陳璽龍 王宏君 宋征宇 王靜
摘要:目的 探究牛蒡苷元(AG)能否通過抑制高遷移率族蛋白B1(HMGB1)/Toll樣受體4(TLR4)/核因子κB(NF-κB)通路的活化,從而減輕急性腦梗死大鼠神經(jīng)元損傷。方法 通過大腦中動脈栓塞(MCAO)建立大鼠急性腦梗死模型后,將50只大鼠隨機(jī)分為模型組、尼莫地平組(30 mg/kg)以及AG低(25 mg/kg)、中(50 mg/kg)、高(100 mg/kg)劑量組,每組10只,另取10只為假手術(shù)組(僅麻醉、游離血管,不進(jìn)行插線操作)。Morris水迷宮實(shí)驗(yàn)評估大鼠認(rèn)知功能;酶聯(lián)免疫吸附試驗(yàn)(ELISA)檢測血清腫瘤壞死因子α(TNF-α)、白細(xì)胞介素(IL)-1β、IL-6水平;HE染色與TUNEL染色觀察大腦皮層病理學(xué)變化與神經(jīng)元凋亡情況,Western blot檢測高遷移率族蛋白B1(HMGB1)、Toll樣受體4(TLR4)、核因子κB(NF-κB)、磷酸化NF-κB(p-NF-κB)蛋白表達(dá)情況。結(jié)果 與假手術(shù)組比較,模型組認(rèn)知功能下降,血清TNF-ɑ、IL-1β、IL-6水平升高,神經(jīng)元凋亡指數(shù)及大腦皮層HMGB1、TLR4蛋白表達(dá)和p-NF-κB/NF-κB比值升高(P<0.05),大腦皮層神經(jīng)元排列紊亂,出現(xiàn)嚴(yán)重空泡化和水腫現(xiàn)象,細(xì)胞核固縮;與模型組比較,AG各劑量組和尼莫地平組大鼠認(rèn)知功能部分恢復(fù),血清TNF-ɑ、IL-1β、IL-6水平下降,神經(jīng)元凋亡指數(shù)及大腦皮層HMGB1、TLR4蛋白表達(dá)和p-NF-κB/NF-κB比值降低(P<0.05),大腦皮層神經(jīng)元損傷減輕。結(jié)論 AG可能通過抑制HMGB1/TLR4/NF-κB通路活化,減輕急性腦梗死大鼠神經(jīng)元損傷。
關(guān)鍵詞:高遷移率族蛋白B1;Toll樣受體4;核因子κB;腦梗死;急性??;神經(jīng)元;牛蒡苷元
中圖分類號:R285.5文獻(xiàn)標(biāo)志碼:ADOI:10.11958/20221432
Arctigenin alleviates neuronal damage of acute cerebral infarction in rats by inhibiting the HMGB1/TLR4/NF-κB pathway
CHEN Xilong WANG Hongjun SONG Zhengyu WANG Jing
1 Department of Neurology, 2 Department of Traditional Chinese Medicine, the First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
Correspondence Author E-mail: dyrjn67@163.com
Abstract: Objective To explore whether arctigenin (AG) can reduce neuronal damage of acute cerebral infarction in rats by inhibiting the expression of high mobility group box 1 (HMGB1)/Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway. Methods The rat model of acute cerebral infarction was established by middle cerebral artery embolism (MCAO). Fifty model rats were randomly separated into the model group, the nimodipine group (30 mg/kg), the low AG group (25 mg/kg), the medium AG group (50 mg/kg) and the high AG group (100 mg/kg), 10 rats in each group. Another 10 rats were used as the sham operation group (only anesthesia, dissociation of blood vessel, no thrombus insertion operation). Morris water maze experiment was used to assess cognitive function in rats. The serum TNF-ɑ, IL-1β and IL-6 contents were tested by ELISA. HE staining and TUNEL staining were performed to observe the pathological changes and neuronal apoptosis of cerebral cortex, and Western blot assay was performed to measure the protein expression of HMGB1, TLR4, p-NF-κB and NF-κB. Results Compared with the sham operation group, the cognitive function was declined in the model group, serum levels of TNF-ɑ, IL-1β and IL-6 were increased, neuronal apoptosis index, cortical HMGB1 and TLR4 protein expression and p-NF-κB/NF-κB ratio were increased (P<0.05). The neuron arrangement of cerebral cortex was disordered, serious vacuolation,? edema and nuclear condensation occurred. Compared with the model group, cognitive function was partially restored in the AG groups and the nimodipine group. Serum levels of TNF-ɑ, IL-1β and IL-6 decreased. Neuronal apoptosis index, cortical HMGB1, TLR4 protein expression and p-NF-κB/NF-κB ratio were decreased (P<0.05). Cortical neuron damage was reduced. (P<0.05). Conclusion AG may inhibit the HMGB1/TLR4/NF-κB pathway to reduce neuronal damage in rats with acute cerebral infarction.
Key words: high mobility group box 1; Toll-like receptor 4; nuclear factor κB; cerebral infarction; acute disease; neuron; Arctigenin
急性腦梗死多發(fā)于中老年人,發(fā)病率較高,致死、致殘率也較高[1]。其發(fā)病機(jī)制為腦組織血氧不足,發(fā)生氧化應(yīng)激與炎癥反應(yīng),從而誘導(dǎo)氧自由基生成以及神經(jīng)元凋亡、機(jī)體酸中毒等病理過程的發(fā)生與發(fā)展[2]。高遷移率族蛋白B1(HMGB1)是一種非組蛋白結(jié)合蛋白,是炎癥反應(yīng)晚期的標(biāo)志物[3];Toll樣受體4(TLR4)對應(yīng)激炎癥反應(yīng)的調(diào)節(jié)至關(guān)重要[4];HMGB1與TLR4結(jié)合后參與炎癥反應(yīng)、免疫應(yīng)激以及細(xì)胞凋亡等生理病理過程[5]。研究表明,HMGB1通過調(diào)控炎癥反應(yīng),激活TLR4,從而誘導(dǎo)核因子κB(NF-κB)活化,介導(dǎo)一系列炎性因子,包括白細(xì)胞介素(IL)-1β、腫瘤壞死因子ɑ(TNF-ɑ)、IL-6等的分泌,進(jìn)一步加劇炎癥反應(yīng),加重組織損傷[6]。因此,調(diào)控HMGB1/TLR4/NF-κB通路的表達(dá)活性,可改善炎癥反應(yīng),在急性腦梗死的治療中具有關(guān)鍵作用。牛蒡苷元(AG)是牛蒡的主要生物活性成分,具有抗炎、抗氧化、抗腫瘤以及抗凋亡等多種作用[7-8]。研究表明,AG能夠通過抑制HMGB1/TLR4/NF-κB通路活化,從而抑制小膠質(zhì)細(xì)胞激活以及神經(jīng)炎癥反應(yīng),發(fā)揮抗抑郁作用[9]。然而,AG對急性腦梗死的影響及作用機(jī)制研究鮮見。本研究通過建立急性腦梗死大鼠模型,探究AG能否通過抑制HMGB1/TLR4/NF-κB通路的激活,改善急性腦梗死大鼠神經(jīng)元損傷,以期為AG的應(yīng)用和急性腦梗死的防治提供參考。
1 材料與方法
1.1 實(shí)驗(yàn)動物
6周齡SPF級雄性SD大鼠60只,體質(zhì)量200~220 g,購自河北省實(shí)驗(yàn)動物中心,動物生產(chǎn)許可證號:SCXK(冀)2018-004。實(shí)驗(yàn)前在溫度為22~25 ℃、濕度40%~50%、光照時間12 h的環(huán)境中適應(yīng)性飼養(yǎng)1周,實(shí)驗(yàn)動物自由飲食和水。實(shí)驗(yàn)過程嚴(yán)格按照實(shí)驗(yàn)動物管理?xiàng)l例進(jìn)行。
1.2 主要儀器與試劑
AG(ZSU-C-002,湖州展舒生物科技有限公司);尼莫地平(A14202005165,國藥準(zhǔn)字H14022821,亞寶藥業(yè)集團(tuán)股份有限公司);TNF-ɑ、IL-1β、IL-6酶聯(lián)免疫吸附試驗(yàn)(ELISA)試劑盒、二辛可寧酸(BCA)蛋白濃度測定試劑盒、TUNEL染色試劑盒(南京建成生物工程研究所);蘇木精-伊紅(HE)染色試劑盒、高效RIPA裂解液(北京索萊寶生物技術(shù)有限公司);一抗HMGB1、TLR4、p-NF-κB、NF-κB、β-肌動蛋白(β-actin)和二抗羊抗兔IgG(英國Abcam公司)。Viewer小動物行為軌跡記錄分析系統(tǒng)(德國Biobserve公司);DM3000 LED光學(xué)顯微鏡(德國leica公司);GenoSens 2100凝膠成像系統(tǒng)(上海Clinx勤翔科學(xué)儀器有限公司)。
1.3 研究方法
1.3.1 模型建立與分組給藥
參照文獻(xiàn)[10],通過大腦中動脈栓塞(MCAO)建立大鼠急性腦梗死模型:腹腔注射戊巴比妥鈉(40 mg/kg)麻醉大鼠,分離左側(cè)的頸外動脈、頸內(nèi)動脈、頸總動脈,結(jié)扎頸外動脈與頸總動脈近心端,頸總動脈遠(yuǎn)心端夾閉后剪口,將線栓插入頸內(nèi)動脈,進(jìn)線約15 mm,感受到阻力停止進(jìn)線,堵塞大腦動脈,造成急性腦梗死。將造模成功的50只大鼠隨機(jī)分為模型組,AG低、中、高劑量組和尼莫地平組,每組10只。另取10只為假手術(shù)組,僅麻醉、游離血管,不進(jìn)行插線操作。造模第2天開始灌胃給藥,尼莫地平組給藥30 mg/kg[11],AG低、中、高劑量組分別給藥25、50及100 mg/kg[12],每日1次,連續(xù)干預(yù)1周。假手術(shù)組、模型組給予等體積生理鹽水灌胃。
1.3.2 大鼠認(rèn)知功能評價
參照文獻(xiàn)[12],采用Morris水迷宮實(shí)驗(yàn)評估各組大鼠認(rèn)知功能:在圓形水池中設(shè)置4個象限,選取其中一個作為平臺象限,記錄各組大鼠找到平臺的平均時間作為逃避潛伏期;5 d后撤除平臺,讓各組大鼠自由游泳90 s,記錄大鼠在原平臺象限的停留時間以及進(jìn)入原平臺象限次數(shù)。
1.3.3 ELISA檢測血清中TNF-ɑ、IL-1β、IL-6水平
Morris水迷宮實(shí)驗(yàn)結(jié)束后,麻醉大鼠,腹主動脈取血2 mL,4 ℃下3 000 r/min離心10 min取血清,參照試劑盒說明書,檢測TNF-ɑ、IL-1β、IL-6水平。
1.3.4 HE染色觀察大腦皮層病理變化
每組隨機(jī)取5只大鼠,斷頭法處死后,迅速剝離腦組織,分離大腦皮層組織,加入4%多聚甲醛固定,常規(guī)梯度乙醇脫水,石蠟包埋、切片,備用。常規(guī)梯度乙醇復(fù)水,采用HE染色試劑盒染色,光鏡下觀察各組大鼠大腦皮層病理學(xué)變化。
1.3.5 TUNEL法觀察大腦皮層神經(jīng)元凋亡情況
取腦組織石蠟切片(厚度5 μm),常規(guī)梯度乙醇復(fù)水后加入多聚甲醛浸泡30 min,檸檬酸溶液浸泡20 min,磷酸鹽緩沖液(PBS)清洗后加入TUNEL染色液進(jìn)行染色,蘇木精復(fù)染,梯度乙醇脫水,封片。光鏡下觀察各組大鼠大腦皮層神經(jīng)元凋亡情況,細(xì)胞核呈棕褐色提示為凋亡神經(jīng)元,凋亡指數(shù)=凋亡神經(jīng)元數(shù)量/細(xì)胞總數(shù)×100%。
1.3.6 Western blot檢測大腦皮層HMGB1、TLR4、NF-κB、磷酸化NF-κB(p-NF-κB)蛋白相對表達(dá)水平
每組剩余5只大鼠處死后取出完整大腦并分離皮層組織,研磨后加入高效RIPA裂解液制備勻漿,采用BCA法測定總蛋白濃度。取50 μg蛋白上樣進(jìn)行電泳、轉(zhuǎn)膜、5%脫脂奶粉封閉,TBST清洗,加入HMGB1(1∶1 000)、TLR4(1∶1 000)、p-NF-κB(1∶500)、NF-κB(1∶1 000)一抗,孵育過夜,加入羊抗兔IgG二抗(1∶2 000),37 ℃孵育2 h,采用電化學(xué)發(fā)光(ECL)試劑盒進(jìn)行顯色,凝膠成像系統(tǒng)拍照并分析灰度值,以β-actin為內(nèi)參,計(jì)算HMGB1、TLR4蛋白相對表達(dá)量和p-NF-κB/NF-κB比值。
1.4 統(tǒng)計(jì)學(xué)方法
采用GraphPad Prism 8.0軟件進(jìn)行數(shù)據(jù)分析。符合正態(tài)分布的計(jì)量數(shù)據(jù)用x±s表示,多組間比較用單因素方差分析,組間多重比較用SNK-q法。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 各組大鼠認(rèn)知功能比較
與假手術(shù)組比較,模型組大鼠認(rèn)知功能下降(P<0.05);與模型組比較,尼莫地平組與AG低、中及高劑量組大鼠認(rèn)知功能增加(P<0.05),且AG各劑量組隨著劑量升高,大鼠認(rèn)知功能依次增加(P<0.05)。見表1。
2.2 各組大鼠血清TNF-ɑ、IL-1β、IL-6水平比較
與假手術(shù)組比較,模型組TNF-ɑ、IL-1β、IL-6水平升高(P<0.05);與模型組比較,尼莫地平組與AG低、中及高劑量組TNF-ɑ、IL-1β、IL-6水平降低(P<0.05),且AG各劑量組間差異均有統(tǒng)計(jì)學(xué)意義(P<0.05);與尼莫地平組比較,AG低、中劑量組大鼠血清中TNF-ɑ、IL-1β、IL-6水平升高(P<0.05)。見表2。
2.3 各組大鼠大腦皮層病理變化比較
假手術(shù)組皮層神經(jīng)元排列緊密,細(xì)胞結(jié)構(gòu)完整且核清晰,未見神經(jīng)元病變;模型組大鼠大腦皮層神經(jīng)元排列紊亂,出現(xiàn)嚴(yán)重空泡化和水腫現(xiàn)象,細(xì)胞核固縮;AG各劑量組隨著劑量升高,神經(jīng)元空泡化和水腫現(xiàn)象逐漸減輕,細(xì)胞核固縮減少,細(xì)胞排列較整齊;其中AG高劑量組與尼莫地平組神經(jīng)元病變程度一致,細(xì)胞結(jié)構(gòu)趨于正常。見圖1。
2.4 各組大鼠腦皮層神經(jīng)元凋亡情況比較
假手術(shù)組、模型組、尼莫地平組、AG低劑量組、AG中劑量組、AG高劑量組腦皮層神經(jīng)元凋亡指數(shù)分別為(6.25±0.65)%、(75.21±6.50)%、(16.33±1.28)%、(56.02±4.74)%、(35.25±3.35)%、(19.26±1.58)%,差異有統(tǒng)計(jì)學(xué)意義(F=259.473,P<0.05)。假手術(shù)組腦皮層組織中僅看到極少數(shù)凋亡神經(jīng)元;與假手術(shù)組比較,模型組凋亡神經(jīng)元數(shù)量增加,凋亡指數(shù)升高(P<0.05);與模型組比較,AG低、中及高劑量組凋亡指數(shù)依次降低,尼莫地平組大鼠神經(jīng)元凋亡指數(shù)亦降低(P<0.05)。見圖2。
2.5 各組大鼠大腦皮層HMGB1、TLR4、NF-κB和p-NF-κB蛋白表達(dá)比較
與假手術(shù)組比,模型組HMGB1、TLR4蛋白表達(dá)和p-NF-κB/NF-κB比值升高(P<0.05);與模型組比較,AG低、中及高劑量組HMGB1、TLR4蛋白表達(dá)和p-NF-κB/NF-κB比值依次降低,尼莫地平組HMGB1、TLR4蛋白表達(dá)和p-NF-κB降低(P<0.05);與尼莫地平組比較,AG高劑量組上述指標(biāo)變化差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。見圖3、表3。
3 討論
急性腦梗死因其發(fā)病急、病死率高,且發(fā)病后腦組織損傷不可逆的特點(diǎn),嚴(yán)重威脅人們的生命安全[13]。急性腦梗死主要是由于腦血氧不足,引發(fā)炎癥反應(yīng),誘導(dǎo)大量活性氧釋放,導(dǎo)致神經(jīng)損傷[14]。因此,改善炎癥反應(yīng)是治療急性腦梗死的關(guān)鍵。
AG作為牛蒡中最豐富、生物活性最強(qiáng)的物質(zhì),常用于炎癥的治療[15]。研究發(fā)現(xiàn),AG能夠通過抑制HMGB1/TLR4和TNF-α/TNFR1介導(dǎo)的NF-κB激活,減弱小膠質(zhì)細(xì)胞激活和神經(jīng)炎癥[16]。本研究結(jié)果亦顯示,低、中、高劑量AG干預(yù)后,急性腦梗死大鼠血清中炎性因子水平下降,神經(jīng)功能損傷、神經(jīng)元空泡化與水腫現(xiàn)象均減輕,神經(jīng)元凋亡減少,且高劑量AG優(yōu)于低、中劑量AG,提示AG能夠有效改善急性腦梗死大鼠體內(nèi)炎癥反應(yīng),減輕神經(jīng)元損傷。尼莫地平在臨床上常用作腦血管疾病以及神經(jīng)系統(tǒng)疾病的治療藥物。本研究將其作為AG的陽性藥物,結(jié)果顯示,尼莫地平可顯著抑制急性腦梗死大鼠體內(nèi)炎癥反應(yīng),減輕神經(jīng)元損傷,且高劑量AG對急性腦梗死大鼠的保護(hù)作用與尼莫地平一致,再次證實(shí)AG對于急性腦梗死的治療有效。
急性腦梗死是一系列炎癥反應(yīng)引起的神經(jīng)元損傷,最終導(dǎo)致神經(jīng)元壞死、凋亡[17-18]。HMGB1/TLR4/NF-κB通路是介導(dǎo)炎癥反應(yīng)的關(guān)鍵信號通路[19]。研究表明,HMGB1作為晚期炎性因子,參與急性腦梗死造成的神經(jīng)元損傷,導(dǎo)致腦梗死面積增加,炎癥反應(yīng)加重[20]。缺血性腦損傷可引發(fā)HMGB1活化,與其受體TLR4結(jié)合,誘導(dǎo)下游促炎因子NF-κB表達(dá)上調(diào),繼而引發(fā)炎性因子IL-6、TNF-α水平升高,炎癥反應(yīng)加劇,腦損傷加重[21]。已有研究證實(shí),抑制HMGB1/TLR4/NF-κB通路活化能夠有效改善炎癥反應(yīng),減輕腦損傷[22-23]。本研究結(jié)果顯示,低、中、高劑量AG干預(yù)后的急性腦梗死大鼠大腦皮層組織中HMGB1、TLR4蛋白表達(dá)和p-NF-κB/NF-κB比值逐漸下降,提示AG能夠通過下調(diào)HMGB1、TLR4和NF-κB磷酸化蛋白表達(dá),抑制HMGB1/TLR4/NF-κB通路活化,改善由于腦供血不足引起的炎癥反應(yīng),減少神經(jīng)元凋亡。
綜上所述,AG可能通過抑制HMGB1/TLR4/NF-κB通路,減輕急性腦梗死大鼠神經(jīng)元損傷。本研究為急性腦梗死的治療提供了一種候選藥物,有助于治療急性腦梗死新藥的開發(fā)。
參考文獻(xiàn)
[1] WEN H,LV M. Correlation analysis between serum procalcitonin and infarct volume in young patients with acute cerebral infarction[J]. Neurol Sci,2021,42(8):3189-3196. doi:10.1007/s10072-020-04856-x.
[2] 閆振文,鄭眉光,李梅. 益氣活血通絡(luò)方對急性腦梗死大鼠炎癥因子、氧化應(yīng)激指標(biāo)及神經(jīng)細(xì)胞凋亡的影響[J]. 中國中醫(yī)急癥,2020,29(6):957-961. YAN Z W,ZHENG M G,LI M. Effects of Yiqi Huoxue Tongluo Formula on inflammatory factors,oxidative stress indexes and apoptosis of nerve cells in rats with acute cerebral infarction[J]. Chinese Journal of Traditional Chinese Medicine Emergency,2020,29(6):957-961. doi:10.3969/j.issn.1004-745X.2020.06005.
[3] XUE J,SUAREZ J S,MINAAI M,et al. HMGB1 as a therapeutic target in disease[J]. J Cell Physiol,2021,236(5):3406-3419. doi:10.1002/jcp.30125.
[4] KARIMY J K,REEVES B C,KAHLE K T. Targeting TLR4-dependent inflammation in post-hemorrhagic brain injury[J]. Expert Opin Ther Targets,2020,24(6):525-533. doi:10.1080/14728222.2020.1752182.
[5] LU Y N,ZHAO X D,XU X,et al. Arctigenin exhibits hepatoprotective activity in Toxoplasma gondii-infected host through HMGB1/TLR4/NF-κB pathway[J]. Int Immunopharmacol,2020,84:106539. doi:10.1016/j.intimp.2020.106539.
[6] SUN Z,NYANZU M,YANG S,et al. VX765 attenuates pyroptosis and HMGB1/TLR4/NF-κB pathways to improve functional outcomes in TBI mice[J]. Oxid Med Cell Longev,2020,2020:7879629. doi:10.1155/2020/7879629.
[7] QIAO S,LV C,TAO Y,et al. Arctigenin disrupts NLRP3 inflammasome assembly in colonic macrophages via downregulating fatty acid oxidation to prevent colitis-associated cancer[J]. Cancer Lett,2020,491:162-179. doi:10.1016/j.canlet.2020.08.033.
[8] LI H,ZHANG X,XIANG C,et al. Identification of phosphodiesterase-4 as the therapeutic target of arctigenin in alleviating psoriatic skin inflammation[J]. J Adv Res,2021,33:241-251. doi:10.1016/j.jare.2021.02.006.
[9] XANG X,PIAO H N,AOSAI F,et al. Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB pathways[J]. Brit J Pharmacol,2020,177(22):5224-5245. doi:10.1111/bph.15261.
[10] XU Y,ZHANG G,KANG Z,et al. Cornin increases angio-genesis and improves functional recovery after stroke via the Ang1/Tie2 axis and the Wnt/β-catenin pathway[J]. Arch Pharm Res,2016,39(1):133-142. doi:10.1007/s12272-015-0652-1.
[11] 張立波,姚袁媛,王清勇,等. 半枝蓮總黃酮調(diào)控RIP1/RIP3通路減輕急性腦梗死缺血再灌注大鼠大腦皮層神經(jīng)元的損傷[J]. 中醫(yī)學(xué)報,2020,35(7):1476-1484. ZHANG L B,YAO Y Y,WANG Q Y,et al. Regulation of RIP1/RIP3 pathway by total flavonoids from Schistoderma chinensis alleviates the damage of cerebral cortical neurons in rats with acute cerebral infarction ischemia reperfusion[J]. Journal of Traditional Chinese Medicine,2020,35(7):1476-1484. doi:10.16368/j.issn.1674-8999.2020.07.331.
[12] 鄭建君,楊霄敏,毛玲群. 基于TGF-β1/Smad3信號通路探討金合歡素對急性腦梗死大鼠神經(jīng)功能的保護(hù)作用[J]. 中國藥師,2020,23(7):1350-1354. ZHENG J J,YANG X M,MAO L Q. Protective effect of acacia on neural function of rats with acute cerebral infarction based on TGF-β1/Smad3 signal pathway[J]. Chinese Pharmacist,2020,23(7):1350-1354.
[13] JIANG Y,REN C,ALIMUJIANG A,et al. The difference in red blood cell distribution width from before to after thrombolysis as a prognostic factor in acute ischemic stroke patients: a 2-year follow-up[J]. Front Neurol,2022,13:1011946. doi:10.3389/fneur.2022.1011946.
[14] AMIN N,DU X,CHEN S,et al. Therapeutic impact of thymoquninone to alleviate ischemic brain injury via Nrf2/HO-1 pathway[J]. Expert Opin Ther Targets,2021,25(7):597-612. doi:10.1080/14728222.2021.1952986.
[15] WU D,JIN L,HUANG X,et al. Arctigenin:pharmacology,total synthesis,and progress in structure modification[J]. J Enzyme Inhib Med Chem,2022,37(1):2452-2477. doi:10.1080/14756366.2022.2115035.
[16] XU X,ZENG X Y,CUI Y X,et al. Antidepressive effect of arctiin by attenuating neuro inflammation via HMGB1/TLR4- and TNF-α/TNFR1-mediated NF-κB activation[J]. ACS Chem Neurosci,2020,11(15):2214-2230. doi:10.1021/acschemneuro.0c00120.
[17] MAIDA C D,NORRITO R L,DAIDONE M,et al. Neuroinflammatory mechanisms in ischemic stroke:focus on cardioembolic stroke,background,and therapeutic approaches[J]. Int J Mol Sci,2020,21(18):6454. doi:10.3390/ijms21186454.
[18] WANG Y,JIN H,WANG Y,et al. Sult2b1 deficiency exacerbates ischemic stroke by promoting pro-inflammatory macrophage polarization in mice[J]. Theranostics,2021,11(20):10074-10090. doi:10.7150/thno.61646.
[19] WANG Q,ZHAO H,GAO Y,et al. Uric acid inhibits HMGB1-TLR4-NF-κB signaling to alleviate oxygen-glucose deprivation/reoxygenation injury of microglia[J]. Biochem Biophys Res Commun,2021,540:22-28. doi:10.1016/j.bbrc.2020.12.097.
[20] 高元杰,鐘純正,歐詒丹. 腦梗死合并肺部感染患者TNF-α、HMGBl、 TLR4-NF-κB信號通路改變研究[J]. 中華醫(yī)院感染學(xué)雜志,2020,30(7):1003-1006. GAO Y J,ZHONG C Z,OU Y D. Changes of TNF-α,HMGBl,TLR4-NF-κB signaling pathways in patients with cerebral infarction complicated with pulmonary infection[J]. Chinese Journal of Nosocomiology,2020,30(7):1003-1006. doi:10.11816/cn.ni.2020-191297.
[21] TAVERNELLI L E,MOTTA M C M,GON?ALVES C S,et al. Overexpression of Trypanosoma cruzi High Mobility Group B protein (TcHMGB) alters the nuclear structure,impairs cytokinesis and reduces the parasite infectivity[J]. Sci Rep,2019,9(1):192. doi:10.1038/s41598-018-36718-0.
[22] CHEN X,WU S,CHEN C,et al. Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-κB pathway following experimental traumatic brain injury[J]. J Neuroinflammation,2017,14(1):143. doi:10.1186/s12974-017-0917-3.
[23] ZHAI Y,ZHU Y,LIU J,et al. Dexmedetomidine post-conditioning alleviates cerebral ischemia-reperfusion injury in rats by inhibiting high mobility group protein B1 group (HMGB1)/toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway[J]. Med Sci Monit,2020,26:e918617. doi:10.12659/MSM.918617.
(2022-09-13收稿 2023-01-05修回)
(本文編輯 陸榮展)