王玉寧 宋聚星 田志剛 郝國榮 申浩
摘要:目的 探究白皮杉醇(PIC)調(diào)控微小RNA-106b-5p(miR-106b-5p)/RUNT相關(guān)轉(zhuǎn)錄因子3(RUNX3)軸對宮頸癌(CC)細(xì)胞遷移及侵襲的影響。方法 使用不同濃度PIC(0、20、40、80和160 μmol/L)培養(yǎng)液處理人CC Hela細(xì)胞,通過CCK-8法檢測PIC對細(xì)胞增殖活力的影響,以確定PIC最佳使用濃度。將Hela細(xì)胞分為Control組、PIC組、PIC+NC mimics組、PIC+miR-106b-5p mimics組、NC inhibitor組、miR-106b-5p inhibitor組、miR-106b-5p inhibitor+si-RNA組及miR-106b-5p inhibitor+si-RUNX3組。實時熒光定量PCR檢測各組Hela細(xì)胞miR-106b-5p表達(dá)水平;Transwell法檢測各組Hela細(xì)胞遷移及侵襲能力;Western blot法檢測各組Hela細(xì)胞中RUNX3、基質(zhì)金屬蛋白酶(MMP)2和MMP9蛋白表達(dá)水平;雙螢光素酶報告基因?qū)嶒灆z測miR-106b-5p與RUNX3靶向關(guān)系。結(jié)果 Hela細(xì)胞增殖活力隨著PIC處理濃度的增高而呈現(xiàn)降低趨勢(P<0.05),其中80 μmol/L PIC對Hela細(xì)胞的抑制作用接近半數(shù)抑制濃度(IC50),故選擇80 μmol/L為后續(xù)研究的PIC濃度。與Control組相比,PIC組miR-106b-5p、MMP2和MMP9表達(dá)水平均降低,遷移和侵襲細(xì)胞數(shù)量減少,RUNX3表達(dá)水平增加(P<0.05);與PIC+NC mimics組相比,PIC+miR-106b-5p mimics組miR-106b-5p、MMP2和MMP9表達(dá)水平增加,遷移和侵襲細(xì)胞數(shù)量增多,RUNX3表達(dá)水平降低(P<0.05)。雙螢光素酶報告基因?qū)嶒炞C實RUNX3為miR-106b-5p的靶基因。與NC inhibitor組相比,miR-106b-5p inhibitor組RUNX3表達(dá)水平增加,miR-106b-5p、MMP2與MMP9表達(dá)水平降低,遷移和侵襲細(xì)胞數(shù)量減少(P<0.05);與miR-106b-5p inhibitor+si-RNA組相比,miR-106b-5p inhibitor+si-RUNX3組RUNX3表達(dá)水平降低,miR-106b-5p、MMP2和MMP9表達(dá)水平增加,遷移和侵襲細(xì)胞數(shù)量增多(P<0.05)。結(jié)論 PIC通過抑制miR-106b-5p表達(dá)、促進(jìn)RUNX3表達(dá)來抑制CC細(xì)胞遷移及侵襲。
關(guān)鍵詞:微RNAs;核心結(jié)合因子α3亞基;宮頸腫瘤;細(xì)胞運動;腫瘤浸潤;白皮杉醇;miR-106b-5p;RUNT相關(guān)轉(zhuǎn)錄因子3
中圖分類號:R285,R349.5文獻(xiàn)標(biāo)志碼:ADOI:10.11958/20221529
The effect of piceatannol on the migration and invasion of cervical cancer cells by regulating miR-106b-5p/RUNX3 axis
WANG Yuning SONG Juxing TIAN Zhigang HAO Guorong SHEN Hao
1 Department of Gynecology, Shijiazhuang No.4 Hospital, Shijiazhuang 050035, China; 2 Department of Pathology,
3 Department of Clinical Laboratory, Baoding Second Central Hospital
Abstract: Objective To explore the effect of piceatannol (PIC) on migration and invasion of cervical cancer (CC) cells by regulating microRNA-106b-5p (miR-106b-5p)/RUNT-related transcription factor 3 (RUNX3) axis. Methods Firstly, human CC cells Hela were treated with culture media of different concentrations of PIC (0, 20, 40, 80 and 160 μmol/L), and the effect of PIC on cell proliferation was detected by CCK-8 assay to determine the optimal concentration of PIC. Hela cells were divided into the control group, the PIC group, the PIC+NC mimics group, the PIC+ miR-106b-5p mimics group, the NC inhibitor group, the miR-106b-5p inhibitor group, the miR-106b-5p inhibitor+si-RNA group and the miR-106b-5p inhibitor+si-RUNX3 group. qRT-PCR was used to detect the expression level of miR-106b-5p in Hela cells in each group. Transwell method was used to detect the migration and invasion abilities of Hela cells in each group. Western blot assay was used to detect the protein levels of RUNX3, MMP2 and MMP9 in Hela cells of each group. Dual luciferase reporter gene experiment was used to detect the targeting relationship between miR-106b-5p and RUNX3. Results The proliferation activity of Hela cells decreased with the increase of PIC treatment concentration (P<0.05). The inhibitory effect of 80 μmol/L PIC on Hela cells was nearly to half inhibitory concentration (IC50), so 80 μmol/L was selected as the PIC concentration for subsequent study. Compared with the control group, the expression levels of miR-106b-5p, MMP2 and MMP9 decreased in the PIC group, the numbers of migrating and invasive cells decreased, and the expression level of RUNX3 increased (P<0.05). Compared with the PIC+NC mimics group, the expression levels of miR-106b-5p, MMP2 and MMP9 increased in the PIC+miR-106b-5p mimics group, numbers of migrating and invasive cells increased, and the expression level of RUNX3 decreased (P<0.05). Double luciferase reporter gene assay confirmed RUNX3 as the target gene of miR-106b-5p. Compared with the NC inhibitor group, the expression level of RUNX3? increased in the miR-106b-5p inhibitor group, and the expression levels of miR-106b-5p, MMP2 and MMP9 decreased, and numbers of migrating and invasive cells decreased (P<0.05). Compared with the miR-106b-5p inhibitor+si-RNA group, the miR-106b-5p inhibitor+si-RUNX3 group showed lower RUNX3 expression level, increased miR-106b-5p, MMP2 and MMP9 expression levels, and increased numbers of migrating and invading cells (P<0.05). Conclusion PIC inhibits the miR-106b-5p expression and promotes RUNX3 expression to inhibit CC cell migration and invasion.
Key words: microRNAs; core binding factor alpha 3 subunit; uterine cervical neoplasms; cell movement; neoplasm invasiveness; piceatannol; miRNA-106b-5p; RUNT-related transcription factor 3
宮頸癌(cervical cancer,CC)是一種常見的女性惡性腫瘤,并且是全球癌癥相關(guān)死亡的主要原因之一[1]。由于其病因復(fù)雜,對化療藥物的耐藥性和高轉(zhuǎn)移潛力,晚期CC患者預(yù)后較差[2-3]。因此,迫切需要開發(fā)一種高效、低毒的新型CC治療藥物。白皮杉醇(piceatannol,PIC)是一種酚類化合物和白藜蘆醇的類似物,具有抗炎、抗氧化、調(diào)節(jié)免疫等多種藥理特性[4],且對不同類型的腫瘤,如骨肉瘤[5]、膀胱癌[6]、結(jié)腸癌[7]具有抗癌活性。然而,其在CC中的作用和分子機制尚不清楚。微小RNAs(miRNAs)的發(fā)現(xiàn)為癌細(xì)胞轉(zhuǎn)移和進(jìn)展的分子機制研究提供了新的方法和見解。有研究發(fā)現(xiàn),miR-106b在CC組織中高表達(dá),可能與CC的發(fā)展有關(guān)[8]。miRNAs可通過調(diào)控靶基因的翻譯或降解參與細(xì)胞增殖、凋亡、遷移及侵襲等多種過程。如在肝癌中,miR-106b-5p通過靶向下調(diào)RUNT相關(guān)轉(zhuǎn)錄因子3(RUNT-related transcription factor 3,RUNX3)表達(dá)促進(jìn)腫瘤細(xì)胞的侵襲[9]。已知RUNX3在CC組織中低表達(dá),為抑癌基因[10]。本研究旨在探究PIC對CC細(xì)胞增殖、遷移及侵襲的影響,并分析其潛在機制,以期為尋找新型CC化療藥物提供參考。
1 材料與方法
1.1 實驗材料
人CC Hela細(xì)胞購于中國科學(xué)院細(xì)胞庫;DMEM培養(yǎng)基、胎牛血清、青/鏈霉素、LipofectamineTM 2000轉(zhuǎn)染試劑均購自美國Invitrogen公司。PIC購自成都麥得生物科技公司,純度>99%。miR-106b-5p模擬物(miR-106b-5p mimics)和其陰性對照(NC mimics)、miR-106b-5p抑制物(miR-106b-5p inhibitor)和其陰性對照(NC inhibitor)、RUNX3小干擾RNA(si-RUNX3)和其陰性對照(si-RNA)、野生型RUNX3(RUNX3-WT)和突變型RUNX3(RUNX3-MUT)及miR-106b-5p和U6引物均由生工生物工程(上海)股份有限公司設(shè)計合成。CCK-8細(xì)胞增殖檢測試劑盒購自日本Dojindo;細(xì)胞總RNA提取試劑盒(Trizol法)、逆轉(zhuǎn)錄試劑盒、實時熒光定量聚合酶鏈反應(yīng)(qPCR)試劑盒購自南京Vazyme公司。Transwell小室、基質(zhì)膠購自美國Corning公司;高效RIPA細(xì)胞快速裂解液購自北京Solarbio公司;兔源RUNX3、基質(zhì)金屬蛋白酶(MMP)2、MMP9、甘油醛-3-磷酸脫氫酶(GAPDH)抗體均購自英國Abcam公司;雙螢光素酶活性檢測試劑盒購自北京百奧萊博科技有限公司。HERAcell 240i型二氧化碳細(xì)胞培養(yǎng)箱、Varioskan LUX型酶標(biāo)儀購自美國Thermo Fisher公司;CFX96型熒光定量PCR儀、OI100 Touch型凝膠成像系統(tǒng)購自美國Bio-Rad公司;CKX53型倒置顯微鏡購自日本OLYMPUS公司。
1.2 研究方法
1.2.1 細(xì)胞培養(yǎng)與分組
Hela細(xì)胞接種在含有10%胎牛血清和1%青/鏈霉素的DMEM培養(yǎng)基,置于37 ℃、5%CO2培養(yǎng)箱中培養(yǎng)。取對數(shù)生長期的Hela細(xì)胞進(jìn)行實驗,首先采用含不同濃度PIC(0、20、40、80和160 μmol/L)的培養(yǎng)液處理Hela細(xì)胞24 h,通過CCK-8法檢測不同濃度的PIC對Hela細(xì)胞增殖活力的影響,以確定最佳PIC使用濃度。將細(xì)胞分為:Control組(正常培養(yǎng)Hela細(xì)胞)、PIC組(含有80 μmol/L PIC的培養(yǎng)基處理)、PIC+NC mimics組(轉(zhuǎn)染NC mimics后采用80 μmol/L PIC處理)、PIC+miR-106b-5p mimics組(轉(zhuǎn)染miR-106b-5p mimics后采用80 μmol/L PIC處理)、NC inhibitor組(轉(zhuǎn)染NC inhibitor)、miR-106b-5p inhibitor組(轉(zhuǎn)染miR-106b-5p inhibitor)、miR-106b-5p inhibitor+si-RNA組(轉(zhuǎn)染miR-106b-5p inhibitor和si-RNA)及miR-106b-5p inhibitor+si-RUNX3組(轉(zhuǎn)染miR-106b-5p inhibitor和si-RUNX3),細(xì)胞轉(zhuǎn)染嚴(yán)格遵循LipofectamineTM 2000說明書流程。
1.2.2 CCK-8檢測不同濃度PIC處理后的Hela細(xì)胞增殖活力
將對數(shù)生長期的Hela細(xì)胞以1×104個/孔的密度接種于96孔板中,采用含不同濃度PIC(0、20、40、80和160 μmol/L)培養(yǎng)液處理Hela細(xì)胞24 h,每孔中添加10 μL CCK-8溶液混勻后繼續(xù)培養(yǎng)4 h,在酶標(biāo)儀中測定450 nm波長處的吸光度(A)值,計算細(xì)胞增殖活力。細(xì)胞增殖活力(%)=APIC加藥組/APIC 0 μmol/L組×100%,確定PIC最佳使用濃度。
1.2.3 qPCR檢測各組Hela細(xì)胞中miR-106b-5p表達(dá)水平
參照1.2.1中分組方法處理Hela細(xì)胞后,棄去培養(yǎng)基,使用Trizol試劑提取各組細(xì)胞總RNA,將RNA通過逆轉(zhuǎn)錄試劑盒逆轉(zhuǎn)錄為cDNA,隨后采用qPCR試劑盒進(jìn)行PCR擴增。miR-106b-5p引物:上游5′-TGCGGCAACACCAGTCGATGG-3′,下游5′-CCAGTGCAGGGTCCGAGGT-3′;內(nèi)參U6引物:上游5′-CTCGCTTCGGGCAGCACA-3′,下游5′-AACGCTTCACGAATTTGCGT-3′。反應(yīng)體系:2 ?L cDNA(200 μg/L),上、下游引物(10 ?mol/L)各0.8 ?L,10 ?L SYBR Premix Ex Taq(2×),6.4 ?L ddH2O。反應(yīng)條件:95 ℃預(yù)變性30 s;95 ℃變性5 s,55 ℃退火10 s,72 ℃延伸15 s,共40個循環(huán)。以U6為內(nèi)參基因,使用2-ΔΔct法計算miR-106b-5p的相對表達(dá)水平。
1.2.4 Transwell法檢測各組Hela細(xì)胞遷移及侵襲能力
參照1.2.1中的分組方法處理Hela細(xì)胞后,棄去培養(yǎng)基,使用無血清的培養(yǎng)基懸浮細(xì)胞,吸取200 μL細(xì)胞懸浮液(1×106個/mL)加入Transwell小室上室中,下室中添加500 μL正常培養(yǎng)基。培養(yǎng)24 h后,取出小室,拭去上室中未遷移的細(xì)胞。4%多聚甲醛固定10 min,1%結(jié)晶紫染色5 min,晾干后于倒置顯微鏡下拍照記錄。隨機對5個視野細(xì)胞進(jìn)行計數(shù),取均值表示遷移細(xì)胞數(shù)量。侵襲實驗將Transwell小室提前用基質(zhì)膠包被后使用,其余步驟同上。
1.2.5 Western blot檢測各組Hela細(xì)胞中RUNX3、MMP2和MMP9蛋白水平
參照1.2.1中分組方法處理Hela細(xì)胞后,棄去培養(yǎng)基,使用RIPA法提取各組細(xì)胞的總蛋白,并通過Bradford法定量。通過十二烷基硫酸鈉聚丙烯酰胺凝膠電泳分離蛋白質(zhì)并轉(zhuǎn)移到PVDF膜上。脫脂牛奶封閉1 h,添加一抗RUNX3(1︰500)、MMP2(1︰1 000)、MMP9(1︰1 000)及內(nèi)參GAPDH(1︰2 000),在4 ℃下孵育過夜。隔日使用辣根過氧化物酶偶聯(lián)的二抗(1︰4 000)在室溫下孵育2 h。最后使用凝膠成像系統(tǒng)拍照記錄蛋白印跡,使用Image J分析蛋白條帶的灰度值,量化蛋白表達(dá)數(shù)據(jù)。目的蛋白的相對表達(dá)量=目的蛋白的灰度值/內(nèi)參蛋白的灰度值。
1.2.6 雙螢光素酶報告基因?qū)嶒灆z測miR-106b-5p與RUNX3靶向關(guān)系
將Hela細(xì)胞以1×105個/孔的密度接種于24孔細(xì)胞培養(yǎng)板中,分別使用RUNX3-WT或RUNX3-MUT和miR-106b-5p mimics或NC mimics共同轉(zhuǎn)染24 h。使用雙螢光素酶活性檢測試劑盒檢測各組Hela細(xì)胞熒光素酶活性。
1.3 統(tǒng)計學(xué)方法
采用SPSS 25.0進(jìn)行數(shù)據(jù)分析。符合正態(tài)分布的計量資料以x±s表示,使用單因素方差分析比較多組間的差異,組間多重比較使用SNK-q檢驗。P<0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 不同濃度PIC對Hela細(xì)胞增殖活力的影響
與0 μmol/L相比,20、40、80和160 μmol/L PIC處理后Hela細(xì)胞增殖活力降低(P<0.05),且隨著PIC濃度的增高,其對Hela細(xì)胞增殖活力的抑制作用也隨之增強,見圖1。PIC對Hela細(xì)胞增殖活力的半數(shù)抑制濃度(IC50)為75.858 μmol/L,因80 μmol/L PIC對Hela細(xì)胞的抑制率接近IC50,故選擇此濃度作為后續(xù)研究的PIC濃度。
2.2 過表達(dá)miR-106b-5p對PIC抑制Hela細(xì)胞遷移及侵襲和促進(jìn)RUNX3表達(dá)的影響
與Control組相比,PIC組miR-106b-5p、MMP2和MMP9表達(dá)水平均降低,遷移和侵襲細(xì)胞數(shù)量減少,RUNX3表達(dá)水平增加(P<0.05);與PIC+NC mimics組相比,PIC+miR-106b-5p mimics組miR-106b-5p、MMP2和MMP9表達(dá)水平均增加,遷移和侵襲細(xì)胞數(shù)量增多,RUNX3表達(dá)水平降低(P<0.05);而PIC+NC mimics組與PIC組細(xì)胞中miR-106b-5p、RUNX3、MMP2、MMP9表達(dá)水平及遷移和侵襲細(xì)胞數(shù)量差異均無統(tǒng)計學(xué)意義(P>0.05),見表1,圖2、3。
2.3 miR-106b-5p與RUNX3靶向關(guān)系驗證
經(jīng)miRTarBase網(wǎng)站預(yù)測(http://mirtarbase.mbc.nctu. edu.tw/php/index.php)發(fā)現(xiàn),miR-106b-5p與RUNX3存在靶向結(jié)合位點,見圖4。雙螢光素酶實驗結(jié)果顯示,上調(diào)miR-106b-5p表達(dá)可有效降低轉(zhuǎn)染RUNX3-WT后的細(xì)胞相對螢光素酶活性(P<0.05),而對轉(zhuǎn)染RUNX3-MUT后的細(xì)胞相對螢光素酶活性則無明顯影響(P>0.05),見表2。
2.4 RUNX3對miR-106b-5p調(diào)控Hela細(xì)胞遷移及侵襲的影響
與NC inhibitor組相比,miR-106b-5p inhibitor組RUNX3表達(dá)水平增加,miR-106b-5p、MMP2與MMP9表達(dá)水平均降低,遷移和侵襲細(xì)胞數(shù)量減少(P<0.05);與miR-106b-5p inhibitor+si-RNA組相比,miR-106b-5p inhibitor+si-RUNX3組RUNX3表達(dá)水平降低,miR-106b-5p、MMP2和MMP9表達(dá)水平均增加,遷移和侵襲細(xì)胞數(shù)量增多(P<0.05);而miR-106b-5p inhibitor+si-RNA組與miR-106b-5p inhibitor組細(xì)胞中miR-106b-5p、RUNX3、MMP2與MMP9表達(dá)水平及遷移和侵襲細(xì)胞數(shù)量差異均無統(tǒng)計學(xué)意義(P>0.05),見表3,圖5、6。
3 討論
白藜蘆醇通過抑制細(xì)胞生長在CC中發(fā)揮抗癌作用[11],而PIC是一種天然的白藜蘆醇類似物。Wang等[5]研究發(fā)現(xiàn),PIC以劑量依賴性方式抑制骨肉瘤細(xì)胞增殖,并誘導(dǎo)骨肉瘤細(xì)胞凋亡。Li等[6]發(fā)現(xiàn)PIC以濃度和時間依賴性方式抑制膀胱癌細(xì)胞的增殖,誘導(dǎo)細(xì)胞凋亡和細(xì)胞周期停滯。本研究發(fā)現(xiàn),PIC以劑量依賴性方式抑制Hela細(xì)胞增殖,且PIC可降低Hela細(xì)胞的遷移和侵襲能力。這些數(shù)據(jù)表明PIC很有可能是CC的潛在治療劑。
miRNAs可以通過靶向調(diào)控其靶基因來參與腫瘤細(xì)胞增殖、遷移及侵襲,發(fā)揮抑癌基因或促癌基因的作用[12]。以往研究表明,白藜蘆醇及其類似物可調(diào)控miRNA表達(dá)來介導(dǎo)前列腺癌的治療[13]。Du等[14]研究發(fā)現(xiàn),PIC通過上調(diào)miR-181a的表達(dá)誘導(dǎo)黑色素瘤細(xì)胞凋亡。因此,筆者推測PIC可能通過介導(dǎo)miRNA對CC細(xì)胞發(fā)揮抗癌作用。本研究發(fā)現(xiàn)PIC可抑制miR-106b-5p表達(dá)。已知miR-106b-5p在結(jié)直腸癌[15]、肝癌[16]等腫瘤組織及細(xì)胞中高表達(dá),可通過調(diào)控其靶基因發(fā)揮促癌作用。為了進(jìn)一步研究PIC的抗癌作用是否受miR-106b-5p表達(dá)的調(diào)節(jié),本研究在上調(diào)miR-106b-5p的同時使用PIC處理Hela細(xì)胞,發(fā)現(xiàn)上調(diào)miR-106b-5p可逆轉(zhuǎn)PIC的抗腫瘤效應(yīng),提示PIC可能通過下調(diào)miR-106b-5p表達(dá)對CC細(xì)胞發(fā)揮抗癌作用。然而,其潛在分子機制還需進(jìn)一步研究。
本研究通過在線網(wǎng)站預(yù)測發(fā)現(xiàn),RUNX3存在miR-106b-5p靶向結(jié)合位點。Gu等[9]報道,miR-106b-5p通過靶向調(diào)控RUNX3表達(dá)促進(jìn)肝癌細(xì)胞的發(fā)展。研究顯示,RUNX3作為TGF-β介導(dǎo)信號通路的重要轉(zhuǎn)錄因子發(fā)揮作用,在多種癌癥中發(fā)揮抑癌作用[17]。Song等[18]發(fā)現(xiàn),RUNX3在胃癌組織和細(xì)胞中下調(diào),上調(diào)其表達(dá)可抑制癌細(xì)胞的增殖和侵襲。Qin等[19]研究顯示,miR-20a過表達(dá)會抑制RUNX3表達(dá),進(jìn)而激活TGF-β信號通路,促進(jìn)非小細(xì)胞肺癌的增殖、遷移和侵襲。在本研究中,PIC促進(jìn)了Hela細(xì)胞中RUNX3表達(dá),提示RUNX3可能參與PIC對Hela細(xì)胞抗癌作用。隨后,通過雙熒光素酶報告基因檢測發(fā)現(xiàn),RUNX3可能為miR-106b-5p的靶基因;Western blot證實抑制miR-106b-5p表達(dá)可有效促進(jìn)RUNX3表達(dá),抑制RUNX3表達(dá)可逆轉(zhuǎn)敲低miR-106b-5p表達(dá)對Hela細(xì)胞的遷移和侵襲的抑制作用。以上結(jié)果提示miR-106b-5p可能靶向負(fù)調(diào)控RUNX3的表達(dá)。
綜上所述,PIC可抑制Hela細(xì)胞增殖、遷移和侵襲,其分子機制可能與抑制miR-106b-5p表達(dá)、促進(jìn)RUNX3表達(dá)有關(guān)。本研究表明PIC可能是CC的一種有效治療選擇,為探索CC發(fā)展的分子機制研究提供了參考。但本研究僅選擇了一種CC細(xì)胞系進(jìn)行研究,且并未探究PIC調(diào)控miR-106b-5p/RUNX3軸抑制CC遷移和侵襲是否還有其他因子參與,在后續(xù)的研究中將結(jié)合體內(nèi)動物實驗進(jìn)行更深入更全面的探索。
參考文獻(xiàn)
[1] SUNG H,F(xiàn)ERLAY J,SIEGEL R L,et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2021,71(3):209-249. doi:10.3322/caac.21660.
[2] LEI J,ARROYO-M?HR L S,LAGHEDEN C,et al. Human papillomavirus infection determines prognosis in cervical cancer[J]. J Clin Oncol,2022,40(14):1522-1528. doi:10.1200/JCO.21.01930.
[3] MAYADEV J S,KE G,MAHANTSHETTY U,et al. Global challenges of radiotherapy for the treatment of locally advanced cervical cancer[J]. Int J Gynecol Cancer,2022,32(3):436-445. doi:10.1136/ijgc-2021-003001.
[4] WANG K J,ZHANG W Q,LIU J J,et al. Piceatannol protects against cerebral ischemia/reperfusion?induced apoptosis and oxidative stress via the Sirt1/FoxO1 signaling pathway[J]. Mol Med Rep,2020,22(6):5399-5411. doi:10.3892/mmr.2020.11618.
[5] WANG B,LI J. Piceatannol suppresses the proliferation and induced apoptosis of osteosarcoma cells through PI3K/AKT/mTOR pathway[J]. Cancer Manag Res,2020,12(3):2631-2640. doi:10.2147/CMAR.S238173.
[6] LI X G,ZHANG W S,YAN X P. Piceatannol inhibits proliferation and induces apoptosis of bladder cancer cells through regulation of the PTEN/AKT signal pathway[J]. Cell Mol Biol (Noisy-le-grand),2020,66(3):181-184.
[7] ALJABALI A A A,BAKSHI H A,HAKKIM F L,et al. Albumin nano-encapsulation of piceatannol enhances its anticancer potential in colon cancer via downregulation of nuclear p65 and HIF-1α[J]. Cancers (Basel),2020,12(1):113-118. doi:10.3390/cancers12010113.
[8] FAN Y,SHENG W,MENG Y,et al. LncRNA PTENP1 inhibits cervical cancer progression by suppressing miR-106b[J]. Artif Cells Nanomed Biotechnol,2020,48(1):393-407. doi:10.1080/21691401.2019.1709852.
[9] GU H,GU S,ZHANG X,et al. miR-106b-5p promotes aggressive progression of hepatocellular carcinoma via targeting RUNX3[J]. Cancer Med,2019,8(15):6756-6767. doi:10.1002/cam4.2511.
[10] 戴云峰. RUNX3和VEGF在宮頸癌組織中的表達(dá)分析[J]. 中國醫(yī)藥指南,2020,18(9):51-52. DAI Y F. Expression analysis of RUNX3 and VEGF in cervical carcinoma[J]. Guide of China Medicine,2020,18(9):51-52. doi:10.15912/j.cnki.gocm.2020.09.028.
[11] SUN X,F(xiàn)U P,XIE L,et al. Resveratrol inhibits the progression of cervical cancer by suppressing the transcription and expression of HPV E6 and E7 genes[J]. Int J Mol Med,2021,47(1):335-345. doi:10.3892/ijmm.2020.4789.
[12] 王旭,徐文舉,袁五營. miRNA-4262通過靶向神經(jīng)調(diào)節(jié)蛋白1調(diào)控非小細(xì)胞肺癌細(xì)胞增殖,侵襲,遷移的作用機制[J]. 癌癥進(jìn)展,2020,18(2):133-137. WANG X,XU W J,YUAN W Y. Mechanism of miRNA-4262 regulating the proliferation, invasion and migration of non-small cell lung cancer cells by targeting NRG1[J]. Oncology Progress,2020,18(2):133-137. doi:10.11877/j.issn.1672-1535.2020.18.02.07.
[13] KUMAR A, RIMANDO A M, LEVENSON A S. Resveratrol and pterostilbene as a microRNA-mediated chemopreventive and therapeutic strategy in prostate cancer[J]. Ann N Y Acad Sci,2017,1403(1):15-26. doi:10.1111/nyas.13372.
[14] DU M,ZHANG Z,GAO T. Piceatannol induced apoptosis through up-regulation of microRNA-181a in melanoma cells[J]. Biol Res,2017,50(1):36-45. doi:10.1186/s40659-017-0141-8.
[15] PAN M,CHEN Q,LU Y,et al. MiR-106b-5p regulates the migration and invasion of colorectal cancer cells by targeting FAT4[J]. Biosci Rep,2020,40(11):98-105. doi:10.1042/BSR20200098.
[16] YU L X,ZHANG B L,YANG M Y,et al. MicroRNA-106b-5p promotes hepatocellular carcinoma development via modulating FOG2[J]. Onco Targets Ther,2019,12(5):5639-5647. doi:10.2147/OTT.S203382.
[17] XIAO Z,TIAN Y,JIA Y,et al. RUNX3 inhibits the invasion and migration of esophageal squamous cell carcinoma by reversing the epithelial-mesenchymal transition through TGF-β/Smad signaling[J]. Oncol Rep,2020,43(4):1289-1299. doi:10.3892/or.2020.7508.
[18] SONG J,LIU Y,WANG T,et al. MiR-17-5p promotes cellular proliferation and invasiveness by targeting RUNX3 in gastric cancer[J]. Biomed Pharmacother,2020,128(4):110246-110253. doi:10.1016/j.biopha.2020.110246.
[19] QIN X,WANG X Y,F(xiàn)EI J W,et al. MiR-20a promotes lung tumorigenesis by targeting RUNX3 via TGF-β signaling pathway[J]. J Biol Regul Homeost Agents,2020,34(2):12-20. doi:10.23812/20-12A.
(2022-09-22收稿 2023-03-03修回)
(本文編輯 李鵬)