国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

人參皂苷Rg1拮抗亞砷酸鈉誘導(dǎo)C57BL/6小鼠腎毒性研究

2023-11-08 03:07楊淵宋爽陳容劉永蓮劉春燕
天津醫(yī)藥 2023年8期
關(guān)鍵詞:染毒腎小管皂苷

楊淵 宋爽 陳容 劉永蓮 劉春燕

摘要:目的 探討人參皂苷Rg1對亞砷酸鈉(SA)誘導(dǎo)小鼠腎臟毒性的干預(yù)效應(yīng)。方法 20只雄性健康C57BL/6小鼠采用隨機(jī)數(shù)字表法均分為對照組(給予去離子水灌胃)、SA染毒組(10.0 μg/g SA進(jìn)行灌胃)、人參皂苷Rg1+SA染毒組(20.0 μg/g人參皂苷Rg1在SA染毒前8 h腹腔注射+10.0 μg/g SA灌胃)、人參皂苷Rg1對照組(20.0 μg/g人參皂苷Rg1腹腔注射)。以上各組均隔天給予相應(yīng)處理1次,持續(xù)14 d。HE染色觀察腎組織病理改變并進(jìn)行腎小管損傷(TI)評分;酶聯(lián)免疫吸附試驗(yàn)(ELISA)檢測血清肌酐(Scr)和腎組織谷胱甘肽(GSH)、血紅素加氧酶-1(HO-1)、丙二醛(MDA)含量;免疫印跡試驗(yàn)檢測腎組織HO-1、磷酸化哺乳動(dòng)物雷帕霉素靶蛋白(p-mTOR)、泛素結(jié)合蛋白P62(SQSTM1/p62)、unc-51樣激酶-1(ULK1)和微管相關(guān)蛋白輕鏈3B(LC3-B)表達(dá)水平;免疫熒光染色檢測LC3-B水平。結(jié)果 與對照組相比,SA染毒組小鼠TI評分、Scr和腎組織MDA、ULK1和LC3-B表達(dá)水平升高,腎組織GSH和HO-1、p-mTOR和SQSTM1/p62表達(dá)水平降低(P<0.05),呈紅色斑點(diǎn)的LC3-B染色強(qiáng)度增強(qiáng)、增多;與SA染毒組相比,人參皂苷Rg1+SA染毒組TI評分、Scr和腎組織MDA、ULK1和LC3-B表達(dá)水平降低,而GSH、HO-1、p-mTOR和SQSTM1/p62表達(dá)水平升高(P<0.05),LC3-B免疫熒光染色強(qiáng)度減弱、減少。結(jié)論 人參皂苷Rg1拮抗SA誘導(dǎo)的小鼠腎毒性,可能與HO-1信號(hào)激活和細(xì)胞自噬抑制有關(guān)。

關(guān)鍵詞:人參皂苷Rg1;砷中毒;血紅素加氧酶-1;自噬;腎毒性

中圖分類號(hào):R114文獻(xiàn)標(biāo)志碼:ADOI:10.11958/20221834

Study of ginsenoside Rg1 antagonizes sodium arsenite-induced

nephrotoxicity in C57BL/6 mice

YANG Yuan SONG Shuang CHEN Rong LIU Yonglian LIU Chunyan

1 Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China;

2 Ethnic Medicine Research Center, Hunan University of Medicine

Abstract: Objective To investigate the intervention effect of ginsenoside Rg1 (Rg1) against sodium arsenite (SA) induced nephrotoxicity in mice. Methods Twenty healthy male C57BL/6 mice were randomly divided into the control group (given deionized water by gavage), the SA exposure group (10.0 μg/g SA by gavage), the Rg1 intervention+SA exposure group (20.0 μg/g Rg1 was injected intraperitoneally 8 hours before SA exposure+10.0 μg/g SA gavage) and the Rg1 control group (20.0 μg/g Rg1 intraperitoneal injection). All of groups were given corresponding treatment once every other day for 14 days. HE staining was performed to observe pathological changes of renal tissue and renal tubular injury (TI) score. Serum creatinine (Scr) and renal glutathione (GSH), heme oxygenase-1 (HO-1) and malondialdehyde (MDA) were detected by enzyme-linked immunosorbent assay (ELISA). The expression levels of HO-1, phosphorylated mammalian target of rapamycin (p-mTOR), ubiquitin-binding protein P62 (SQSTM1/p62), unc-51-like kinase-1 (ULK1) and microtubule-associated protein light chain 3B (LC3-B) in renal tissue were detected by Western blot assay. LC3-B levels were detected by immunofluorescence staining. Results Compared with the control group, the TI score, Scr and expression levels of MDA, ULK1 and LC3-B in renal tissue were increased in the SA group, while expression levels of GSH and HO-1, p-mTOR and SQSTM1/p62 in renal tissue were decreased (P<0.05). The staining intensity of red spot LC3-B was enhanced and increased. Compared with the SA group, TI score, Scr and expression levels of MDA, ULK1 and LC3-B in renal tissue were decreased in the Rg1 +SA group, while expression levels of GSH, HO-1, p-mTOR and SQSTM1/p62 were increased (P<0.05). The immunofluorescence staining intensity of LC3-B was weakened and decreased. Conclusion Rg1 antagonizes SA-induced nephrotoxicity in mice, which may be associated with the activation of HO-1 signal and the inhibition of autophagy.

Key words: Ginsenoside Rg1; arsenic poisoning; heme oxygenase-1; autophagy; nephrotoxicity

砷在環(huán)境中通常以三價(jià)化合物形式存在,可污染土壤、飲用水和農(nóng)作物,在一定條件下暴露于機(jī)體,可導(dǎo)致腎小球或腎小管組織病理學(xué)損傷、腎功能障礙[1-2]。既往研究發(fā)現(xiàn),砷暴露可誘導(dǎo)骨肉瘤細(xì)胞或雞睪丸組織細(xì)胞凋亡和自噬,與細(xì)胞內(nèi)蛋白激酶B(protein kinase B,Akt/PKB)、哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信號(hào)通路抑制有關(guān),而活性氧(ROS)清除劑可明顯拮抗砷的毒性效應(yīng)[3-4]。中藥人參(Panax ginseng C.A.Mey.)屬于五加科的多年生草本植物,其主要生物活性成分是人參多糖和人參皂苷。研究發(fā)現(xiàn),人參多糖提取物具有抗氧化作用,能有效減輕順鉑誘導(dǎo)的小鼠急性腎損傷[5]。人參皂苷Rg1是人參主要藥物活性成分提取物,目前市售最為常見。其除增強(qiáng)機(jī)體的抗氧化活性外[6],還具有激活mTOR信號(hào)通路[7]、抗炎、抑制細(xì)胞凋亡和自噬的作用[8-9]。目前,人參皂苷Rg1對砷誘導(dǎo)腎毒性的干預(yù)效應(yīng)尚不清楚。本研究旨在探討人參皂苷Rg1對亞砷酸鈉(sodium arsenite,SA)誘導(dǎo)小鼠腎毒性的拮抗效應(yīng)及機(jī)制。

1 材料與方法

1.1 實(shí)驗(yàn)動(dòng)物

20只雄性SPF級(jí)C57BL/6小鼠購自湖南長沙斯萊克實(shí)驗(yàn)動(dòng)物有限公司,動(dòng)物生產(chǎn)許可證號(hào):SCXK(湘)2019-0004,使用許可證號(hào):SYXK(湘)2019-0017。小鼠體質(zhì)量24.1~26.8 g,平均(25.2±1.1)g,9~10周齡。在標(biāo)準(zhǔn)飼養(yǎng)條件(12 h光照/黑暗、溫度20~22 ℃和相對濕度60%~70%)適應(yīng)性喂養(yǎng)1周。

1.2 主要試劑及儀器

亞砷酸鈉(NaAsO2)購自美國Sigma-Aldrich公司;人參皂苷Rg1購自上海篤瑪生物科技有限公司;血清肌酐(Scr)酶聯(lián)免疫吸附測定(ELISA)試劑盒購自上海篤瑪生物技術(shù)有限公司;丙二醛(malondialdehyde,MDA)、谷胱甘肽(glutathione,GSH)、血紅素加氧酶1(heme oxygenase 1,HO-1)酶聯(lián)免疫吸附試驗(yàn)(ELISA)試劑盒均購自上海酶聯(lián)生物科技有限公司;RIPA裂解緩沖液購自美國BioVision公司;Bradford試劑購自美國Sigma-Aldrich公司;兔單克隆HO-1抗體、兔單克隆mTOR抗體與磷酸化mTOR抗體(p-mTOR)、兔多克隆酵母自噬基因Atg1同源物unc-51樣激酶-1(unc-51-like kinase-1,ULK1)抗體、泛素結(jié)合蛋白p62(sequestosome 1,SQSTM1/p62)抗體、微管相關(guān)蛋白輕鏈3B(microtubule associated protein light chain 3B,LC3-B)抗體均購自英國Abcam公司;兔抗辣根過氧化物酶(HRP)標(biāo)記IgG二抗購自美國LSBio公司;化學(xué)發(fā)光試劑盒購自上海碧云天生物公司;酶標(biāo)儀購自美國BioTek公司;Motic光學(xué)顯微鏡購自麥克奧迪公司。

1.3 分組

采用隨機(jī)數(shù)字表法將小鼠分為4組,每組5只。對照組:給予去離子水灌胃,隔天1次,持續(xù)14 d;SA染毒組:NaAsO2溶于去離子水,參考文獻(xiàn)[10-11]及大小鼠等效劑量換算比值,以10.0 μg/g劑量進(jìn)行灌胃,隔天1次,持續(xù)14 d;人參皂苷Rg1+SA染毒組:參考文獻(xiàn)[12-13],以人參皂苷Rg1 20.0 μg/g,在SA染毒前8 h進(jìn)行腹腔注射干預(yù),然后給予SA10.0 μg/g灌胃處理;人參皂苷Rg1對照組:人參皂苷Rg1用去離子水稀釋,以20.0 μg/g劑量腹腔注射,隔天1次,持續(xù)14 d。實(shí)驗(yàn)結(jié)束時(shí),腹腔注射0.9%戊巴比妥鈉麻醉小鼠并實(shí)施安樂死,立即收集血液和腎組織進(jìn)行分析。本動(dòng)物研究方案經(jīng)貴州醫(yī)科大學(xué)倫理委員會(huì)批準(zhǔn)(批準(zhǔn)號(hào):1900222),根據(jù)動(dòng)物實(shí)驗(yàn):報(bào)告體內(nèi)實(shí)驗(yàn)(Animal Research:Reporting of in vivo Experiments,ARRIVE)指南的原則執(zhí)行本實(shí)驗(yàn)方案。

1.4 腎功能和組織病理學(xué)評價(jià)

取0.5 mL血后以4 ℃、400 r/min離心5 min,根據(jù)ELISA試劑盒操作說明檢測上清液Scr含量。腎組織經(jīng)4%多聚甲醛固定72 h后,用石蠟包埋以制備5 μm病理切片,然后在顯微鏡下行蘇木精-伊紅(HE)染色,并進(jìn)行腎小管損傷(TI)評分[14]。TI定義為:腎小管擴(kuò)張,管狀上皮腫脹,細(xì)胞呈空泡樣或顆粒樣變性、壞死,刷狀緣缺失或呈管型結(jié)構(gòu)。通過顯微鏡觀察腎組織切片中腎小管病變區(qū)域,評估每個(gè)高倍視野下病變區(qū)域的損傷面積百分率(%),每張切片計(jì)算10個(gè)高倍視野下TI評分平均值。

1.5 ELISA檢測腎組織HO-1、GSH和MDA含量

腎組織分離并稱質(zhì)量,按1∶9質(zhì)量體積比比例加入磷酸鹽緩沖液(PBS)配制成0.1 g/mL,使用勻漿器進(jìn)行勻漿,然后加入RPMI培養(yǎng)基(含有0.05%Ⅱ型膠原酶,0.002%DNase Ⅰ和0.6%胎牛血清),37 ℃下孵育30 min后,進(jìn)行3次凍融循環(huán)以裂解腎組織細(xì)胞。最后,組織勻漿液4 ℃冷凍離心10 min(1 500 r/min),收集上清液,參照ELISA試劑盒操作說明書,使用酶標(biāo)儀在450 nm波長下測量光密度(OD)值,并根據(jù)標(biāo)準(zhǔn)曲線將OD值轉(zhuǎn)換為腎組織MDA、GSH和HO-1含量。

1.6 免疫印跡試驗(yàn)檢測腎組織HO-1、p-mTOR、ULK1、SQSTM1/p62和LC3-B表達(dá)

腎組織分離后加入RIPA裂解緩沖液以裂解細(xì)胞提取總蛋白,使用Bradford試劑測定蛋白質(zhì)濃度,腎組織樣品通過十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳并轉(zhuǎn)移到聚乙烯亞胺(PVD)膜上。隨后使用5%脫脂奶粉室溫?fù)u床封閉2 h以阻斷非特異性結(jié)合位點(diǎn)后,將膜與HO-1(1∶1 500)、p-mTOR(1∶1 000)、mTOR(1∶1 500)、ULK1(1∶500)、SQSTM1/p62(1∶800)、LC3-B抗體(1∶400)于4 ℃孵育16 h。TBS-T緩沖液洗膜3次后,加入二抗HRP IgG 室溫孵育2 h,然后加入化學(xué)發(fā)光顯影試劑成像。通過目標(biāo)靶蛋白與抗β-肌動(dòng)蛋白內(nèi)參抗體的吸光度比值來評估靶蛋白表達(dá)相對水平。

1.7 免疫熒光染色檢測LC3-B表達(dá)

腎組織分離后加入4%多聚甲醛溶液,4 ℃過夜固定,制備5 μm切片,切片經(jīng)脫蠟、水化、洗滌后,進(jìn)行高壓抗原修復(fù)和山羊血清封閉,然后與LC3-B一抗在4 ℃孵育過夜。PBS緩沖液洗滌3次后,與HRP標(biāo)記IgG二抗在37 ℃孵育40 min,PBS再次洗滌3次,然后在室溫下用4',6-二脒基-2-苯基吲哚(DAPI)復(fù)染5 min,再次洗滌切片后,通過共聚焦顯微鏡(LeicaTCS-SP5)進(jìn)行熒光成像觀察(Alexa Fluor? 555發(fā)射波長為535 nm,DAPI發(fā)射波長為340 nm)。

1.8 統(tǒng)計(jì)學(xué)方法

采用SPSS 23.0進(jìn)行數(shù)據(jù)分析,計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,多組間比較采用單因素方差分析,組間多重比較采用LSD-t檢驗(yàn),P<0.05為差異有統(tǒng)計(jì)學(xué)意義。

2 結(jié)果

2.1 各組腎臟組織病理損傷比較

對照組腎組織形態(tài)正常,腎小管上皮細(xì)胞核膜光滑,細(xì)胞質(zhì)染色均勻,核質(zhì)比正常,細(xì)胞間距正常;與對照組相比,SA染毒組腎小球球囊增大,毛細(xì)血管充血,腎小管管腔不規(guī)則,小管上皮細(xì)胞水腫,部分核消失,Scr和TI評分明顯升高(P<0.05)。與SA染毒組相比,人參皂苷Rg1+SA染毒組腎小球毛細(xì)血管充血、腎小管上皮細(xì)胞和腎間質(zhì)水腫改善,Scr和TI評分下調(diào)(P<0.05)。人參皂苷Rg1對照組腎組織形態(tài)正常,與對照組類似。見圖1、表1。

2.2 各組腎組織氧化應(yīng)激指標(biāo)比較

與對照組相比,SA染毒組小鼠腎組織GSH和HO-1表達(dá)水平降低,MDA表達(dá)水平升高(P<0.05);與SA染毒組相比,人參皂苷Rg1+SA染毒組小鼠腎組織GSH和HO-1細(xì)胞水平升高,而MDA細(xì)胞水平降低(P<0.05),見表1。

2.3 各組腎組織中HO-1、p-mTOR、SQSTM1/p62、ULK1和LC3-B水平比較

與對照組相比,SA染毒組小鼠腎組織中HO-1、p-mTOR和SQSTM1/p62表達(dá)水平降低,ULK1和LC3-B表達(dá)水平升高(P<0.05)。與SA染毒組相比,人參皂苷Rg1+SA染毒組HO-1、p-mTOR和SQSTM1/p62水平上調(diào),ULK1和LC3-B水平降低(P<0.05),見圖2、3,表2。腎組織免疫熒光染色顯示,與對照組相比,SA染毒組小鼠腎組織呈紅色斑點(diǎn)的LC3-B染色強(qiáng)度增強(qiáng)、增多。與SA染毒組相比,人參皂苷Rg1+SA染毒組顯示LC3-B免疫熒光染色強(qiáng)度減弱、減少,見圖4。

3 討論

砷是一種環(huán)境中廣泛存在的高毒性致癌物,通常由于含砷礦開采冶煉、含砷農(nóng)藥生產(chǎn)使用等活動(dòng)導(dǎo)致環(huán)境砷污染,通過直接接觸或食物鏈攝入過量砷可導(dǎo)致急慢性砷中毒發(fā)生,產(chǎn)生肝、腎、皮膚、神經(jīng)系統(tǒng)等多器官損害效應(yīng)[15]。本研究發(fā)現(xiàn),急性砷暴露可導(dǎo)致小鼠腎臟組織病理損傷,表現(xiàn)為Scr、腎小管損傷評分和氧化應(yīng)激產(chǎn)物MDA水平升高,而腎組織抗氧化劑GSH和HO-1含量降低,提示氧化應(yīng)激在砷致腎毒性中扮演著重要的角色。人參作為一種廣泛使用的傳統(tǒng)中藥,其生物活性提取物富含與多糖結(jié)合的甾體皂苷,其用于中樞神經(jīng)系統(tǒng)、代謝、感染和腫瘤等疾病治療已有約5 000年歷史[16]。研究發(fā)現(xiàn),人參皂苷Rg1具有上調(diào)GSH和下調(diào)MDA的抗氧化應(yīng)激效應(yīng)[17],具有抑制小鼠NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)炎癥信號(hào)激活及改善腎臟衰老期腎小球纖維化效應(yīng)[18]。Fan等[19]發(fā)現(xiàn),人參皂苷Rg1可拮抗D-半乳糖誘導(dǎo)的小鼠亞急性腎組織損傷。Guo等[20]發(fā)現(xiàn)人參皂苷Rg1可通過抑制腎小管上皮細(xì)胞鐵死亡而改善膿毒癥誘導(dǎo)的急性腎損傷。本研究中,與SA染毒組相比,人參皂苷Rg1干預(yù)+SA染毒組小鼠腎組織損傷程度明顯減輕,Scr、腎小管損傷評分和腎組織MDA水平降低,HO-1和GSH水平升高,而自噬標(biāo)志物ULK1和LC3-B水平降低以及自噬反應(yīng)底物SQSTM1/p62蛋白水平升高,提示HO-1激活、自噬抑制與人參皂苷Rg1拮抗砷誘導(dǎo)小鼠腎毒性效應(yīng)有關(guān)。

HO-1是機(jī)體內(nèi)廣泛分布的一種重要的抗氧化酶,與細(xì)胞內(nèi)絲氨酸或蘇氨酸激酶家族mTOR信號(hào)激活有關(guān)。乙醇可誘導(dǎo)人食管鱗癌細(xì)胞HO-1水平上調(diào),伴隨著p38絲裂原活化蛋白激酶(p38MAPK)和mTOR信號(hào)激活[21];HO-1可與甾醇異構(gòu)酶相互作用,從而激活mTOR信號(hào)通路以減輕膽固醇誘導(dǎo)的心肌細(xì)胞缺氧[22]。mTOR信號(hào)通路激活后,可磷酸化ULK1第757位絲氨酸并阻止ULK1激活,破壞ULK1與腺苷酸活化蛋白激酶的相互作用,從而抑制細(xì)胞自噬[23]。反之,mTOR信號(hào)抑制可導(dǎo)致下游靶p70核糖體蛋白S6激酶和真核起始因子4E結(jié)合蛋白1磷酸化抑制,導(dǎo)致細(xì)胞內(nèi)基因-蛋白質(zhì)翻譯減少、細(xì)胞生長周期及細(xì)胞增殖抑制,從而激活細(xì)胞自噬[24]。在青蒿琥酯染毒的類風(fēng)濕性關(guān)節(jié)炎小鼠模型中,抑制mTOR信號(hào)通路可加速軟骨細(xì)胞自噬[25]。本研究發(fā)現(xiàn),與SA染毒組相比,人參皂苷Rg1+SA染毒組腎組織p-mTOR水平升高,因此推測人參皂苷Rg1可誘導(dǎo)HO-1介導(dǎo)的mTOR信號(hào)激活,促進(jìn)細(xì)胞生長及增殖、抑制腎組織細(xì)胞自噬以改善SA誘導(dǎo)的腎組織損傷。

綜上,本研究發(fā)現(xiàn)人參皂苷Rg1通過激活HO-1信號(hào)介導(dǎo)抗氧化應(yīng)激,并激活mTOR信號(hào)介導(dǎo)的細(xì)胞自噬抑制效應(yīng)減輕SA誘導(dǎo)小鼠腎臟病理損傷。目前,人參皂苷Rg1拮抗砷誘導(dǎo)的腎毒性作用機(jī)制尚未完全清楚,人參皂苷Rg1激活HO-1和mTOR信號(hào)通路以及抑制細(xì)胞自噬的分子調(diào)控機(jī)制需要進(jìn)一步探索。

參考文獻(xiàn)

[1] ROBLES-OSORIO M L,SABATH-SILVA E,SABATH E. Arsenic-mediated nephrotoxicity[J]. Ren Fail,2015,37(4):542-547. doi:10.3109/0886022X.2015.1013419.

[2] JALILI C,KAZEMI M,CHENG H,et al. Associations between exposure to heavy metals and the risk of chronic kidney disease: a systematic review and meta-analysis[J]. Crit Rev Toxicol,2021,51(2):165-182. doi:10.1080/10408444.2021.1891196.

[3] WANG G,ZHANG T,SUN W,et al. Arsenic sulfide induces apoptosis and autophagy through the activation of ROS/JNK and suppression of Akt/mTOR signaling pathways in osteosarcoma[J]. Free Radic Biol Med,2017,106:24-37. doi:10.1016/j.freeradbiomed.2017.02.015.

[4] SHAO Y Z,ZHAO H J,WANG Y,et al. The apoptosis in arsenic-induced oxidative stress is associated with autophagy in the testis tissues of chicken[J]. Poult Sci,2018,97(9):3248-3257. doi:10.3382/ps/pey156.

[5] WEI X M,JIANG S,LI S S,et al. Endoplasmic reticulum stress-activated PERK-eIF2α-ATF4 signaling pathway is involved in the ameliorative effects of Ginseng polysaccharides against cisplatin-induced nephrotoxicity in mice[J]. ACS Omega,2021,6(13):8958-8966. doi:10.1021/acsomega.0c06339.

[6] XIE W,ZHOU P,SUN Y,et al. Protective effects and target network analysis of Ginsenoside Rg1 in cerebral ischemia and reperfusion injury:a comprehensive overview of experimental studies[J]. Cells,2018,7(12):270. doi:10.3390/cells7120270.

[7] XU X,QU Z,QIAN H,et al. Ginsenoside Rg1 ameliorates reproductive function injury in C57BL/6J mice induced by di-N-butyl-phthalate[J]. Environ Toxicol,2021,36(5):789-799. doi:10.1002/tox.23081.

[8] NI X J,XU Z Q,JIN H,et al. Ginsenoside Rg1 protects human renal tubular epithelial cells from lipopolysaccharide-induced apoptosis and inflammation damage[J]. Braz J Med Biol Res,2017,51(2):e6611. doi:10.1590/1414-431X20176611.

[9] MAO N,TAN R Z,WANG S Q,et al. Ginsenoside Rg1 inhibits angiotensin Ⅱ-induced podocyte autophagy via AMPK/mTOR/PI3K pathway[J]. Cell Biol Int,2016,40(8):917-925. doi:10.1002/cbin.10634.

[10] TURK E,KANDEMIR F M,YILDIRIM S,et al. Protective effect of hesperidin on sodium arsenite-induced nephrotoxicity and hepatotoxicity in rats[J]. Biol Trace Elem Res,2019,189(1):95-108. doi:10.1007/s12011-018-1443-6.

[11] YANG Y,SONG S,NIE Y,et al. Lentinan alleviates arsenic-induced hepatotoxicity in mice via downregulation of OX40/IL-17A and activation of Nrf2 signaling[J]. BMC Pharmacol Toxicol,2022,23(1):16. doi:10.1186/s40360-022-00557-7.

[12] QIN Q,LIN N,HUANG H,et al. Ginsenoside Rg1 ameliorates cardiac oxidative stress and inflammation in streptozotocin-induced diabetic rats[J]. Diabetes Metab Syndr Obes,2019,12:1091-1103. doi:10.2147/DMSO.S208989.

[13] GAO Y,LI J,CHU S,et al. Ginsenoside Rg1 protects mice against streptozotocin-induced type 1 diabetic by modulating the NLRP3 and Keap1/Nrf2/HO-1 pathways[J]. Eur J Pharmacol,2020,866:172801. doi:10.1016/j.ejphar.2019.172801.

[14] SONG M F,YANG Y,YI Z W,et al. Sema 3A as a biomarker of the activated mTOR pathway during hexavalent chromium-induced acute kidney injury[J]. Toxicol Lett,2018,299:226-235. doi:10.1016/j.toxlet.2018.09.005.

[15] GUO H,LI X,ZHANG Y,et al. Metabolic characteristics related to the hazardous effects of environmental arsenic on humans:a metabolomic review[J]. Ecotoxicol Environ Saf,2022,236:113459. doi:10.1016/j.ecoenv.2022.113459.

[16] MANCUSO C,SANTANGELO R. Panax ginseng and Panax quinquefolius:from pharmacology to toxicology[J]. Food Chem Toxicol,2017,107(Pt A):362-372. doi:10.1016/j.fct.2017.07.019.

[17] ZHANG G,ZHANG M,YU J,et al. Ginsenoside Rg1 prevents H2O2-induced lens opacity[J]. Curr Eye Res,2021,46(8):1159-1165. doi:10.1080/02713683.2020.1869266.

[18] SHEN X,DONG X,HAN Y,et al. Ginsenoside Rg1 ameliorates glomerular fibrosis during kidney aging by inhibiting NOX4 and NLRP3 inflammasome activation in SAMP8 mice[J]. Int Immunopharmacol,2020,82:106339. doi:10.1016/j.intimp.2020.106339.

[19] FAN Y,XIA J,JIA D,et al. Mechanism of ginsenoside Rg1 renal protection in a mouse model of d-galactose-induced subacute damage[J]. Pharm Biol,2016,54(9):1815-1821. doi:10.3109/13880209.2015.1129543.

[20] GUO J,WANG R,MIN F. Ginsenoside Rg1 ameliorates sepsis-induced acute kidney injury by inhibiting ferroptosis in renal tubular epithelial cells[J]. J Leukoc Biol,2022,112(5):1065-1077. doi:10.1002/JLB.1A0422-211R.

[21] HU J L,XIAO L,LI Z Y,et al. Upregulation of HO-1 is accompanied by activation of p38MAPK and mTOR in human oesophageal squamous carcinoma cells[J]. Cell Biol Int,2013,37(6):584-592. doi:10.1002/cbin.10075.

[22] JIN X,XU Z,CAO J,et al. HO-1/EBP interaction alleviates cholesterol-induced hypoxia through the activation of the AKT and Nrf2/mTOR pathways and inhibition of carbohydrate metabolism in cardiomyocytes[J]. Int J Mol Med,2017,39(6):1409-1420. doi:10.3892/ijmm.2017.2979.

[23] KIM J,KUNDU M,VIOLLET B,et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nat Cell Biol,2011,13(2):132-141. doi:10.1038/ncb2152.

[24] WANG Y,ZHANG H. Regulation of autophagy by mTOR signaling pathway[J]. Adv Exp Med Biol,2019,1206:67-83. doi:10.1007/978-981-15-0602-4_3.

[25] FENG F B,QIU H Y. Effects of Artesunate on chondrocyte proliferation, apoptosis and autophagy through the PI3K/AKT/mTOR signaling pathway in rat models with rheumatoid arthritis[J]. Biomed Pharmacother,2018,102:1209-1220. doi:10.1016/j.biopha.2018.03.142.

(2022-11-07收稿 2023-03-01修回)

(本文編輯 李志蕓)

猜你喜歡
染毒腎小管皂苷
大生產(chǎn)
香煙煙霧染毒改良方法的應(yīng)用*
HPLC-MS/MS法同時(shí)測定三七花總皂苷中2種成分
染毒的臍帶
HPLC法測定大鼠皮膚中三七皂苷R1和人參皂苷Rb1
PM2.5毒理學(xué)實(shí)驗(yàn)染毒方法及毒理學(xué)效應(yīng)
HPLC法同時(shí)測定熟三七散中13種皂苷
依帕司他對早期糖尿病腎病腎小管功能的影響初探
IgA腎病患者血清胱抑素C對早期腎小管間質(zhì)損害的預(yù)測作用
細(xì)胞因子在慢性腎缺血與腎小管-間質(zhì)纖維化過程中的作用