胡月?王濤?羅小麗
摘要:近年來,隨著碳青霉烯類抗生素的廣泛使用,耐碳青霉烯類腸桿菌科細(xì)菌(carbapenem-resistant Enterobacteriaceae,CRE)越來越常見,嚴(yán)重威脅公眾健康,為社會(huì)經(jīng)濟(jì)帶來極大負(fù)擔(dān)。在兒童患者中,CRE感染通常十分兇險(xiǎn),且在碳青霉烯酶構(gòu)成譜、用藥選擇等方面存在一定特殊性,給治療帶來巨大的挑戰(zhàn)。本文就兒童CRE感染的流行病學(xué)特點(diǎn)、治療策略展開綜述,為臨床工作提供一定參考。
關(guān)鍵詞:兒童;耐碳青霉烯類腸桿菌科細(xì)菌;流行病學(xué);治療方案
中圖分類號(hào):R978.1文獻(xiàn)標(biāo)志碼:A
Research of progress on the infection caused by carbapenem-resistant Enterobacteriaceae in Chinese children
Hu Yue, Wang Tao, and Luo Xiaoli
(Pediatric Intensive Care Unit, The Affiliated Chengdu Womens and Childrens Central Hospital, University of Electronic Science and Technology of China, School of Medicine, Chengdu 611731)
Abstract In recent years, with the widespread use of carbapenem antibiotics, carbapenem-resistant Enterobacteriaceae (CRE) have become more common, posing a severe threat to public health and bringing great economic burden. In pediatric patients, CRE infection is usually very dangerous, and there are certain particularities in the composition spectrum of carbapenemases and drug selection that bring great challenges to treatment. This article reviewed the epidemiological characteristics and treatment strategies of CRE infection in children, and provide some reference for clinical work.
Key words Children; Carbapenem-resistant Enterobacteriaceae; Epidemiology; Treatment
耐碳青霉烯類腸桿菌科細(xì)菌(carbapenem-resistant Enterobacteriaceae,CRE)指對碳青霉烯類抗生素不敏感的腸桿菌科細(xì)菌,即美羅培南、亞胺培南的最低抑菌濃度(minimum inhibitory concentration,MIC)≥4mg/L或厄他培南的MIC≥2 mg/L。CRE感染通常十分兇險(xiǎn),治療時(shí)面臨諸多困難,而兒童作為一個(gè)特殊群體,由于缺乏大量臨床研究作為支撐,加之其生長發(fā)育特點(diǎn)限制了部分藥物的選擇,使得CRE治療變得更加棘手。本文將對我國兒童CRE感染的流行病學(xué)特點(diǎn)及治療策略進(jìn)行綜述。
1 流行病學(xué)特點(diǎn)
1.1 感染率
由全國11所三級(jí)甲等兒童教學(xué)醫(yī)院組成的中國兒童細(xì)菌耐藥監(jiān)測組的數(shù)據(jù)顯示[1],2016-2020年我國兒童CRE總體檢出率為6.8%,2018年最高(8%),近年來呈逐漸下降趨勢,至2020年最低(4.7%),可能與醫(yī)院感染防控措施加強(qiáng)有關(guān)。我國兒童CRE檢出率存在地域差異,2017年北京市高達(dá)25.2%,同年上海市為12.1%,江西省為8%,山西省則僅為1%[2],不同地區(qū)制定抗感染方案時(shí)可適當(dāng)參考當(dāng)?shù)谻RE監(jiān)測數(shù)據(jù)。
CRE定植或感染多發(fā)生于NICU(neonatal intensive care unit)、PICU(pediatric intensive care unit)血液腫瘤病房。雖然定植并不需要治療,但由于上述病房收治的患兒常常免疫功能低下、伴有嚴(yán)重的基礎(chǔ)疾病,需警惕定植細(xì)菌移位引起感染。在成人ICU患者中,CRE定植者發(fā)生相關(guān)感染的風(fēng)險(xiǎn)高于非定植者兩倍[3]。Xu等[4]的報(bào)道顯示上海地區(qū)CRE定植的住院患兒約45.6%來自于NICU。Yin等[5]則評(píng)估了上海地區(qū)NICU患兒CRE定植后發(fā)生感染的風(fēng)險(xiǎn)約為17.4%。Kong等[6]的報(bào)道顯示江蘇地區(qū)兒童CRE感染多見于重癥監(jiān)護(hù)室,約26.6%CRE病例來自于PICU,約13.9%病例來自于CCU(cardiac care unit)。Dong等[7]指出在2011—2014年北京市兒童醫(yī)院收治的耐碳青霉烯類肺炎克雷伯菌(carbapenem-resistant K. pneumoniae,CRKP)血流感染的患兒中,約78.8%自于血液腫瘤病房。該研究團(tuán)隊(duì)還對比了CRKP血流感染與碳青霉烯類敏感的肺炎克雷伯菌(carbapenem-susceptible K. pneumoniae,CSKP)血流感染的臨床特點(diǎn),前者7 d死亡率、28 d死亡率分別達(dá)到了16.7%、18.5%,而后者分別為1.2%、2.4%,CRKP組死亡率高出CSKP組7~14倍,CRKP已成為肺炎克雷伯菌血流感染致死的一項(xiàng)獨(dú)立高危因素[8]。
CRE的流行之所以常見于上述科室,除其收治的兒童病情重,多有基礎(chǔ)疾病等因素外,還因?yàn)檫@部分兒童常常暴露于多種CRE感染或定植的高危因素下。一項(xiàng)多中心對照研究[9]顯示,3月內(nèi)曾使用廣譜抗生素(如頭孢吡肟、頭孢他啶、哌拉西林-他唑巴坦、替卡西林-克拉維酸、環(huán)丙沙星、左氧氟沙星、亞胺培南和美羅培南等)、近期接受外科手術(shù)、機(jī)械通氣是3個(gè)十分重要的CRE定植或感染的高危因素。林碧玉等[10]的Meta分析顯示,除機(jī)械通氣外,中心靜脈置管、留置胃管、留置尿管等侵入性操作同樣可增加兒童CRE定植或感染的風(fēng)險(xiǎn),另外,對于新生兒而言,生后1 min Apgar評(píng)分≤7亦為一項(xiàng)高危因素??梢妼嚎浦攸c(diǎn)科室CRE的監(jiān)測十分重要。
1.2 碳青霉烯酶構(gòu)成特點(diǎn)
我國兒童CRE感染以肺炎克雷伯菌最為多見,2020年其在兒童CRE中占比接近一半(47.9%),其后依次為大腸埃希菌(20.3%)、陰溝腸桿菌(11.9%)和產(chǎn)氣腸桿菌(7.5%)[11]。產(chǎn)生碳青霉烯酶是CRE耐藥的主要機(jī)制。根據(jù)Ambler分子分類法[12],碳青霉烯酶可分為A、B、D 3類。A類為絲氨酸碳青霉烯酶,包含blaKPC、blaGES、blaIMI、blaNMC-A、blaSME等,B類為金屬β-內(nèi)酰胺酶,主要為blaNDM、blaIMP、blaVIM,D類為苯唑西林酶,以bla OXA-48、blaOXA-181和bla OXA-232亞型為主[13]。
我國成人CRE中最常檢出的碳青霉烯酶為blaKPC,之后為blaNDM,blaOXA-48相對較少;而我國兒童CRE則以blaNDM最多見,主要為blaNDM-1、blaNDM-5亞型,其次為blaKPC,主要為blaKPC-2亞型,最后為blaOXA-232亞型[14]。近10年來,我國兒科病房內(nèi)CRE暴發(fā)感染大多與blaNDM相關(guān)。2014年云南昆明[15]、2016年江蘇南京[16]的NICU病房內(nèi)均暴發(fā)了由攜帶blaNDM-1的CRKP菌株引起的院內(nèi)感染。昆明的報(bào)道顯示,17例新生兒被感染,1例最終死亡,暖箱的水箱可能是細(xì)菌滋生及播散處。南京的報(bào)道顯示,6例新生兒中有5例患新生兒敗血癥,血培養(yǎng)均為陽性,1例考慮為新生兒呼吸窘迫綜合征,并從痰中分離出陽性菌,6例患兒最終在有效治療后痊愈。2015年江蘇徐州[17]則報(bào)道了一起由攜帶blaNDM-5的CRKP菌株引起的院內(nèi)感染,某院NICU病房自收治了1例新生兒呼吸窘迫綜合征的患兒并從其痰中檢出產(chǎn)blaNDM-5的CRKP菌株后,在之后1年時(shí)間里陸續(xù)檢出11例陽性患兒,通過分析菌株的克隆關(guān)系發(fā)現(xiàn)前后12株分離株起源相同,最開始收治的患兒可能是感染的源頭。
除上述型別之外,我國兒童患者的臨床標(biāo)本中還檢出了少量攜帶blaIMP的CRE菌株,相對常見的亞型為blaIMP-4、blaIMP-38等[18~20]。
碳青霉烯酶的構(gòu)成特點(diǎn)并非一成不變,可隨時(shí)間推移發(fā)生動(dòng)態(tài)變化,且不同地區(qū)有不同特點(diǎn)。例如,blaOXA-232于2016年首次在我國上海地區(qū)
檢出[21],隨后即成為上海市兒童醫(yī)院CRKP中最常見的酶亞型[22],報(bào)道顯示2016—2017年該院CRKP菌株中產(chǎn)blaOXA-232者占42.35%,而產(chǎn)blaNDM者則占36.06%,其中blaNDM-1、blaNDM-5分別為20.59%、16.47%,產(chǎn)blaKPC-2者為17.65%,另外還檢出了少量的blaIMP-4亞型(1.18%)。然而至2018年該院CRKP監(jiān)測數(shù)據(jù)則顯示,碳青霉烯酶構(gòu)成順序依次為blaKPC-2(58.1%)、blaNDM-5(32.6%)、blaNDM-1(4.7%)、blaIMP-4 (1.2%),全年僅檢出1例產(chǎn)blaOXA-232的CRKP菌株,占比為0.6%[23]。
碳青霉烯酶的檢測對臨床工作具有指導(dǎo)意義,酶種類不同可能影響患者的臨床結(jié)局。Pudpong等[24]
發(fā)現(xiàn),在面對攜帶blaNDM-1或blaNDM-1聯(lián)合blaOXA-48的CRE感染時(shí),美羅培南的MIC值常常>16 mg/L,而對于僅攜帶blaOXA-48的CRE菌株,美羅培南的MIC值往往<16 mg/L,且兩者的14 d死亡率亦有差異,前者明顯高于后者。Seo等[25]則對比了攜帶blaKPC或blaNDM的CRE菌株感染的臨床特點(diǎn),發(fā)現(xiàn)KPC組美羅培南MIC值>8 mg/L較NDM組更常見,且對多黏菌素的不敏感率更高(KPC, 17% vs NDM, 0),KPC組定植后感染發(fā)生率、30 d死亡率均較NDM組更高(具體分別為:KPC, 8% vs NDM, 3%;KPC, 17% vs NDM, 9%),提示KPC可能導(dǎo)致更差的臨床結(jié)局。
2 治療策略
2.1 碳青霉烯類
碳青霉烯類抗生素屬于時(shí)間依賴性藥物,當(dāng)游離藥物濃度高于MIC值的給藥間隔時(shí)間百分比(%fT>MIC)超過40%時(shí),抗菌效果最佳,但對于危重患者、免疫缺陷患者而言,需要100%fT>MIC,甚至4~6倍100%fT>MIC,才能將療效最大化[26]。延長美羅培南輸注時(shí)間可提升%fT>MIC數(shù)值,與此同時(shí),還可通過增加藥物劑量以加強(qiáng)抗感染效果。
Cies等[27]指出,針對美羅培南敏感的革蘭陰性菌感染的危重患兒,劑量為每日120~160 mg/kg,持續(xù)24 h輸注,可達(dá)到80%fT>MIC。Saito等[28]指出,對于考慮全身炎癥反應(yīng)綜合征的危重患兒,往往需要更大劑量(40~80 mg/kgq8 h),每次持續(xù)輸注超過3 h才能達(dá)到理想的藥物代謝動(dòng)力學(xué)目標(biāo)。但當(dāng)美羅培南MIC值≥4 mg/L時(shí),則建議根據(jù)藥敏實(shí)驗(yàn)選用更加敏感的其他藥物或新型藥物,如頭孢他啶/阿維巴坦、美羅培南-vaborbactam、亞胺培南-relebactam[29]。
2.2 多黏菌素
多黏菌素屬于多肽類抗生素,目前臨床使用的有兩種,分別為多黏菌素B和多黏菌素E。多黏菌素E以其前體形式黏菌素甲磺酸鹽(colistimethate sodium,CMS)靜脈給藥,約20%的CMS在體內(nèi)轉(zhuǎn)化為活性形式發(fā)揮作用,其余則從腎臟排泄,該活化過程十分緩慢,達(dá)穩(wěn)態(tài)所需時(shí)間較長。而多黏菌素B則直接以活性形式給藥,可以更快達(dá)到更高的穩(wěn)態(tài)血藥濃度。且由于它不通過腎臟排泄,較多黏菌素E而言,兩者有效性雖相接近,但多黏菌素B腎毒性更低,因此在面對多重耐藥菌感染時(shí),多黏菌素B是更加安全的選擇[30]。
Jia等[31]回顧性分析了多黏菌素B在治療我國兒童耐碳青霉烯類革蘭陰性菌(Gram-negative bacterial,CR-GNB)感染的有效性及腎毒性,研究共納入55例患兒,約70.9%的患兒培養(yǎng)轉(zhuǎn)陰,約52.7%的患兒臨床治療有效,表現(xiàn)為感染癥狀減輕,體溫及炎癥指標(biāo)包括白細(xì)胞、C反應(yīng)蛋白、降鈣素原恢復(fù)正常,或僅有一項(xiàng)指標(biāo)雖異常但較前下降;約27.3%的患兒發(fā)生了不同程度的急性腎損傷,多數(shù)患兒在停藥1周后腎功能恢復(fù)或改善,僅有2例腎功能進(jìn)行性惡化。由于多黏菌素B屬于濃度依賴性藥物,適當(dāng)增加劑量可提升療效,但同時(shí)大劑量所帶來的急性腎損傷風(fēng)險(xiǎn)也將升高[32],臨床用藥時(shí)需謹(jǐn)慎權(quán)衡利弊。2019年推出的國際指南[33]推薦多黏菌素B需要首劑負(fù)荷,劑量為2.0~2.5 mg/kg,之后按照1.25~1.5 mg/kg q12h 超過1 h輸入進(jìn)行維持。同時(shí)該指南還建議,針對CRE所致的侵襲性感染,多黏菌素聯(lián)合1種或1種以上敏感藥物的治療方案優(yōu)于多黏菌素單藥治療,若無其余敏感的藥物,則可選擇MIC值相對最低的藥物聯(lián)合使用。Paul等[34]發(fā)表的隨機(jī)對照研究則顯示,面對CR-GNB感染時(shí),多黏菌素聯(lián)合美羅培南的治療方案并未優(yōu)于多黏菌素單藥治療,兩種方案的14 d治療失敗率、14 d死亡率、28 d死亡率均無統(tǒng)計(jì)學(xué)差異,雖然聯(lián)合治療使腎損傷幾率減少,但卻增加了腹瀉發(fā)生率。不過值得注意的是,該研究共納入406例成人患者,其中77%為鮑曼不動(dòng)桿菌感染,腸桿菌科細(xì)菌感染者僅占18%,在CRE患者中,聯(lián)合用藥組的14 d治療失敗率為46%,28 d死亡率為21%,均低于單藥治療組(分別為68%和35%),雖然以上數(shù)據(jù)經(jīng)分析后并無統(tǒng)計(jì)學(xué)意義,但可能是由于樣本量太小造成。
2.3 替加環(huán)素
替加環(huán)素屬于甘酰氨環(huán)素類抗生素,涵蓋了我國25個(gè)省65所醫(yī)院的大數(shù)據(jù)報(bào)道顯示替加環(huán)素對CRE的體外敏感率達(dá)89.7%[35]。該藥按照標(biāo)準(zhǔn)劑量給藥時(shí),迅速分布到組織中,很難達(dá)到理想血藥濃度,成人大劑量替加環(huán)素(200 mg負(fù)荷,100 mg q12 h
維持)治療CRE感染時(shí)優(yōu)于標(biāo)準(zhǔn)劑量(100 mg負(fù)荷,50 mg q12 h維持),且大部分患者耐受良好,最多見的不良反應(yīng)為嘔吐、腹瀉[36]。但由于替加環(huán)素可影響牙釉質(zhì)發(fā)育,引起牙齒變色,應(yīng)慎用于8歲以下兒童。Purdy等[37]通過對比不同劑量梯度(0.75 mg/kg、
1.00 mg/kg、1.25 mg/kg)的替加環(huán)素在8~11歲嚴(yán)重感染患兒中的療效,發(fā)現(xiàn)維持劑量為1.2 mg/kg q12 h
時(shí),替加環(huán)素在兒童中的藥物代謝動(dòng)力學(xué)特點(diǎn)與成人使用標(biāo)準(zhǔn)劑量時(shí)相似,負(fù)荷劑量暫未明確。Iosifidis等[38]報(bào)道了替加環(huán)素在13例廣泛耐藥革蘭陰性菌感染患兒中的使用情況,負(fù)荷劑量1.8~6.5 mg/kg,
中位數(shù)4 mg/kg,維持劑量1~3.2 mg/kg,中位數(shù)1.4 mg mg/kg q12 h,患兒耐受良好,無嚴(yán)重不良反應(yīng)發(fā)生,在替加環(huán)素使用超過5 d的11例患兒中,臨床好轉(zhuǎn)率約64%(7/11)。Chen等[39]報(bào)道了13例CR-GNB感染的兒童肝移植患者,其中9例為肺炎克雷伯菌感染,4例為鮑曼不動(dòng)桿菌感染,所有患兒均接受了劑量為2 mg/kg q12h的替加環(huán)素治療,臨床好轉(zhuǎn)率及病原清除率分別為84.6%(11/13)、69.2%(9/13)。在兒童患者中,增加替加環(huán)素劑量或許同樣可獲得更好的臨床結(jié)局,但有待進(jìn)一步佐證。目前部分體外實(shí)驗(yàn)[40~41]及回顧性觀察性研究[42]均提示面對CRE感染時(shí)替加環(huán)素聯(lián)合用藥優(yōu)于單藥治療,但仍需要更高質(zhì)量的隨機(jī)對照研究進(jìn)一步證明其優(yōu)越性以及探討何種聯(lián)合用藥方案更合適。
2.4 磷霉素
磷霉素作為一種經(jīng)典抗生素,近年來在多重耐藥細(xì)菌感染的治療方面重新得到重視。它可以干擾細(xì)菌細(xì)胞壁合成的第一步,是一種細(xì)菌繁殖期的快速殺菌劑,在與其他抗生素聯(lián)合使用時(shí)常具有協(xié)同作用或相加作用,幾乎不產(chǎn)生拮抗作用[43~44]。
目前國內(nèi)尚未將磷霉素列入常規(guī)的藥敏試驗(yàn),國際上對磷霉素藥敏折點(diǎn)的判讀尚無統(tǒng)一標(biāo)準(zhǔn)。根據(jù)歐盟藥敏試驗(yàn)標(biāo)準(zhǔn),對于腸桿菌科細(xì)菌MIC≤
32 mg/L為敏感。但若為尿路感染中分離的大腸埃希菌,根據(jù)美國臨床和實(shí)驗(yàn)室標(biāo)準(zhǔn)化協(xié)會(huì)標(biāo)準(zhǔn),MIC≤64 mg/L即為敏感。文獻(xiàn)顯示[45] ,磷霉素用于治療CRE感染時(shí),應(yīng)達(dá)到70%fT>MIC目標(biāo)值,MIC值越高,所需磷霉素的劑量越高,當(dāng)MIC位于8~
32 mg/L時(shí),磷霉素劑量為4~12 g/d,而當(dāng)MIC位于32~96 mg/L時(shí),磷霉素劑量應(yīng)達(dá)到16~24 g/d;且每次輸注時(shí)間6 h或持續(xù)輸注24 h優(yōu)于間歇給藥。希臘11個(gè)ICU病房的多中心研究顯示[46],磷霉素用于廣泛耐藥或全耐藥革蘭陰性菌感染時(shí),靜脈給藥中位劑量24 g/d,中位療程14 d,臨床治愈成功率為54.2%,細(xì)菌清除率為56.3%,28 d死亡率為37.5%。
由于CRE的異質(zhì)性耐藥、繁殖迅速等因素可能導(dǎo)致磷霉素單藥治療失敗[47],故目前更推薦聯(lián)合用藥方案。多項(xiàng)體外抗菌活性研究顯示[48~50],面對CRKP菌株時(shí),磷霉素聯(lián)合多黏菌素優(yōu)于磷霉素或多黏菌素單藥治療。Cremieux等[51]通過構(gòu)建兔的CRKP骨髓炎模型發(fā)現(xiàn)多黏菌素聯(lián)合美羅培南或多黏菌素聯(lián)合磷霉素是僅有的治療手段,且除聯(lián)用磷霉素組外,其余治療組均出現(xiàn)了多黏菌素耐藥株。在臨床工作中,已有磷霉素、多黏菌素、多西環(huán)素的三聯(lián)用藥方案成功治愈CRKP骨髓炎患者的病例報(bào)道[52]。磷霉素聯(lián)合美羅培南在治療導(dǎo)管相關(guān)性尿路感染所繼發(fā)的CRKP血流感染方面亦取得了相應(yīng)成功[53]。Zheng等[54]發(fā)表的回顧性分析顯示,嚴(yán)重CRKP感染的成人患者在使用頭孢他啶/阿維巴坦單藥治療時(shí),其30 d死亡率高達(dá)47.6%,若聯(lián)合應(yīng)用磷霉素,其死亡率則下降至33.3%。磷霉素亦可有效適用于兒童,一項(xiàng)納入37例接受聯(lián)合用藥方案的CRKP感染新生兒的研究顯示,除1例放棄治療外,其余均臨床好轉(zhuǎn),且其中28例聯(lián)合使用了磷霉素,約占75.6%[55]。針對兒童患者,目前推薦靜脈用磷霉素每日劑量為200~400 mg/kg,
足月新生兒為200 mg/kg,早產(chǎn)兒減量為100 mg/kg,12歲以上或體重40 kg以上兒童劑量同成人,除早產(chǎn)兒按q12 h給藥外,其余均間隔6~8 h給藥[56]。但一項(xiàng)正在進(jìn)行的臨床試驗(yàn)所提示的給藥方案略有差異:大多數(shù)新生兒可按150 mg/kg,分2次給藥,<7 d或體重<1500 g的新生兒,則按100 mg/kg,
分2次給藥[57]。
2.5 頭孢他啶/阿維巴坦
頭孢他啶/阿維巴坦是一種頭孢菌素/新型β-內(nèi)酰胺酶抑制劑合劑,對A類(如KPC)、D類(如OXA-48)碳青霉烯酶具有良好活性,但對B類金屬β內(nèi)酰胺酶無效,其對于CRE感染的療效常常優(yōu)于傳統(tǒng)藥物[58]。
2019年我國細(xì)菌耐藥性監(jiān)測報(bào)告顯示,該藥對攜帶KPC、OXA-232的CRE菌株體外活性分別高達(dá)97.5%、100%[59]。頭孢他啶/阿維巴坦于2019年3月經(jīng)美國FDA批準(zhǔn)用于≥3月的兒童,并于同年5月在我國上市,多適用于復(fù)雜性尿路感染、復(fù)雜性腹腔感染、醫(yī)院獲得性肺炎包括呼吸機(jī)相關(guān)肺炎等。
目前對于≥3~6月、肌酐清除率> 50 mL/min/1.73 m2
的兒童,推薦劑量為50 mg/kg(頭孢他啶40 mg,阿維巴坦10 mg) q8 h,對于≥6月~18歲兒童,推薦劑量為62.5 mg/kg(頭孢他啶50 mg,阿維巴坦12.5 mg) q8 h[60]。后續(xù)關(guān)于該藥在兒童中使用情況的報(bào)道或研究十分有限,大多樣本量較少,或者為個(gè)案報(bào)道。Iosifidis等[61]報(bào)道了8例接受了頭孢他啶/阿維巴坦治療的廣泛或全耐藥肺炎克雷伯菌感染的5歲以下患兒,均取得了較好的臨床療效。Ji等[62]報(bào)道了1例先天性心臟病術(shù)后1月出現(xiàn)右肩嚴(yán)重化膿性關(guān)節(jié)炎及骨髓炎的3月齡患兒,骨髓及血培養(yǎng)均提示CRKP感染,在使用亞胺培南、亞胺培南聯(lián)合磷霉素治療均無效的情況下,最終選用頭孢他啶/阿維巴坦治療后感染得到迅速控制。
除此之外,還有新型藥物如美羅培南/法硼巴坦(vaborbactam)、亞胺培南西司他丁/雷巴坦(relebactam)等尚未于國內(nèi)上市,兒童臨床試驗(yàn)正在開展中,未來可能為兒童CRE感染提供更多治療選擇方案。
3 總結(jié)
我國兒童CRE感染形式仍十分嚴(yán)峻,應(yīng)加強(qiáng)重點(diǎn)科室的監(jiān)測及防控,同時(shí)有條件的醫(yī)療機(jī)構(gòu)可開展碳青霉烯酶檢測以協(xié)助指導(dǎo)臨床用藥,碳青霉烯類、多黏菌素、替加環(huán)素、磷霉素、新型藥物如頭孢他啶/阿維巴坦等均對兒童CRE感染有一定療效,但應(yīng)綜合考慮患兒年齡、基礎(chǔ)疾病、感染部位、臨床表現(xiàn)、病原體、藥敏試驗(yàn)、甚至是經(jīng)濟(jì)條件等決定用藥方案。目前針對聯(lián)合用藥問題尚存爭議,2022年美國傳染病協(xié)會(huì)推出的指南指出[63],當(dāng)根據(jù)藥敏結(jié)果已有較好的單藥可供選擇時(shí),不常規(guī)推薦聯(lián)合用藥。Tumbarello 等[64]報(bào)道,頭孢他啶/阿維巴坦在治療產(chǎn)KPC酶的CRKP感染時(shí),單藥和聯(lián)合用藥的患者死亡率分別為26.1%和25.0%,并無明顯差異。一項(xiàng)納入了38例16歲以下CRE血流感染兒童的研究顯示[65],聯(lián)合用藥并不能改善臨床結(jié)局。但鑒于聯(lián)合用藥可以有效控制異質(zhì)性耐藥[66],增強(qiáng)殺菌活性以及抑制細(xì)菌生長
速度[67],臨床工作中仍以2種以上藥物聯(lián)用居多。對于基礎(chǔ)情況差、疾病快速進(jìn)展、出現(xiàn)感染性休克的患者,建議聯(lián)用[68],同時(shí)菌血癥、肺炎、中樞神經(jīng)系統(tǒng)感染推薦聯(lián)用,復(fù)雜性尿路感染則可考慮單藥治療[69]。
總體而言,針對兒童CRE感染的數(shù)據(jù)相對較少,亟需更多更高質(zhì)量的研究協(xié)助指導(dǎo)臨床工作,從而改善兒童患者的預(yù)后。
參 考 文 獻(xiàn)
Fu P, Xu H, Jing C, et al. Bacterial epidemiology and antimicrobial resistance profiles in children reported by the ISPED program in China, 2016 to 2020[J]. Microbiol Spectr, 2021, 9(3): 28321.
郭燕, 胡付品, 朱德妹, 等. 兒童臨床分離碳青霉烯類耐藥腸桿菌科細(xì)菌的耐藥性變遷[J]. 中華兒科雜志, 2018, 56(12): 907-914.
Dickstein Y, Edelman R, Dror T, et al. Carbapenem-resistant Enterobacteriaceae colonization and infection in critically ill patients: A retrospective matched cohort comparison with non-carriers[J]. J Hosp Infect, 2016, 94(1): 54-59.
Xu Q, Pan F, Sun Y, et al. Fecal carriage and molecular epidemiology of carbapenem-resistant Enterobacteriaceae from inpatient children in a pediatric hospital of Shanghai[J]. Infect Drug Resist, 2020, 13: 4405-4415.
Yin L, He L, Miao J, et al. Carbapenem-resistant Enterobacterales colonization and subsequent infection in a neonatal intensive care unit in Shanghai, China[J]. Infect Prev Pract, 2021, 3(3): 100147.
Kong Z, Liu X, Li C, et al. Clinical molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae among pediatric patients in Jiangsu province, China[J]. Infect Drug Resist, 2020, 13: 4627-4635.
Dong F, Zhang Y, Yao K, et al. Epidemiology of carbapenem-resistant Klebsiella pneumoniaebloodstream infections in a Chinese children's hospital: Predominance of new delhi metallo-β-lactamase-1[J]. Microb Drug Resist, 2018, 24(2): 154-160.
Zhang Y, Guo L, Song W, et al. Risk factors for carbapenem-resistant K. pneumoniae bloodstream infection and predictors of mortality in Chinese paediatric patients[J]. BMC Infect Dis, 2018, 18(1): 248.
Chiotos K, Tamma P D, Flett K B, et al. Multicenter study of the risk factors for colonization or infection with carbapenem-resistant Enterobacteriaceae in children[J]. Antimicrob Agents Chemother, 2017, 61(12): e01440-17.
林碧玉, 劉婧婷, 金鳳玲. 兒童耐碳青霉烯類腸桿菌定植或感染危險(xiǎn)因素的Meta分析[J]. 中國當(dāng)代兒科雜志, 2022, 24(1): 96-101.
何磊燕, 付盼, 吳霞, 等. 中國兒童細(xì)菌耐藥監(jiān)測組2020年兒童細(xì)菌耐藥監(jiān)測[J]. 中國循證兒科雜志, 2021, 16(6): 414-420.
Ambler R P. The structure of beta-lactamases[J]. Philos Trans R Soc Lond B Biol Sci, 1980, 289(1036): 321-331.
Logan L K, Weinstein R A. The epidemiology of carbapenem-resistant Enterobacteriaceae: The impact and evolution of a global menace[J]. J Infect Dis, 2017, 215(1): 28-36.
Han R, Shi Q, Wu S, et al. Dissemination of carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) among carbapenem-resistant Enterobacteriaceae isolated from adult and children patients in China[J]. Front Cell Infect Microbiol, 2020, 10: 314.
Zheng R, Zhang Q, Guo Y, et al. Outbreak of plasmid-mediated NDM-1-producing Klebsiella pneumoniae ST105 among neonatal patients in Yunnan, China[J]. Ann Clin Microbiol Antimicrob, 2016, 15(1): 10.
Huang X, Cheng X, Sun P, et al. Characteristics of NDM-1-producing Klebsiella pneumoniae ST234 and ST1412 isolates spread in a neonatal unit[J]. BMC Microbiol, 2018, 18(1): 186.
Kong Z, Cai R, Cheng C, et al. First reported nosocomial outbreak of NDM-5-producing Klebsiella pneumoniae in a neonatal unit in China[J]. Infect Drug Resist, 2019, 12: 3557-3566.
Wang J, Lv Y, Yang W, et al. Epidemiology and clinical characteristics of infection/colonization due to carbapenemase-producing Enterobacterales in neonatal patients[J]. BMC Microbiol, 2022, 22(1): 177.
Bai Y, Shao C, Hao Y, et al. Using whole genome sequencing to trace, control and characterize a hospital infection of IMP-4-producing Klebsiella pneumoniae ST2253 in a neonatal unit in a tertiary hospital, China[J]. Front Public Health, 2021, 9: 755252.
Wang S, Zhao J, Liu N, et al. IMP-38-producing high-risk sequence type 307 Klebsiella pneumoniae strains from a neonatal unit in China[J]. mSphere, 2020, 5(4): 00407-20.
Yin D, Dong D, Li K, et al. Clonal dissemination of OXA-232 carbapenemase-producing Klebsiella pneumoniae in neonates[J]. Antimicrob Agents Chemother, 2017, 61(8): e00385-17.
Tian D, Pan F, Wang C, et al. Resistance phenotype and clinical molecular epidemiology of carbapenem-resistant Klebsiella pneumoniaeamong pediatric patients in Shanghai[J]. Infect Drug Resist, 2018, 11: 1935-1943.
Wang B, Pan F, Wang C, et al. Molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in a paediatric hospital in China[J]. Int J Infect Dis, 2020, 93: 311-319.
Pudpong K, Pattharachayakul S, Santimaleeworagun W, et al. Association between types of carbapenemase and clinical outcomes of infection due to carbapenem resistance Enterobacterales[J]. Infect Drug Resist, 2022, 15: 3025-3037.
Seo H, Kim H J, Kim M J, et al. Comparison of clinical outcomes of patients infected with KPC-and NDM-producing Enterobacterales: a retrospective cohort study[J]. Clin Microbiol Infect, 2021, 27(8): 1161-1167.
Pascale R, Giannella M, Bartoletti M, et al. Use of meropenem in treating carbapenem-resistant Enterobacteriaceae infections[J]. Expert Rev Anti Infect Ther, 2019, 17(10): 819-827.
Cies J J, Moore W S, Enache A, et al. Population pharmacokinetics and pharmacodynamic target attainment of meropenem in critically ill young children[J]. J Pediatr Pharmacol Ther, 2017, 22(4): 276-285.
Saito J, Shoji K, Oho Y, et al. Population pharmacokinetics and pharmacodynamics of meropenem in critically ill pediatric patients[J]. Antimicrob Agents Chemother, 2021, 65(2): e01909-20.
Chiotos K, Hayes M, Gerber J S, et al. Treatment of carbapenem-resistant Enterobacteriaceae infections in children[J]. J Pediatric Infect Dis Soc, 2020, 9(1): 56-66.
Thomas R, Velaphi S, Ellis S, et al. The use of polymyxins to treat carbapenem resistant infections in neonates and children[J]. Expert Opin Pharmacother, 2019, 20(4): 415-422.
Jia X, Yin Z, Zhang W, et al. Effectiveness and nephrotoxicity of intravenous polymyxin B in carbapenem-resistant gram-negative bacterial infections among Chinese children[J]. Front Pharmacol, 2022, 13: 902054.
Cai Y, Leck H, Tan R W, et al. Clinical experience with high-dose polymyxin B against carbapenem-resistant Gram-negative bacterial infections-a cohort study[J]. Antibiotics, 2020, 9(8): 451.
Tsuji B T, Pogue J M, Zavascki A P, et al. International consensus guidelines for the optimal use of the polymyxins: endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP)[J]. Pharmacotherapy, 2019, 39(1): 10-39.
Paul M, Daikos G L, Durante-Mangoni E, et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant gram-negative bacteria: An open-label, randomised controlled trial[J]. Lancet Infect Dis, 2018, 18(4): 391-400.
Wang Q, Wang X, Wang J, et al. Phenotypic and genotypic characterization of carbapenem-resistant Enterobacteriaceae: Data from a longitudinal large-scale CRE study in China (2012–2016)[J]. Clin Infect Dis, 2018,? 67(2): 196-205.
Durante-Mangoni E, Andini R, Zampino R. Management of carbapenem-resistant Enterobacteriaceae infections[J]. Clin Microbiol Infect, 2019, 25(8): 943-950.
Purdy J, Jouve S, Yan J L, et al. Pharmacokinetics and safety profile of tigecycline in children aged 8 to 11 years with selected serious infections: A multicenter, open-label, ascending-dose study[J]. Clin Ther, 2012, 34(2): 496-507.
Iosifidis E, Violaki A, Michalopoulou E, et al. Use of tigecycline in pediatric patients with infections predominantly due to extensively drug-resistant Gram-negative bacteria[J]. J Pediatric Infect Dis Soc, 2016, 6(2): 123-128.
Chen F, Shen C, Pang X, et al. Effectiveness of tigecycline in the treatment of infections caused by carbapenem‐resistant gram‐negative bacteria in pediatric liver transplant recipients: a retrospective study[J]. Transpl Infect Dis, 2019, 22(1): e13199.
Tian Y, Zhang Q, Wen L, et al. Combined effect of polymyxin b and tigecycline to overcome heteroresistance in carbapenem-resistant Klebsiella pneumoniae[J]. Microbiol Spectr, 2021, 9(2): e15221.
Zhou Y, Liu P, Zhang C, et al. Colistin combined with tigecycline: A promising alternative strategy to combat Escherichia coli harboring blaNDM-5 and mrc-1[J]. Front Microbiol, 2020, 10: 2957.
Wang X, Wang Q, Cao B, et al. Retrospective observational study from a Chinese network of the impact of combination therapy versus monotherapy on mortality from carbapenem-resistant Enterobacteriaceae bacteremia[J]. Antimicrob Agents Chemother, 2019, 63(1): e01511-18.
Avery L M, Sutherland C A, Nicolau D P. In vitro investigation of synergy among fosfomycin and parenteral antimicrobials against carbapenemase-producing Enterobacteriaceae[J]. Diagn Microbiol Infect Dis, 2019, 95(2): 216-220.
Antonello R M, Principe L, Maraolo A E, et al. Fosfomycin as partner drug for systemic infection management. A systematic review of its synergistic properties from in vitro and in vivo studies[J]. Antibiotics, 2020, 9(8): 500.
Kanchanasurakit S, Santimaleeworagun W, McPherson C E, et al. Fosfomycin dosing regimens based on Monte Carlo simulation for treated carbapenem-resistant Enterobacteriaceae infection[J]. Infect Chemother, 2020, 52(4): 516-529.
Pontikis K, Karaiskos I, Bastani S, et al. Outcomes of critically ill intensive care unit patients treated with fosfomycin for infections due to pandrug-resistant and extensively drug-resistant carbapenemase-producing Gram-negative bacteria[J]. Int J Antimicrob Agents, 2014, 1(43): 52-59.
Lim T, Teo J Q, Goh A W, et al. In vitro pharmacodynamics of fosfomycin against carbapenem-resistant Enterobacter cloacae and Klebsiella aerogenes[J]. Antimicrob Agents Chemother, 2020, 64(9): e00536-20.
Bulman Z P, Zhao M, Satlin M J, et al. Polymyxin b and fosfomycin thwart KPC-producing Klebsiella pneumoniae in the hollow-fibre infection model[J]. Int J Antimicrob Agents, 2018, 52(1): 114-118.
Diep J K, Sharma R, Ellis-Grosse E J, et al. Evaluation of activity and emergence of resistance of polymyxin B and ZTI-01 (fosfomycin for injection) against KPC-producing Klebsiella pneumoniae[J]. Antimicrob Agents Chemother, 2018, 62(2): e01815-17.
Zhao M, Bulman Z P, Lenhard J R, et al. Pharmacodynamics of colistin and fosfomycin: A 'treasure trove' combination combats KPC-producing Klebsiella pneumoniae[J]. J Antimicrob Chemother, 2017, 72(7): 1985-1990.
Crémieux A, Dinh A, Nordmann P, et al. Efficacy of colistin alone and in various combinations for the treatment of experimental osteomyelitis due to carbapenemase-producing Klebsiella pneumoniae[J]. J Antimicrob Chemother, 2019, 74(9): 2666-2675.
Baron S A, Cassir N, Mékidèche T, et al. Successful treatment and digestive decolonisation of a patient with osteitis caused by a carbapenemase-producing Klebsiella pneumoniae isolate harbouring both NDM-1 and OXA-48 enzymes[J]. J Glob Antimicrob Resist, 2019, 18: 225-229.
Pérez-Palacios P, Palacios-Baena Z, López-Cerero L, et al. Successful outcome after treatment with a combination of meropenem and fosfomycin for VIM-1 and CTX-M-15 producing Klebsiella pneumoniae bloodstream infection[J]. J Infect, 2021, 83(4): e12-e13.
Zheng G, Zhang J, Wang B, et al. Ceftazidime-avibactam in combination with in vitro non-susceptible antimicrobials versus ceftazidime-avibactam in monotherapy in critically ill patients with carbapenem-resistant Klebsiella pneumoniae infection: A retrospective cohort study[J]. Infect Dis Ther, 2021, 10(3): 1699-1713.
Yin D, Zhang L, Wang A, et al. Clinical and molecular epidemiologic characteristics of carbapenem-resistant Klebsiella pneumoniae infection/colonization among neonates in China[J]. J Hosp Infect, 2018, 1(100): 21-28.
Baquero-Artigao F, Del Rosal Rabes T. Fosfomycin in the pediatric setting: Evidence and potential indications[J]. Rev Esp Quimioter, 2019, 32(1): 55-61.
Obiero C W, Williams P, Murunga S, et al. Randomised controlled trial of fosfomycin in neonatal sepsis: Pharmacokinetics and safety in relation to sodium overload[J]. Arch Dis Child, 2022, 107(9): 802-810.
Karaiskos I, Galani I, Papoutsaki V, et al. Carbapenemase producing Klebsiella pneumoniae: Implication on future therapeutic strategies[J]. Expert Rev Anti Infect Ther, 2022, 20(1): 53-69.
Guo Y, Han R, Jiang B, et al. In vitro activity of new β-lactam–β-lactamase inhibitor combinations and comparators against clinical isolates of Gram-negative bacilli: Results from the China Antimicrobial Surveillance Network (CHINET) in 2019[J]. Microbiol Spectr, 2022, 10(4): e0185422.
Franzese R C, McFadyen L, Watson K J, et al. Population pharmacokinetic modeling and probability of pharmacodynamic target attainment for ceftazidime-avibactam in pediatric patients aged 3 months and older[J]. Clin Pharmacol Ther, 2022, 111(3): 635-645.
Iosifidis E, Chorafa E, Agakidou E, et al. Use of ceftazidime-avibactam for the treatment of extensively drug-resistant or pan drug-resistant Klebsiella pneumoniae in neonates and children <5 years of age[J]. Pediatr Infect Dis J, 2019, 38(8): 812-815.
Ji Z, Sun K, Li Z, et al. Klebsiella pneumoniae carbapenem-resistant osteomyelitis treated with ceftazidime-avibactam in an infant: A case report[J]. Infect Drug Resist, 2021, 14: 3109-3113.
Tamma P D, Aitken S L, Bonomo R A, et al. Infectious diseases society of America 2022 guidance on the treatment of extended-spectrumβ-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. Aeruginosa)[J]. Clin Infect Dis, 2022, 75(2): 187-212.
Tumbarello M, Raffaelli F, Giannella M, et al. Ceftazidime-avibactam use for Klebsiella pneumoniae carbapenemase-producing K. Pneumoniae infections: A retrospective observational multicenter study[J]. Clin Infect Dis, 2021, 73(9): 1664-1676.
Ara-Montojo M F, Escosa-García L, Alguacil-Guillén M, et al. Predictors of mortality and clinical characteristics among carbapenem-resistant or carbapenemase-producing Enterobacteriaceae bloodstream infections in Spanish children[J]. J Antimicrob Chemother, 2021, 76(1): 220-225.
Band V I, Hufnagel D A, Jaggavarapu S, et al. Antibiotic combinations that exploit heteroresistance to multiple drugs effectively control infection[J]. Nat Microbiol, 2019, 4(10): 1627-1635.
Scudeller L, Righi E, Chiamenti M, et al. Systematic review and meta-analysis of in vitro efficacy of antibiotic combination therapy against carbapenem-resistant Gram-negative bacilli[J]. Int J Antimicrob Agents, 2021, 57(5): 106344.
Rodríguez-Ba?o J, Gutiérrez-Gutiérrez B, Machuca I, et al. Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae[J]. Clin Microbiol Rev, 2018, 31(2): e00079-17.
Papst L, Beovi? B, Pulcini C, et al. Antibiotic treatment of infections caused by carbapenem-resistant Gram-negative bacilli: An international ESCMID cross-sectional survey among infectious diseases specialists practicing in large hospitals[J]. Clin Microbiol Infect, 2018, 24(10): 1070-1076.
收稿日期:2022-08-22
項(xiàng)目基金:四川省科技廳項(xiàng)目資助(No. 2022JDKP0062);成都市高水平臨床重點(diǎn)??平ㄔO(shè)項(xiàng)目
作者簡介:胡月,女,生于1994年,碩士,研究方向?yàn)閮和腥?,E-mail: 619842539@qq.com
*通信作者,E-mail: 55050625@qq.com