFLD患者MS的研究。此外,CMR還可以將應(yīng)變技術(shù)與心肌灌注、延遲增強、T1 mapping及細胞外容積分數(shù)等結(jié)合,從而從病理、生理等方面對NAFLD患者心臟進行分析,但目前關(guān)于NAFLD結(jié)合CMR的研究尚少見,且這類研究只結(jié)合了CMR波譜及MS,有關(guān)CMR組織特征成像的研究鮮見。
6 小結(jié)
MS不僅可用于檢測、診斷EF正常的NAFLD患者心功能障礙,還可以預(yù)測NAFLD患者心功能損傷的嚴(yán)重程度及亞臨床動脈粥樣硬化,但目前大部分研究中NAFLD診斷并非經(jīng)肝活檢診斷,且各研究者間結(jié)果也并不一致。此外,雖然CMR被認為是測量MS的參考標(biāo)準(zhǔn),但目前關(guān)于NAFLD結(jié)合CMR評估MS的研究尚少。
參考文獻
[1] HUANG D Q,EL-SERAG H B,LOOMBA R. Global epidemiology of NAFLD-related HCC:trends,predictions,risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol,2021,18(4):223-238. doi:10.1038/s41575-020-00381-6.
[2] TARGHER G,COREY K E,BYRNE C D. NAFLD,and cardiovascular and cardiac diseases:factors influencing risk,prediction and treatment[J]. Diabetes Metab,2021,47(2):101215. doi:10.1016/j.diabet.2020.101215.
[3] TARGHER G,BYRNE C D,TILG H. NAFLD and increased risk of cardiovascular disease:clinical associations,pathophysiological mechanisms and pharmacological implications[J]. Gut,2020,69(9):1691-1705. doi:10.1136/gutjnl-2020-320622.
[4] RIJZEWIJK L J,JONKER J T,VAN DER MEER R W,et al. Effects of hepatic triglyceride content on myocardial metabolism in type 2 diabetes[J]. J Am Coll Cardiol,2010,56(3):225-233. doi:10.1016/j.jacc.2010.02.049.
[5] HOUGHTON D,ZALEWSKI P,HALLSWORTH K,et al. The degree of hepatic steatosis associates with impaired cardiac and autonomic function[J]. J Hepatol,2019,70(6):1203-1213. doi:10.1016/j.jhep.2019.01.035.
[6] KARAYANNIS G,KITSIOS G,KOTIDIS H,et al. Left atrial remodelling contributes to the progression of asymptomatic left ventricular systolic dysfunction to chronic symptomatic heart failure[J]. Heart Fail Rev,2008,13(1):91-98. doi:10.1007/s10741-007-9021-6.
[7] TARGHER G,MANTOVANI A,GRANDER C,et al. Association between non-alcoholic fatty liver disease and impaired cardiac sympathetic/parasympathetic balance in subjects with and without type 2 diabetes-The Cooperative Health Research in South Tyrol (CHRIS)-NAFLD sub-study[J]. Nutr Metab Cardiovasc Dis,2021,31(12):3464-3473. doi:10.1016/j.numecd.2021.08.037.
[8] LIU B,LI Y,LI Y,et al. Association of epicardial adipose tissue with non-alcoholic fatty liver disease:a meta-analysis[J]. Hepatol Int,2019,13(6):757-765. doi:10.1007/s12072-019-09972-1.
[9] FRACANZANI A L,PISANO G,CONSONNI D,et al. Epicardial Adipose Tissue (EAT) Thickness is associated with cardiovascular and liver damage in nonalcoholic fatty liver disease[J]. PLoS One,2016,11(9):e0162473. doi:10.1371/journal.pone.0162473.
[10] 王月,吳艷凱,崔彩霞,等. 心臟MRI應(yīng)變技術(shù)評估高血壓患者左室功能[J]. 中國醫(yī)學(xué)影像技術(shù),2021,37(5):689-693. WANG Y,WU Y K,CUI C X,et al. Cardiac MRI strain technique for evaluation on left ventricular function in patients with hypertension[J]. Chin J med imaging technol,2021,37(5):689-693. doi:10.13929/j.issn.1003-3289.2021.05.012.
[11] WANG R,F(xiàn)ANG Z,WANG H,et al. Quantitative analysis of three-dimensional left ventricular global strain using coronary computed tomography angiography in patients with heart failure:comparison with 3T cardiac MR[J]. Eur J Radiol,2021,135:109485. doi:10.1016/j.ejrad.2020.109485.
[12] LI N,LIU T,LIU J,et al. Quantifying myocardial strain of the left ventricle in normal people using feature-tracking based on computed tomography imaging[J]. Diagnostics,2022,12(2):329. doi:10.3390/diagnostics12020329.
[13] LAMACIE M M,THAVENDIRANATHAN P,HANNEMAN K,et al. Quantification of global myocardial function by cine MRI deformable registration-based analysis:comparison with MR feature tracking and speckle-tracking echocardiography[J]. Eur Radiol,2017,27(4):1404-1415. doi:10.1007/s00330-016-4514-0.
[14] 馬亞南,孟慶超,王涵,等. CT測量左室心肌應(yīng)變的可重復(fù)性及與超聲對照的一致性研究[J]. 中華放射學(xué)雜志,2021,55(11):1147-1152. MA Y N,MENG Q C,WANG H,et al. The reproducibility of left ventricular strain measured by CT and its agreement with speckle tracking echocardiography[J]. Chin J Radiol,2021,55(11):1147-1152. doi:10.3760/cma.j.cn112149-20210209-00115.
[15] MILITARU S,PANOVSKY R,HANET V,et al. Multivendor comparison of global and regional 2D cardiovascular magnetic resonance feature tracking strains vs tissue tagging at 3T[J]. J Cardiovasc Magn Reson,2021,23(1):54. doi:10.1186/s12968-021-00742-3.
[16] BAKTIR A O, ?ARLI B, ALTEKIN R E,et al. Non alcoholic steatohepatitis is associated with subclinical impairment in left ventricular function measured by speckle tracking echocardiography[J]. Anatol J Cardiol,2015,15(2):137-142. doi:10.5152/akd.2014.5212.
[17] ALTEKIN R E,CAGLAR B,KARAKAS M S,et al. Evaluation of subclinical left ventricular systolic dysfunction using two-dimensional speckle-tracking echocardiography in patients with non-alcoholic cirrhosis[J]. Hellenic J Cardiol,2014,55(5):402-410.
[18] KARABAY C Y,KOCABAY G,KALAYCI A,et al. Impaired left ventricular mechanics in nonalcoholic fatty liver disease:a speckle-tracking echocardiography study[J]. Eur J Gastroenterol Hepatol,2014,26(3):325-331. doi:10.1097/MEG.0000000000000008.
[19] LEUNG D Y,NG A C. Emerging clinical role of strain imaging in echocardiography[J]. Heart Lung Circ,2010,19(3):161-174. doi:10.1016/j.hlc.2009.11.006.
[20] VOIGT J U,CVIJIC M. 2- and 3-Dimensional myocardial strain in cardiac health and disease[J]. JACC Cardiovasc Imaging,2019,12(9):1849-1863. doi:10.1016/j.jcmg.2019.01.044.
[21] EL AMROUSY D,ELGENDY E,AWAD M E,et al. Three-dimensional speckle tracking echocardiography for early detection of left ventricular dysfunction in children with non-alcoholic fatty liver diseases[J]. Cardiol Young,2021,31(4):562-567. doi:10.1017/S104795112000445X.
[22] WANG Q,MA W,XIA J. Nonalcoholic Fatty Liver Is Associated with further left ventricular abnormalities in patients with type 2 diabetes mellitus:a 3-dimensional speckle-tracking study:nonalcoholic fatty liver and left ventricular abnormalities in type 2 diabetes[J]. J Ultrasound Med,2018,37(8):1899-1911. doi:10.1002/jum.14536.
[23] SONAGLIONI A,CERINI F,CERRONE A,et al. Liver stiffness measurement identifies subclinical myocardial dysfunction in non-advanced non-alcoholic fatty liver disease patients without overt heart disease[J]. Intern Emerg Med,2022,17(5):1425-1438. doi:10.1007/s11739-022-02966-2.
[24] DONG Y, CUI H, SUN L, et al. Assessment of left ventricular function in type 2 diabetes mellitus patients with non-alcoholic fatty liver disease by three-dimensional speckle-tracking echocardiography[J]. Anatol J Cardiol,2020,23(1):41-48. doi:10.14744/AnatolJCardiol.2019.66805.
[25] VANWAGNER L B,WILCOX J E,NING H,et al. Longitudinal association of non-alcoholic fatty liver disease with changes in myocardial structure and function:the cardia study[J]. J Am Heart Assoc,2020,9(4):e014279. doi:10.1161/JAHA.119.014279.
[26] SONAGLIONI A,CERINI F,NICOLOSI G L,et al. Left ventricular strain predicts subclinical atherosclerosis in nonadvanced nonalcoholic fatty liver disease patients[J]. Eur J Gastroenterol Hepatol,2022,34(6):707-716. doi:10.1097/MEG.
0000000000002375.
[27] CHANG W,WANG Y,SUN L,et al. Evaluation of left atrial function in type 2 diabetes mellitus patients with nonalcoholic fatty liver disease by two‐dimensional speckle tracking echocardiography[J]. Echocardiography,2019,36(7):1290-1297. doi:10.1111/echo.14400.
[28] KOCABAY G,KARABAY C Y,COLAK Y,et al. Left atrial deformation parameters in patients with non-alcoholic fatty liver disease:a 2D speckle tracking imaging study[J].? Clin Sci (Lond),2014,126(4):297-304. doi:10.1042/CS20130298.
[29] LAI Y H,SU C H,HUNG T C,et al. Association of non-alcoholic fatty liver disease and hepatic fibrosis with epicardial adipose tissue volume and atrial deformation mechanics in a large asian population free from clinical heart failure[J]. Diagnostics (Basel),2022,12(4):916. doi:10.3390/diagnostics12040916.
[30] BEKLER A,GAZI E,ERBAG G,et al. Right ventricular function and its relationship with grade of hepatosteatosis in non-alcoholic fatty liver disease[J]. Cardiovasc J Afr,2015,26(3):109-113. doi:10.5830/CVJA-2014-068.
[31] SUNBUL M,KIVRAK T,DURMUS E,et al. Nonalcoholic steatohepatitis score is an independent predictor of right ventricular dysfunction in patients with nonalcoholic fatty liver disease[J]. Cardiovasc Ther,2015,33(5):294-299. doi:10.1111/1755-5922.12145.
[32] TEN HOVE M,NEUBAUER S. MR spectroscopy in heart failure—clinical and experimental findings[J]. Heart Fail Rev,2007,12(1):48-57. doi:10.1007/s10741-007-9003-8.
[33] HALLSWORTH K,HOLLINGSWORTH K G,THOMA C,et al. Cardiac structure and function are altered in adults with non-alcoholic fatty liver disease[J]. J Hepatol,2013,58(4):757-762. doi:10.1016/j.jhep.2012.11.015.
[34] R?SSEL I K,BROUWER W P,GERMANS T,et al. Increased left ventricular torsion in hypertrophic cardiomyopathy mutation carriers with normal wall thickness[J]. J Cardiovasc Magn Reson,2011,13(1):3. doi:10.1186/1532-429X-13-3.
[35] HAMMOUDA K,KHALIFA F,ABDELTAWAB H,et al. A new framework for performing cardiac strain analysis from cine MRI imaging in mice[J]. Sci Rep,2020,10(1):7725. doi:10.1038/s41598-020-64206-x.
(2022-11-03收稿 2023-01-13修回)
(本文編輯 陸榮展)