鄭鍇 羅秀玲 張瑋豪 劉宇利 李玉明 廖尚高
摘要:目的 研究m6a甲基轉(zhuǎn)移酶METTL3調(diào)控KAI1/CD82表達(dá)介導(dǎo)垂體神經(jīng)內(nèi)分泌腫瘤細(xì)胞增殖、遷移與侵襲的機(jī)制。方法 通過(guò)實(shí)時(shí)熒光聚合酶鏈反應(yīng)(qPCR)和蛋白免疫印跡測(cè)定大鼠垂體細(xì)胞、大鼠垂體神經(jīng)內(nèi)分泌腫瘤細(xì)胞系GH3和MMQ中的METTL3與KAI1/CD82表達(dá)水平。體外培養(yǎng)GH3細(xì)胞,將其隨機(jī)分為對(duì)照組、METTL3過(guò)表達(dá)質(zhì)粒組、METTL3空質(zhì)粒組、METTL3 siRNA組、METTL3 siRNA陰性對(duì)照組,經(jīng)分組轉(zhuǎn)染后,通過(guò)qPCR和蛋白免疫印跡檢測(cè)各組細(xì)胞METTL3與KAI1/CD82表達(dá);通過(guò)CCK-8實(shí)驗(yàn)檢測(cè)各組細(xì)胞活力;通過(guò)細(xì)胞劃痕、Transwell侵襲實(shí)驗(yàn)檢測(cè)各組細(xì)胞遷移侵襲情況;通過(guò)甲基化RNA免疫共沉淀(MeRIP)實(shí)驗(yàn)檢測(cè)各組細(xì)胞KAI1/CD82 m6A甲基化修飾情況。結(jié)果 相比大鼠垂體細(xì)胞,大鼠垂體神經(jīng)內(nèi)分泌腫瘤細(xì)胞系GH3及MMQ中的METTL3蛋白及mRNA表達(dá)水平明顯升高,KAI1/CD82蛋白及mRNA表達(dá)水平明顯降低(P<0.05)。與對(duì)照組相比,METTL3空質(zhì)粒組、METTL3 siRNA陰性對(duì)照組細(xì)胞各指標(biāo)差異無(wú)統(tǒng)計(jì)學(xué)意義;與對(duì)照組、METTL3空質(zhì)粒組相比,METTL3過(guò)表達(dá)質(zhì)粒組細(xì)胞活力、遷移距離、侵襲細(xì)胞數(shù)、METTL3蛋白及mRNA表達(dá)水平、KAI1/CD82 m6A甲基化水平升高(P<0.05),KAI1/CD82蛋白及mRNA表達(dá)水平降低(P<0.05);與對(duì)照組、METTL3 siRNA陰性對(duì)照組相比,METTL3 siRNA組細(xì)胞活力、遷移距離、侵襲細(xì)胞數(shù)、METTL3蛋白及mRNA表達(dá)水平、KAI1/CD82 m6A甲基化水平降低(P<0.05),KAI1/CD82蛋白及mRNA表達(dá)水平升高(P<0.05)。結(jié)論 下調(diào)METTL3表達(dá)可降低KAI1/CD82 m6A甲基化水平,促進(jìn)KAI1/CD82 mRNA轉(zhuǎn)錄表達(dá),抑制垂體神經(jīng)內(nèi)分泌腫瘤細(xì)胞增殖、侵襲及遷移。
關(guān)鍵詞:垂體腫瘤;神經(jīng)內(nèi)分泌瘤;甲基轉(zhuǎn)移酶類(lèi);Kangai-1蛋白質(zhì);甲基化;m6a甲基轉(zhuǎn)移酶;甲基轉(zhuǎn)移酶樣3
中圖分類(lèi)號(hào):R739.4 文獻(xiàn)標(biāo)志碼:A DOI:10.11958/20221753
Mechanism of m6a methyltransferase METTL3 mediating the biological behavior of pituitary neuroendocrine tumor cells by regulating the expression of KAI1/CD82
ZHENG Kai LUO Xiuling ZHANG Weihao LIU Yuli LI Yuming LIAO Shanggao
1 Department of Neurosurgery, 2 Department of Head and Neck Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; 3 School of Pharmacy, Guizhou Medical University
Abstract: Objective To study the mechanism of m6a methyltransferase METL3 mediated proliferation, migration and invasion of pituitary neuroendocrine tumor cells by regulating the expression of KAI1/CD82. Methods The expression levels of METTL3 and KAI1/CD82 in rat pituitary cells, rat pituitary tumor cell lines GH3, and MMQ were determined by qPCR and Western blot assay. GH3 cells were cultured in vitro and randomly divided into the control group, the METL3 overexpression plasmid group, the METL3 empty plasmid group, the METL3 siRNA group and the METL3 siRNA negative control group. After grouping and transfection, the expression levels of METL3 and KAI1/CD82 of each cell group were detected by qPCR and Western blot assay. The cell viability of each group was detected by CCK-8 experiment. The cell migration and invasion in each group were detected by cell scratch and Transwell invasion experiment. The methylation modification of KAI1/CD82 m6A in each group was detected by methylated RNA immunoprecipitation (MeRIP) experiment. Results Compared with rat pituitary cells, the METL3 protein and mRNA expression level in rat pituitary tumor cell lines GH3 and MMQ were significantly increased (P<0.05). KAI1/CD82 protein and mRNA expression levels were significantly reduced (P<0.05). There were no significant differences in cell indicators between the control group, the METTL3 empty plasmid group and the METTL3 siRNA negative control group (P>0.05). Compared with the control group and the METTL3 empty plasmid group, the cell viability, migration distance, number of invaded cells, METL3 protein and mRNA expression level, KAI1/CD82 m6A methylation level increased in the METL3 overexpression plasmid group (P<0.05), and the KAI1/CD82 protein and mRNA expression levels decreased (P<0.05). Compared with the control group and the METTL3 siRNA negative control group, the cell viability, migration distance, number of invaded cells, METTL3 protein and mRNA expression level and KAI1/CD82 m6A methylation level decreased in the METTL3 siRNA group (P<0.05), and KAI1/CD82 protein and mRNA expression levels increased (P<0.05). Conclusion Down-regulating the expression of METTL3 can reduce the level of KAI1/CD82 m6A methylation, promote the transcriptional expression of KAI1/CD82 mRNA, reduce the proliferation, invasion and migration of pituitary tumor cells, and inhibit the occurrence and development of pituitary tumors.
Key words: pituitary neoplasms; neuroendocrine tumors; methyltransferases; Kangai-1 protein; methylation; m6a methyltransferase; methyltransferase-like 3
垂體神經(jīng)內(nèi)分泌腫瘤是一種常見(jiàn)的神經(jīng)系統(tǒng)腫瘤,發(fā)生于腦垂體,多數(shù)是良性腫瘤;過(guò)度生長(zhǎng)的垂體細(xì)胞可導(dǎo)致內(nèi)分泌紊亂,且隨著瘤體增大,會(huì)造成顱內(nèi)壓升高,壓迫視神經(jīng),特別是難治性垂體神經(jīng)內(nèi)分泌腫瘤,不僅預(yù)后差,還可能發(fā)展成惡性腫瘤,轉(zhuǎn)移至其他器官[1-2]。甲基轉(zhuǎn)移酶樣3(METTL3)是一種介導(dǎo)RNA N6-甲基腺苷(N6-methyladenosine,m6A)修飾的甲基轉(zhuǎn)移酶,在mRNA的生成、翻譯和降解過(guò)程中發(fā)揮著關(guān)鍵的調(diào)控作用,參與介導(dǎo)大腸癌[3]、卵巢癌[4]等多種惡性腫瘤的發(fā)生發(fā)展,過(guò)表達(dá)METTL3可加速腫瘤的形成、轉(zhuǎn)移及惡性進(jìn)展[5]。有研究表明,METTL3在垂體神經(jīng)內(nèi)分泌腫瘤組織中高表達(dá),在GH3細(xì)胞系中敲除METTL3基因,可明顯抑制垂體神經(jīng)內(nèi)分泌腫瘤細(xì)胞的增殖,減少生長(zhǎng)激素的分泌,揭示METTL3可作為一個(gè)有前景的垂體神經(jīng)內(nèi)分泌腫瘤治療靶點(diǎn)[6]。轉(zhuǎn)移侵襲是腫瘤的特征之一,也是造成其惡性進(jìn)展的重要因素。KAI1/CD82是一種腫瘤轉(zhuǎn)移抑制基因,其基因產(chǎn)物CD82屬于糖蛋白四跨膜蛋白超家族成員,KAI1/CD82在多種類(lèi)型癌癥中呈低表達(dá),導(dǎo)致預(yù)后不良[7],KAI1/CD82可通過(guò)調(diào)節(jié)多種信號(hào)介導(dǎo)細(xì)胞凋亡、運(yùn)動(dòng)、侵襲和細(xì)胞間黏附過(guò)程,抑制乳腺癌、結(jié)腸腺癌、非小細(xì)胞肺癌、喉癌等多種腫瘤轉(zhuǎn)移[8-9]。研究顯示,METTL3可增加與上皮-間充質(zhì)轉(zhuǎn)化相關(guān)基因的RNA的m6A修飾,增強(qiáng)癌細(xì)胞的遷移潛能[10]。筆者通過(guò)查閱SRAMP數(shù)據(jù)庫(kù),預(yù)測(cè)KAI1/CD82基因存在多個(gè)m6A甲基化修飾位點(diǎn),因而推測(cè)m6A甲基轉(zhuǎn)移酶METTL3可能通過(guò)調(diào)控KAI1/CD82表達(dá)參與垂體神經(jīng)內(nèi)分泌腫瘤的發(fā)生發(fā)展。本研究通過(guò)體外培養(yǎng)大鼠垂體神經(jīng)內(nèi)分泌腫瘤細(xì)胞系GH3,并進(jìn)行初步探究。
1 材料與方法
1.1 主要材料
大鼠垂體細(xì)胞購(gòu)自上海圻明生物科技有限公司;大鼠垂體神經(jīng)內(nèi)分泌腫瘤細(xì)胞GH3、MMQ,以及Ham's F-12K、馬血清、特級(jí)胎牛血清、青霉素-鏈霉素溶液、0.25%胰蛋白酶溶液(含EDTA)購(gòu)自武漢普諾賽生命科技有限公司;β-actin、METTL3及KAI1/CD82基因引物,METTL3過(guò)表達(dá)質(zhì)粒、METTL3空載質(zhì)粒、METTL3 siRNA、METTL3 siRNA陰性對(duì)照購(gòu)自上海吉瑪基因有限公司;PolyATtract? mRNA Isolation System試劑盒購(gòu)自翌圣生物科技(上海)股份有限公司;LipofectamineTM2000、RNA fragmentation Reagents購(gòu)自美國(guó)invitrogen公司;CCK-8試劑盒、Opti-MEM培養(yǎng)基、伊紅染色液、總RNA提取試劑盒購(gòu)自北京索萊寶科技有限公司;一步法反轉(zhuǎn)錄熒光定量試劑盒購(gòu)自生工生物工程(上海)股份有限公司;Magna甲基化RNA免疫共沉淀(methylated RNA Immunoprecipitation,MeRIP)m6A試劑盒購(gòu)自艾德科技(北京)有限公司;兔源抗大鼠METTL3一抗、兔源抗大鼠KAI1/CD82一抗、HRP偶聯(lián)山羊抗兔二抗購(gòu)自英國(guó)Abcam公司。CKX41光學(xué)顯微鏡購(gòu)自日本Olympus公司;Multiskan SkyHigh全波長(zhǎng)酶標(biāo)儀、NanoDrop 2000超微量分光光度計(jì)購(gòu)自美國(guó)Thermo Fisher Scientific公司;C1000實(shí)時(shí)熒光定量PCR儀購(gòu)自美國(guó)Bio-Rad公司。
1.2 研究方法
1.2.1 細(xì)胞培養(yǎng)、實(shí)時(shí)熒光聚合酶鏈反應(yīng)(qPCR)實(shí)驗(yàn)
培養(yǎng)液配制:向Ham's F-12K培養(yǎng)基中加入15%的馬血清、2.5%特級(jí)胎牛血清、1%青霉素-鏈霉素溶液,混勻。復(fù)蘇大鼠垂體細(xì)胞及垂體神經(jīng)內(nèi)分泌腫瘤細(xì)胞系GH3、MMQ,以上述培養(yǎng)液分別重懸后,接種于T25培養(yǎng)瓶中無(wú)菌培養(yǎng)。傳代后收集細(xì)胞,以試劑盒提取上述3種細(xì)胞總RNA,經(jīng)超微量分光光度計(jì)測(cè)量出濃度,使用一步法反轉(zhuǎn)錄熒光定量試劑盒將其逆轉(zhuǎn)錄后進(jìn)行qPCR反應(yīng),反應(yīng)體系(20 μL):1 μL cDNA(50 mg/L)、10 μL 2×SYBR qPCR Mix,各0.5 μL上下游引物(均為10 μmol/L),8 μL dd H2O;反應(yīng)條件:95 ℃ 30 s;95 ℃ 5 s,55 ℃ 10 s,72 ℃ 15 s,40個(gè)循環(huán)。所得到的各個(gè)基因Ct值采用2-ΔΔCt法進(jìn)行分析,以β-actin為內(nèi)參基因,各基因引物序列見(jiàn)表1。
1.2.2 蛋白免疫印跡實(shí)驗(yàn)
收集傳代后的大鼠垂體細(xì)胞及GH3、MMQ,分別加入RIPA裂解液混勻、裂解、離心后提出其中總蛋白,測(cè)量各自濃度后每種細(xì)胞取20 ?g總蛋白,100 ℃煮沸變性后混勻上樣,120 V恒壓電泳后40 mA恒流濕轉(zhuǎn),以3%牛血清白蛋白封閉非特異性抗原后裁剪下蛋白條帶,孵育兔源抗大鼠METTL3、KAI1/CD82、β-actin一抗和HRP偶聯(lián)山羊抗兔二抗后洗膜、顯色、攝片,采用Image J軟件定量圖片中各蛋白灰度值;以目的蛋白和β-actin蛋白條帶灰度值的比值表示目的蛋白的相對(duì)表達(dá)水平。
1.2.3 GH3細(xì)胞分組處理
將傳代的GH3細(xì)胞接種于24孔板中,無(wú)菌培養(yǎng)24 h后棄去細(xì)胞培養(yǎng)液,加入Opti-MEM培養(yǎng)基。按照隨機(jī)數(shù)字表法分為對(duì)照組、METTL3過(guò)表達(dá)質(zhì)粒組、METTL3空質(zhì)粒組、METTL3 siRNA組、METTL3 siRNA陰性對(duì)照組,后4組以LipofectamineTM2000分別轉(zhuǎn)染METTL3過(guò)表達(dá)質(zhì)粒、METTL3空載質(zhì)粒、METTL3 siRNA及METTL3 siRNA陰性對(duì)照,具體濃度和轉(zhuǎn)染步驟參照文獻(xiàn)[11],6 h后將Opti-MEM培養(yǎng)基更換為正常的細(xì)胞培養(yǎng)液,繼續(xù)無(wú)菌培養(yǎng)。
1.2.4 GH3細(xì)胞METTL3與KAI1/CD82蛋白及mRNA表達(dá)
將按照1.2.3分組轉(zhuǎn)染的GH3細(xì)胞接種于12孔板中,每組設(shè)6個(gè)復(fù)孔,無(wú)菌培養(yǎng)24 h后分別收集各組細(xì)胞,按照1.2.1和1.2.2方法通過(guò)qPCR和免疫印跡實(shí)驗(yàn)檢測(cè)各組細(xì)胞中METTL3與KAI1/CD82 mRNA及蛋白表達(dá)水平。
1.2.5 GH3細(xì)胞增殖、遷移及侵襲檢測(cè)
(1)增殖。將按照1.2.3方法分組轉(zhuǎn)染的GH3細(xì)胞接種于96孔板中,另選出6個(gè)孔作為空白對(duì)照組,只加入培養(yǎng)液,不接種細(xì)胞。無(wú)菌培養(yǎng)24 h,然后每孔加適量CCK-8試劑,2 h后用全自動(dòng)酶標(biāo)儀測(cè)量每孔于450 nm波長(zhǎng)下的吸光度(A),計(jì)算各組細(xì)胞活力(%)=(A實(shí)驗(yàn)組-A空白對(duì)照組)/(A對(duì)照組-A空白對(duì)照組)×100%。(2)遷移。將按照1.2.3方法分組轉(zhuǎn)染的GH3細(xì)胞以5×105個(gè)/mL接種于12孔板中,無(wú)菌培養(yǎng)24 h。使用200 μL槍頭在每孔中心位置劃一條直線,將劃痕中細(xì)胞以PBS緩沖液漂洗干凈,于光鏡下觀察拍照后,運(yùn)用Image Pro Plus軟件測(cè)量劃痕距離(測(cè)量各孔多個(gè)位點(diǎn)之間距離,取平均值),24 h后再次測(cè)量劃痕距離,計(jì)算細(xì)胞遷移距離(?m)=轉(zhuǎn)染前劃痕距離-轉(zhuǎn)染后劃痕距離。(3)侵襲。將按照1.2.3方法分組轉(zhuǎn)染的GH3細(xì)胞接種于12孔板中,無(wú)菌培養(yǎng)24 h后分別收集各組細(xì)胞,通過(guò)細(xì)胞計(jì)數(shù)板對(duì)各組細(xì)胞計(jì)數(shù)后,將其濃度調(diào)至5×105個(gè)/mL,加入被基質(zhì)膠包被過(guò)的Transwell上室中培養(yǎng)(此時(shí)培養(yǎng)基為不含胎牛血清的Ham's F-12K),同時(shí)在Transwell下室中加入細(xì)胞培養(yǎng)液(含有10%胎牛血清),24 h后對(duì)下室細(xì)胞進(jìn)行漂洗、固定、伊紅染色處理,于光鏡下觀察拍照并計(jì)數(shù)細(xì)胞數(shù)目。
1.2.6 GH3細(xì)胞KAI1/CD82 m6A甲基化修飾情況檢測(cè)
通過(guò)SRAMP數(shù)據(jù)庫(kù)預(yù)測(cè)KAI1/CD82基因的m6A甲基化修飾位點(diǎn)。將按照1.2.3分組轉(zhuǎn)染的GH3細(xì)胞接種于12孔板中,無(wú)菌培養(yǎng)24 h后分別收集各組細(xì)胞,以試劑盒提取其中的總RNA,參考文獻(xiàn)[12]的方法,以PolyATtract? mRNA Isolation System試劑盒富集多聚腺苷酸陽(yáng)性的RNA,然后使用RNA fragmentation Reagents對(duì)其片段化,各組預(yù)留一部分做Input對(duì)照,剩余RNA通過(guò)Magna MeRIP m6A試劑盒中的m6A抗體進(jìn)行免疫共沉淀,具體步驟參照各自說(shuō)明指導(dǎo)書(shū)進(jìn)行,沉淀后的RNA按照1.2.1中的方法進(jìn)行qPCR實(shí)驗(yàn),檢測(cè)各組細(xì)胞KAI1/CD82 m6A甲基化水平。
1.3 統(tǒng)計(jì)學(xué)方法
采用SPSS 24.0軟件進(jìn)行數(shù)據(jù)分析,計(jì)量資料符合正態(tài)分布,以x±s表示,多組間比較采用單因素方差分析,組間多重比較行LSD-t檢驗(yàn)。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 垂體神經(jīng)內(nèi)分泌腫瘤與正常垂體組織細(xì)胞中METTL3、KAI1/CD82表達(dá)比較
相比大鼠垂體細(xì)胞,大鼠垂體神經(jīng)內(nèi)分泌腫瘤細(xì)胞系GH3、MMQ中METTL3蛋白及mRNA表達(dá)水平升高,KAI1/CD82蛋白及mRNA表達(dá)水平降低(P<0.05),見(jiàn)圖1、表2。由于GH3細(xì)胞中METTL3蛋白及mRNA表達(dá)水平高于MMQ細(xì)胞,因此選擇GH3細(xì)胞用于后續(xù)實(shí)驗(yàn)。
2.2 各組GH3細(xì)胞METTL3與KAI1/CD82表達(dá)水平比較
與對(duì)照組相比,METTL3空質(zhì)粒組、METTL3 siRNA陰性對(duì)照組METTL3、KAI1/CD82蛋白及mRNA表達(dá)水平差異無(wú)統(tǒng)計(jì)學(xué)意義;與對(duì)照組、METTL3空質(zhì)粒組相比,METTL3過(guò)表達(dá)質(zhì)粒組METTL3蛋白及mRNA表達(dá)水平升高(P<0.05),KAI1/CD82蛋白及mRNA表達(dá)水平降低(P<0.05);與對(duì)照組、METTL3 siRNA陰性對(duì)照組相比,METTL3 siRNA組METTL3蛋白及mRNA表達(dá)水平降低(P<0.05),KAI1/CD82蛋白及mRNA表達(dá)水平升高(P<0.05)。見(jiàn)圖2、表3。
2.3 各組GH3細(xì)胞增殖情況比較
與對(duì)照組相比,METTL3空質(zhì)粒組、METTL3 siRNA陰性對(duì)照組細(xì)胞活力差異無(wú)統(tǒng)計(jì)學(xué)意義;與對(duì)照組、METTL3空質(zhì)粒組相比,METTL3過(guò)表達(dá)質(zhì)粒組細(xì)胞活力升高(P<0.05);與對(duì)照組、METTL3 siRNA陰性對(duì)照組相比,METTL3 siRNA組細(xì)胞活力降低(P<0.05),見(jiàn)表4。
2.4 各組GH3細(xì)胞遷移情況比較
與對(duì)照組相比,METTL3空質(zhì)粒組、METTL3 siRNA陰性對(duì)照組遷移距離差異無(wú)統(tǒng)計(jì)學(xué)意義;與對(duì)照組、METTL3空質(zhì)粒組相比,METTL3過(guò)表達(dá)質(zhì)粒組遷移距離增大(P<0.05);與對(duì)照組、METTL3 siRNA陰性對(duì)照組相比,METTL3 siRNA組遷移距離減?。≒<0.05);見(jiàn)表4、圖3。
2.5 各組GH3細(xì)胞侵襲情況比較
與對(duì)照組相比,METTL3空質(zhì)粒組、METTL3 siRNA陰性對(duì)照組侵襲細(xì)胞數(shù)差異無(wú)統(tǒng)計(jì)學(xué)意義;與對(duì)照組、METTL3空質(zhì)粒組相比,METTL3過(guò)表達(dá)質(zhì)粒組侵襲細(xì)胞數(shù)增多(P<0.05);與對(duì)照組、METTL3 siRNA陰性對(duì)照組相比,METTL3 siRNA組侵襲細(xì)胞數(shù)減少(P<0.05);見(jiàn)表4、圖4。
2.6 GH3細(xì)胞中METTL3對(duì)KAI1/CD82 m6A甲基化修飾的影響
通過(guò)SRAMP數(shù)據(jù)庫(kù)預(yù)測(cè)顯示,KAI1/CD82基因存在多個(gè)m6A甲基化修飾位點(diǎn),見(jiàn)圖5。與對(duì)照組相比,METTL3空質(zhì)粒組、METTL3 siRNA陰性對(duì)照組KAI1/CD82 m6A甲基化水平差異無(wú)統(tǒng)計(jì)學(xué)意義;與對(duì)照組、METTL3空質(zhì)粒組相比,METTL3過(guò)表達(dá)質(zhì)粒組KAI1/CD82 m6A甲基化水平升高(P<0.05);與對(duì)照組、METTL3 siRNA陰性對(duì)照組相比,METTL3 siRNA組KAI1/CD82 m6A甲基化水平降低(P<0.05),見(jiàn)表4。
3 討論
目前,臨床治療垂體神經(jīng)內(nèi)分泌腫瘤,特別是難治性垂體神經(jīng)內(nèi)分泌腫瘤,主要以手術(shù)、放射治療、服藥為主,不僅易損傷大腦其他重要組織,還可能引起一系列后遺癥,治療效果并不理想,因而探討垂體神經(jīng)內(nèi)分泌腫瘤發(fā)生發(fā)展的分子機(jī)制,尋找更有效的治療手段具有重要意義[13-14]。
m6A修飾在癌癥的發(fā)病及進(jìn)展過(guò)程中起到重要的調(diào)控作用。甲基轉(zhuǎn)移酶METTL3可介導(dǎo)多種致癌、抑癌基因的mRNA m6A修飾,調(diào)控大腸癌、肝細(xì)胞癌等多種腫瘤的發(fā)生發(fā)展[15-16]。研究表明,降低METTL3表達(dá)可抑制胃癌細(xì)胞增殖、遷移和侵襲,同時(shí)促進(jìn)其凋亡[17],還能抑制垂體神經(jīng)內(nèi)分泌腫瘤細(xì)胞體外增殖生長(zhǎng)[6]。本研究結(jié)果顯示,相比正常垂體細(xì)胞,METTL3在垂體神經(jīng)內(nèi)分泌腫瘤細(xì)胞中高表達(dá),以METTL3 siRNA下調(diào)GH3細(xì)胞中METTL3表達(dá),可降低細(xì)胞活力、遷移距離、侵襲細(xì)胞數(shù),而過(guò)表達(dá)METTL3起相反作用,提示METTL3參與介導(dǎo)垂體神經(jīng)內(nèi)分泌腫瘤細(xì)胞的增殖、遷移與侵襲過(guò)程,與以前研究結(jié)果一致,提示METTL3可作為治療垂體神經(jīng)內(nèi)分泌腫瘤的重要作用靶點(diǎn)。
KAI1/CD82是一種抑癌基因,主要通過(guò)抑制腫瘤細(xì)胞生長(zhǎng)、侵襲等生理過(guò)程而發(fā)揮抗癌作用,KAI1/CD82低表達(dá)時(shí),其腫瘤抑制功能減弱,有利于腫瘤的進(jìn)展和轉(zhuǎn)移,是造成腫瘤患者預(yù)后不良的重要因素[18-20]。筆者查詢SRAMP數(shù)據(jù)庫(kù)顯示,KAI1/CD82基因存在多個(gè)m6A甲基化修飾位點(diǎn),因而推測(cè)METTL3介導(dǎo)垂體神經(jīng)內(nèi)分泌腫瘤發(fā)生發(fā)展的分子機(jī)制可能與調(diào)控KAI1/CD82的表達(dá)有關(guān)。本研究結(jié)果顯示,相比正常垂體細(xì)胞,KAI1/CD82在垂體神經(jīng)內(nèi)分泌腫瘤細(xì)胞中低表達(dá),下調(diào)GH3細(xì)胞中METTL3表達(dá)可降低KAI1/CD82 m6A甲基化水平,升高其mRNA表達(dá)水平,抑制細(xì)胞的增殖、遷移、侵襲,過(guò)表達(dá)METTL3時(shí)作用相反;提示METTL3可能通過(guò)對(duì)KAI1/CD82基因進(jìn)行m6A mRNA甲基化修飾,下調(diào)KAI1/CD82表達(dá),促進(jìn)垂體神經(jīng)內(nèi)分泌腫瘤的發(fā)生及進(jìn)展;而下調(diào)METTL3表達(dá)可降低KAI1/CD82 m6A甲基化水平,促進(jìn)KAI1/CD82表達(dá),抑制垂體神經(jīng)內(nèi)分泌腫瘤細(xì)胞遷移及侵襲,發(fā)揮抑癌作用。
總之,METTL3基因可能通過(guò)調(diào)控甲基化修飾介導(dǎo)KAI1/CD82基因表達(dá),在垂體神經(jīng)內(nèi)分泌腫瘤的發(fā)生發(fā)展中發(fā)揮重要作用。本研究表明,敲低METTL3表達(dá)可促進(jìn)KAI1/CD82基因表達(dá)并抑制KAI1/CD82 m6A甲基化,進(jìn)而抑制垂體神經(jīng)內(nèi)分泌腫瘤細(xì)胞遷移及侵襲,提示敲低METTL3可能是一種有前景的垂體神經(jīng)內(nèi)分泌腫瘤治療策略,后續(xù)會(huì)通過(guò)敲低KAI1/CD82表達(dá)進(jìn)行驗(yàn)證,深入探究METTL3作為垂體神經(jīng)內(nèi)分泌腫瘤治療靶點(diǎn)的潛力。
參考文獻(xiàn)
[1] FENG Z,MAO Z,WANG Z,et al. Non-adenomatous pituitary tumours mimicking functioning pituitary adenomas[J]. Br J Neurosurg,2020,34(5):487-491. doi:10.1080/02688697.2018.1464121.
[2] KOBALKA P J,HUNTOON K,BECKER A P. Neuropathology of pituitary adenomas and sellar lesions[J]. Neurosurgery,2021,88(5):900-918. doi:10.1093/neuros/nyaa548.
[3] ZHOU D,TANG W,XU Y,et al. METTL3/YTHDF2 m6A axis accelerates colorectal carcinogenesis through epigenetically suppressing YPEL5[J]. Mol Oncol,2021,15(8):2172-2184. doi:10.1002/1878-0261.12898.
[4] MA Z,LI Q,LIU P,et al. METTL3 regulates m6A in endometrioid epithelial ovarian cancer independently of METTl14 and WTAP[J]. Cell Biol Int,2020,44(12):2524-2531. doi:10.1002/cbin.11459.
[5] 王天工,葉孟. m~6A甲基化與腫瘤研究進(jìn)展[J]. 遺傳,2018,40(12):1055-1065. WANG T G,YE M. Advances on the roles of m6A in tumorigenesis[J]. Hereditas,2018,40(12):1055-1065. doi:10.16288/j.yczz.18-098.
[6] CHANG M,WANG Z,GAO J,et al. METTL3-mediated RNA m6A hypermethylation promotes tumorigenesis and GH secretion of pituitary somatotroph adenomas[J]. J Clin Endocrinol Metab,2022,107(1):136-149. doi:10.1210/clinem/dgab652.
[7] YAN W,HUANG J,ZHANG Q,et al. Role of metastasis suppressor KAI1/CD82 in different cancers[J]. J Oncol,2021,2021:9924473. doi:10.1155/2021/9924473.
[8] AL-KHATER K M,ALMOFTY S,RAVINAYAGAM V,et al. Role of a metastatic suppressor gene KAI1/CD82 in the diagnosis and prognosis of breast cancer[J]. Saudi J Biol Sci,2021,28(6):3391-3398. doi:10.1016/j.sjbs.2021.03.001.
[9] HE X,MA X,WANG C,et al. The peptide mimicking small extracellular ring domain of CD82 inhibits tumor cell migration in vitro and metastasis in vivo[J]. J Cancer Res Clin Oncol,2021,147(7):1927-1934. doi:10.1007/s00432-021-03595-6.
[10] WANNA-UDOM S,TERASHIMA M,LYU H,et al. The m6A methyltransferase METTL3 contributes to transforming growth factor-beta-induced epithelial-mesenchymal transition of lung cancer cells through the regulation of JUNB[J]. Biochem Biophys Res Commun,2020,524(1):150-155. doi:10.1016/j.bbrc.2020.01.042.
[11] LIU Y,LIU Z,TANG H,et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of STAT1 mRNA[J]. Am J Physiol Cell Physiol,2019,317(4):C762-C775. doi:10.1152/ajpcell.00212.2019.
[12] LIU L,WU Y,LI Q,et al. METTL3 promotes tumorigenesis and metastasis through BMI1 m6A methylation in oral squamous cell carcinoma[J]. Mol Ther,2020,28(10):2177-2190. doi:10.1016/j.ymthe.2020.06.024.
[13] P?REZ-L?PEZ C,?LVAREZ-ESCOL? C,ISLA GUERRERO A. Therapeutic approach to non-functioning pituitary adenomas[J]. Med Clin (Barc),2021,156(6):284-289. doi:10.1016/j.medcli.2020.08.019.
[14] LAMBACK E B,GUTERRES A,BARBOSA M A,et al. Cyclin A in nonfunctioning pituitary adenomas[J]. Endocrine,2020,70(2):380-387. doi:10.1007/s12020-020-02402-5.
[15] YANG N,WANG T,LI Q,et al. HBXIP drives metabolic reprogramming in hepatocellular carcinoma cells via METTL3-mediated m6A modification of HIF-1α[J]. J Cell Physiol,2021,236(5):3863-3880. doi:10.1002/jcp.30128.
[16] CHEN H,GAO S,LIU W,et al. RNA N6-methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m6A-GLUT1-mTORC1 axis and is a therapeutic target[J]. Gastroenterology,2021,160(4):1284-1300.e16. doi:10.1053/j.gastro.2020.11.013.
[17] YANG Z,JIANG X,LI D,et al. HBXIP promotes gastric cancer via METTL3-mediated MYC mRNA m6A modification[J]. Aging (Albany NY),2020,12(24):24967-24982. doi:10.18632/aging.103767.
[18] MILLER J,DREYER T F,B?CHER A S,et al. Differential tumor biological role of the tumor suppressor KAI1 and its splice variant in human breast cancer cells[J]. Oncotarget,2018,9(5):6369-6390. doi:10.18632/oncotarget.23968.
[19] KRISHNA LATHA T,VERMA A,THAKUR G K,et al. Down regulation of KAI1/CD82 in lymph node positive and advanced T-stage group in breast cancer patients[J]. Asian Pac J Cancer Prev,2019,20(11):3321-3329. doi:10.31557/APJCP.2019.20.11.3321.
[20] HUANG C,HAYS F A,TOMASEK J J,et al. Tetraspanin CD82 interaction with cholesterol promotes extracellular vesicle-mediated release of ezrin to inhibit tumour cell movement[J]. J Extracell Vesicles,2020,9(1):1692417. doi:10.1080/20013078.2019.1692417.
(2022-10-27收稿 2022-12-02修回)
(本文編輯 李國(guó)琪)