高佳慧 冀桂明 李文靜 郭家選 沈元月 高凡
摘? ? 要:【目的】探究草莓COP9信號(hào)復(fù)合體亞單位5(constitutive photomorphogenic signalosome subunit 5,CSN5)在草莓果實(shí)發(fā)育過程中的功能。【方法】以草莓品種紅顏為材料,根據(jù)草莓果實(shí)發(fā)育過程中的轉(zhuǎn)錄組數(shù)據(jù),篩選并克隆FaCSN5基因?;谏镄畔W(xué)對(duì)其功能域、理化性質(zhì)、蛋白結(jié)構(gòu)等進(jìn)行預(yù)測(cè)。通過SDS-PAGE和Western Blot檢測(cè)FaCSN5-His目的蛋白,利用煙草對(duì)其進(jìn)行亞細(xì)胞定位分析。利用RT-qPCR檢測(cè)FaCSN5的時(shí)空表達(dá)水平,利用農(nóng)桿菌介導(dǎo)瞬時(shí)侵染草莓果實(shí),觀察記錄表型,檢測(cè)FaCSN5基因表達(dá)水平。利用圓片溫育和外源激素處理試驗(yàn)檢測(cè)外源激素對(duì)FaCSN5基因表達(dá)的誘導(dǎo)影響?!窘Y(jié)果】系統(tǒng)進(jìn)化樹分析表明FaCSN5、FvCSN5和月季CSN5b同源性較高,相似率分別為100%和94.24%??寺〉腇aCSN5與艷麗草莓8條基因序列的堿基和氨基酸序列相似率分別達(dá)98.97%和99.35%。FaCSN5基因的編碼區(qū)為1080 bp,編碼359個(gè)氨基酸,具有一個(gè)保守的MPN結(jié)構(gòu)域。pET30a-FaCSN5融合表達(dá)載體的大腸桿菌原核表達(dá)表明FaCSN5-His目的蛋白大小約66 ku。亞細(xì)胞定位顯示FaCSN5-GFP融合蛋白定位為細(xì)胞核和細(xì)胞質(zhì)。FaCSN5在根中表達(dá)水平最高,在種子中最低,在根中的表達(dá)量是種子中表達(dá)量的8倍;果實(shí)發(fā)育過程中在全紅期表達(dá)量最高,在褪綠期表達(dá)量最低,從褪綠期開始隨著果實(shí)發(fā)育表達(dá)量升高。農(nóng)桿菌介導(dǎo)瞬時(shí)侵染草莓果實(shí),F(xiàn)aCSN5過表達(dá)能夠促進(jìn)草莓果實(shí)成熟;沉默F(xiàn)aCSN5表達(dá)則會(huì)抑制草莓果實(shí)成熟。FaCSN5啟動(dòng)子上含有響應(yīng)茉莉酸甲酯和赤霉素的順式作用元件,且其表達(dá)受到這兩種激素及脫落酸的誘導(dǎo)?!窘Y(jié)論】FaCSN5可能是通過多種激素調(diào)控促進(jìn)草莓果實(shí)成熟。
關(guān)鍵詞:草莓;紅顏;CSN5;表達(dá)分析;亞細(xì)胞定位;激素誘導(dǎo)
中圖分類號(hào):S668.4 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)12-2536-12
收稿日期:2023-09-11 接受日期:2023-10-22
基金項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(32272648,32072516,32030100)
作者簡介:高佳慧,女,在讀碩士研究生,研究方向?yàn)楣麑?shí)發(fā)育與品質(zhì)調(diào)控。E-mail:gjh696969@126.com
*通信作者Author for correspondence. E-mail:gaofan@bua.edu.cn
Functional analysis of the COP9 subunit FaCSN5 during strawberry fruit development
GAO Jiahui1, JI Guiming2, LI Wenjing2, GUO Jiaxuan2, SHEN Yuanyue1, GAO Fan2*
(1College of Plant Science and Technology, Beijing University of Agriculture/Beijing Key Laboratory of New Technology in Agricultural Application, Beijing 102206, China; 2College of Bioscience and Resources Environment, Beijing University of Agriculture/Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing 102206, China)
Abstract: 【Objective】 The study aimed to investigate the function of strawberry (Fragaria × ananassa) CSN5 (constitutive photomorphogenic signalosome subunit 5) during strawberry fruit development. 【Methods】 Benihoppe strawberry was used as experimental material. Firstly, based on the transcriptome data of the five developmental stages (SG, LG, Wt, IR and PR) of strawberry fruit, a gene with increased expression level during fruit development from the large green fruit was screened. Because it contained MPN conserved domain and had 100% sequence similarity with diploid strawberry FvCSN5 (XM_004291211), the gene was named FaCSN5. Total RNA was extracted from the samples using a total RNA extraction kit (Guangzhou Magen Biotechnology Co., Ltd.), and the cDNA was synthesized by reverse transcription using Hi fair ? Ⅲ 1st Strand cDNA Synthesis Super Mix for qPCR (Shanghai Yeasen Biotechnology Co., Ltd.) kit, and then the full-length CDS sequence of FaCSN5 was obtained by PCR. Secondly, some bioinformatics techniques were used in this study. The molecular formula, molecular weight, isoelectric point, and fat solubility index of encoding protein were analyzed in the Prot Param website. The conserved domain of FaCSN5 was analyzed by the NCBI website and Blast tool. The transmembrane domain of FaCSN5 protein was analyzed by TMHMM 2.0. The secondary and tertiary structures of FaCSN5 were analyzed online using NPS and Swiss Model. The phylogenetic tree of FaCSN5 homologous genes was constructed by MEGA11 software. Thirdly, the spatiotemporal expression levels of FaCSN5 were detected by RT-qPCR using Agrobacterium-mediated transient transformation of strawberry fruits, and the phenotypes were observed and used to detect the expression levels of the FaCSN5 gene. The cis-acting elements of FaCSN5 gene promoter were analyzed by the online software Plant CARE. The induction of FaCSN5 gene expression by exogenous hormones was detected by disc incubation and exogenous hormone treatment experiments. The subcellular localization was observed by Agrobacterium-mediated transient transformation of tobacco mesophyll cells. Finally, the full-length CDS sequence of FaCSN5 was constructed into pET30a vector by homologous recombination, and the pET30a-FaCSN5 fusion expression vector was obtained induced and purified. Western Blot was used to detect FaCSN5-His target protein by SDS-PAGE and Anti-His antibody. 【Results】 Evolutionary tree analysis showed that FaCSN5 was highly homologous to FvCSN5 and rosa CSN5b, with similarity rates of 100% and 94.24%, respectively. The base and amino acid sequence similarity between the cloned FaCSN5 and the eight gene sequences of Yanli strawberry reached 98.97% and 99.35%, respectively. Bioinformatics analysis showed that the coding sequence of FaCSN5 was 1080 bp, encoding 359 amino acids. The analysis of physicochemical properties of amino acids showed that the molecular formula of FaCSN5 was C1797H2773N471O558S14, the molecular weight of the protein was 40.35 ku, and the isoelectric point (pI) was 4.93, which was an acidic protein. The protein contained 48 negatively charged amino acid residues (Asp + Glu) and 31 positively charged amino acid residues (Arg + Lys). The instability coefficient was 41.41, and the average hydrophilicity is -0.421. It was inferred that the protein should be an unstable hydrophobic protein. Conserved domain analysis showed that FaCSN5 had a conserved MPN domain. Phylogenetic tree analysis showed that FaCSN5 had high homology with FvCSN5 and rose CSN5b, and the similarity rates were 100% and 94.24%, respectively. The pET30a-FaCSN5 fusion expression vector was constructed for prokaryotic expression in Escherichia coli. The results of SDS-PAGE and Western Blot showed that the size of FaCSN5-His target protein was about 66 ku. The transient expression of Nicotiana benthamiana showed that the FaCSN5-GFP fusion protein was localized in the nucleus and cytoplasm. RT-qPCR analysis showed that the expression level of FaCSN5 was the highest in the root, followed by FR, PR, stem, leaf, and flower. The expression level of FaCSN5 was the lowest in the seed, and the expression level in the root was 8 times higher than that in the seed, indicating that FaCSN5 had tissue specificity. During fruit development, the expression level was the highest at the Full red stage and the lowest at the De-greening stage. From the Degreening green stage, the expression level increased with fruit development, indicating that FaCSN5 might be involved in the development of strawberry fruit. Agrobacterium-mediated transient infestation of strawberry fruit with FaCSN5 overexpression could promote strawberry fruit ripening; silencing FaCSN5 expression inhibited strawberry fruit ripening. The FaCSN5 promoter contained cis-acting elements in response to methyl jasmonate and gibberellin. After treatment with MeJA and GA, the expression level of FaCSN5 gene was slightly lower than that of the control group after 1 h of MeJA treatment. After 2-5 h of treatment, the expression level of FaCSN5 gene was higher than that of the control group. The expression level of FaCSN5 gene was higher than that of the control group at 1-5 h after GA treatment, and the expression level was the highest at 1 h after treatment. After ABA treatment, the expression level of FaCSN5 gene was higher than that of the control group, and the expression level was the highest after 3 h of treatment. The results showed that the expression level of FaCSN5 gene was induced by MeJA, GA, and ABA, to various degrees. 【Conclusion】 The protein height of FaCSN5 was about 66 ku, which was localized in the nucleus and cytoplasm. The expression of FaCSN5 was induced by abscisic acid, methyl jasmonate, and gibberellin. FaCSN5 might promote strawberry fruit ripening through multiple hormonal regulations.
Key words: Strawberry; Benihoppe; CSN5; Expression analysis; Subcellular localization; Hormone induction
COP9信號(hào)復(fù)合體(constitutively photomorphogennic signalosome,CSN)最初從擬南芥中被鑒定為光形態(tài)發(fā)生的重要調(diào)節(jié)體[1]。CSN是泛素-蛋白酶體途徑中一種進(jìn)化上高度保守的多蛋白復(fù)合物,其特異性地將泛素化的蛋白質(zhì)引導(dǎo)至26S蛋白酶體,從而促進(jìn)植物降解[2]。在高等真核生物中,CSN亞基命名法已經(jīng)統(tǒng)一,各個(gè)CSN亞基現(xiàn)在被稱為CSN1-CSN8[3]。CSN亞基可以獨(dú)立地行使功能,也可以結(jié)合成CSN復(fù)合體發(fā)揮作用,其中CSN5的作用最受關(guān)注[4]。在擬南芥中發(fā)現(xiàn)AtCSN5a和AtCSN5b基因,均為編碼CSN5的基因[5]。在草莓、葡萄、水稻的基因組中,則只含有一個(gè)CSN5基因[6-7]。
CSN5包含MPN(Mpr1p-Pad1p-N-terminal)結(jié)構(gòu)域,主要識(shí)別信號(hào)因子,激活下游信號(hào),從而調(diào)控一系列生物學(xué)功能,MPN域蛋白具有生化活性,完整的CSN5是COP9信號(hào)復(fù)合體穩(wěn)定所必需的[8]。目前CSN5已經(jīng)在多個(gè)物種中被克隆并分析,各種功能也陸續(xù)被發(fā)現(xiàn),如雙子病毒C2蛋白與CSN5相互作用并改變擬南芥中基于CUL1的SCF泛素E3連接酶,最終涉及激素信號(hào)調(diào)控[9]。在番茄中CSN4和CSN5通過JA信號(hào)通路調(diào)節(jié)COI1和響應(yīng)根結(jié)線蟲感染[10]。CSN5a通過熱脅迫來恢復(fù)AUX/IAA水平,從而調(diào)節(jié)擬南芥中生長素含量[11]。因此,CSN5在生物脅迫和非生物脅迫中起著重要的調(diào)控作用。然而,CSN5在草莓上的分子基礎(chǔ)目前還不清楚。
草莓是研究非呼吸躍變型果實(shí)發(fā)育成熟機(jī)制的模式植物[12-13]?;诠P者實(shí)驗(yàn)室草莓果實(shí)中的5個(gè)發(fā)育時(shí)期的轉(zhuǎn)錄組分析,篩選到一個(gè)隨著果實(shí)發(fā)育表達(dá)量增加的COP9亞基,編碼MPN保守結(jié)構(gòu)域,將其命名為FaCSN5,并推測(cè)其可能涉及草莓果實(shí)發(fā)育調(diào)控。筆者在本研究中首先從八倍體草莓紅顏果實(shí)中克隆到FaCSN5的CDS序列,并對(duì)其理化性質(zhì)、蛋白結(jié)構(gòu)、蛋白純化、亞細(xì)胞定位、組織表達(dá)和農(nóng)桿菌瞬時(shí)侵染草莓果實(shí)等進(jìn)行預(yù)測(cè)和研究,為深入研究FaCSN5在草莓果實(shí)發(fā)育中的分子機(jī)制和功能奠定基礎(chǔ)。
1 材料和方法
1.1 材料
試驗(yàn)材料為北京農(nóng)學(xué)院科技園區(qū)日光溫室基質(zhì)栽培的八倍體草莓紅顏(Fragaria × ananassa ‘Benihoppe)。溫室內(nèi)晝夜氣溫范圍為10~30 ℃、空氣相對(duì)濕度為60%~80%、日照時(shí)間為8 h,肥水按當(dāng)?shù)爻R?guī)管理。在2023年2月第二茬果時(shí),于上午10:00對(duì)根、莖、葉、花、果實(shí)和種子各組織部位取樣。根據(jù)前人的研究[14],采集小綠期、大綠期、褪綠期、白果期、始紅期、片紅期和全紅期等不同發(fā)育時(shí)期的草莓果實(shí),并用液氮速凍,-80 ℃保存。
1.2 總RNA提取及反轉(zhuǎn)錄
采用難提植物總RNA小提試劑盒(美基生物科技有限公司)提取樣品總RNA,利用Hi fair? Ⅲ 1st Strand cDNA Synthesis Super Mix for qPCR(翌圣生物公司)試劑盒反轉(zhuǎn)錄合成cDNA,放置-80 ℃保存?zhèn)溆谩?/p>
1.3 草莓CSN5生物學(xué)分析
FaCSN5保守結(jié)構(gòu)域通過NCBI(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)預(yù)測(cè);FaCSN5蛋白的跨膜結(jié)構(gòu)域使用TMHMM 2.0(https://services.healthtech.dtu.dk/services/TMHMM-2.0/)分析;FaCSN5分子質(zhì)量、等電點(diǎn)、蛋白質(zhì)分子式和不穩(wěn)定系數(shù)利用Prot Param(https://web.expasy.org/protparam/)在線預(yù)測(cè);FaCSN5蛋白質(zhì)二級(jí)和三級(jí)結(jié)構(gòu)利用NPS(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_gor4.html)和Swiss Model(http://swissmodel.expasy.org/)在線分析;根據(jù)得到的FaCSN5氨基酸序列,利用MEGA軟件進(jìn)行氨基酸序列的同源性比對(duì)和系統(tǒng)進(jìn)化樹構(gòu)建;通過在線軟件Plant CARE(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)分析FaCSN5啟動(dòng)子的順式作用元件。
1.4 圓片溫育與激素處理
取長勢(shì)一致的白果期果實(shí),使用打孔器和刀片將果實(shí)制備成圓片,放于溫育平衡液中平衡30 min,其圓片直徑和厚度分別為0.75 cm和0.1 cm,溫育平衡液包含10 mmol·L-1 MgCl2、5 mmol·L-1 CaCl2、10 mmol·L-1 EDTA、5 mmol·L-1維生素C、200 mmol·L-1甘露醇和50 mmol·L-1 MES(pH = 5.5)。將平衡好的果實(shí)圓片隨機(jī)取5 g分別放入到含有100 μmol·L-1茉莉酸甲酯(methyl jasmonate,MeJA)、100 μmol·L-1赤霉素(gibberellin,GA)和100 μmol·L-1脫落酸(abscisic acid,ABA)的平衡液中,25 ℃、140 r·min-1孵育。于1、2、3、4、5 h分別取1 g處理好的圓片,液氮速凍,-80 ℃保存。
1.5 實(shí)時(shí)熒光定量PCR
利用Primer 5軟件設(shè)計(jì)實(shí)時(shí)熒光定量引物(表1),以紅顏草莓根、莖、葉、花、種子、各發(fā)育時(shí)期的果實(shí)和圓片溫育樣品的cDNA為模板,草莓的Actin基因?yàn)閮?nèi)參基因,采用Bio-Rad CFX96熒光定量PCR儀檢測(cè)FaCSN5在不同部位和不同處理下的表達(dá)情況。擴(kuò)增程序使用三步法反應(yīng)程序,實(shí)時(shí)熒光定量加樣體系和反應(yīng)程序均參考Trans Start Top Green qPCR Super Mix(全式金生物技術(shù)有限公司)說明書。試驗(yàn)采取3次重復(fù),相對(duì)表達(dá)量采用2-ΔΔCt計(jì)算。
1.6 草莓FaCSN5原核表達(dá)載體構(gòu)建及蛋白純化
基于二倍體森林草莓同源基因FvCSN5(XM_004291211),采用Snap Gene軟件設(shè)計(jì)引物(表1),以紅顏草莓的cDNA為模板,選用2 × Phanta Max Master Mix(諾唯贊生物科技股份有限公司)克隆攜有pET30a載體同源臂的目的片段,PCR產(chǎn)物經(jīng)1%瓊脂糖凝膠電泳檢測(cè)后,用瓊脂糖凝膠DNA回收試劑盒(美基生物科技有限公司)回收目的條帶。使用內(nèi)切酶EcoRⅠ和SalⅠ對(duì)pET30a表達(dá)載體進(jìn)行雙酶切,通過1%的瓊脂糖凝膠電泳進(jìn)行分離,將pET30a載體片段切膠回收。選用同源重組酶Clon Express Ⅱ One Step Cloning Kit(諾唯贊生物科技有限公司)連接攜有載體同源臂的FaCSN5目的片段和pET30a載體片段。將連接產(chǎn)物轉(zhuǎn)化到大腸桿菌DH5α(唯地生物技術(shù)有限公司),菌落PCR驗(yàn)證后將陽性菌送金唯智生物科技有限公司進(jìn)行測(cè)序。
提取重組質(zhì)粒,命名為pET30a-FaCSN5,轉(zhuǎn)化大腸桿菌感受態(tài)BL21(DE3),涂板于含有卡那霉素(100 mg·L-1)LB固體培養(yǎng)基上37 ℃過夜培養(yǎng),菌落PCR驗(yàn)證。挑取陽性單菌落,接種于20 mL含有卡那霉素(100 mg·L-1)LB液體培養(yǎng)基上,在37 ℃、220 r·min-1活化4~6 h,將菌液加至300 mL含有卡那霉素(100 mg·L-1)的LB液體培養(yǎng)基中,調(diào)OD600值為0.1,在搖床上繼續(xù)搖動(dòng),直到OD600值為0.6~0.8,加入終濃度為0.5 mmol·L-1的IPTG,在16 ℃、140 r·min-1誘導(dǎo)過夜。收集誘導(dǎo)后菌液300 mL,4 ℃離心機(jī)8000 r·min-1離心4 min,向沉淀中加入30 mL Binding Buffer(PBS緩沖液,5 mmol·L-1咪唑,調(diào)pH至7.4)和0.3 mL 100 ?mol·L-1 PMSF,超聲20 min(350 W,超聲開3 s,超聲關(guān)2 s),4 ℃離心機(jī)8000 r·min-1離心15 min,取上清液。利用Ni-NTA純化目標(biāo)蛋白,具體操作參照其說明書,采用含有500 mmol·L-1咪唑的PBS洗脫蛋白,參考楊潔[15]的方法進(jìn)行SDS-PAGE和Western Blot檢測(cè)。
1.7 亞細(xì)胞定位
選定酶切位點(diǎn)SpeⅠ和KpnⅠ對(duì)pCAMBIA-Super1300-GFP表達(dá)載體進(jìn)行雙酶切,利用Snap Gene軟件設(shè)計(jì)引物(表1),使用攜有載體同源臂的引物克隆目的片段,采用同源重組法連接載體片段和目的片段。經(jīng)菌落PCR驗(yàn)證的陽性菌,送金唯智生物科技有限公司測(cè)序驗(yàn)證,提取重組質(zhì)粒35S::FaCSN5-GFP,過表達(dá)載體也用該重組質(zhì)粒,將其轉(zhuǎn)化農(nóng)桿菌GV3101,對(duì)煙草下表皮進(jìn)行侵染,3 d后在激光共聚焦下觀察pCAMBIA-Super1300-GFP和35S::FaCSN5-GFP的綠色熒光在煙草細(xì)胞的位置。
1.8 FaCSN5 RNAi載體構(gòu)建
Gateway的方法構(gòu)建FaCSN5 RNAi載體,設(shè)計(jì)引物(表1),BP反應(yīng)具體操作見賽默飛Gateway? BP Clonase? Ⅱ酶混合物說明書,LR反應(yīng)具體操作見賽默飛Gateway? LR Clonase? Ⅱ酶混合物說明書。
1.9 FaCSN5瞬時(shí)侵染草莓果實(shí)
對(duì)FaCSN5 RNAi、轉(zhuǎn)化的空載體(對(duì)照)和OE陽性農(nóng)桿菌,挑取陽性單菌落于5 mL含有50 ?g·mL-1壯觀霉素或50 ?g·mL-1卡那霉素和50 ?g·mL-1利福平的YEB液體培養(yǎng)基中,28 ℃,200 r·min-1水平震蕩培養(yǎng)過夜。取適量菌液加入到10 mL含有50 ?g·mL-1卡那霉素和50 ?g·mL-1利福平的YEB液體培養(yǎng)基中,調(diào)OD600值為0.1,28 ℃,200 r·min-1震蕩培養(yǎng)至OD600值為1.0~1.2。6000 r·min-1離心5 min,收集菌體,用果實(shí)侵染液重懸菌體,調(diào)OD600值為0.4~0.6,避光、28 ℃靜置2 h,果實(shí)侵染液包含10 mmol·L-1 MES、10 mmol·L-1 MgCl2和200 ?mol·L-1 AS。挑選發(fā)育健康的褪綠期果實(shí)做上標(biāo)記,每種農(nóng)桿菌各注射6個(gè),每天拍照記錄表型,注射6 d后取樣,去掉種子切取注射部位,液氮速凍,-80 ℃保存。試驗(yàn)設(shè)置3次重復(fù)。
2 結(jié)果與分析
2.1 草莓FaCSN5基因的克隆
紅顏草莓cDNA為模板的PCR擴(kuò)增條帶大小約1080 bp(圖1-A),在小綠期(SG)、大綠期(LG)、白果期(Wt)、始紅期(IR)、片紅期(PR)5個(gè)草莓果實(shí)發(fā)育時(shí)期,COP9亞基的表達(dá)量從大綠期開始隨著果實(shí)發(fā)育而增加(圖1-B)。采用MEGA11鄰接法(Neighbor-Joining method)構(gòu)建的系統(tǒng)發(fā)育樹顯示該基因的編碼區(qū)(coding sequence,CDS)也為1080 bp,與二倍體草莓FvCSN5(XM_004291211)和月季CSN5b(XM_024310633.2)同源性非常高,相似率分別達(dá)100%和94.24%(圖2),因此將該基因命名為FaCSN5。此外,栽培品種艷麗草莓從GDR(https://www.rosaceae.org/)Blast獲得了8條基因序列[16],克隆的FaCSN5與艷麗草莓8條基因序列的堿基和氨基酸序列相似率分別達(dá)98.97%和99.35%。
2.2 草莓FaCSN5基因的生物信息學(xué)分析
FaCSN5基因的分子式為C1797H2773N471O558S14,編碼359個(gè)氨基酸,蛋白質(zhì)分子質(zhì)量為40.35 ku,等電點(diǎn)(pI)為4.93,為酸性蛋白,含有31個(gè)正電荷氨基酸殘基(Arg + Lys),48個(gè)負(fù)電荷氨基酸殘基(Asp + Glu),不穩(wěn)定系數(shù)是41.41,親水性平均值為-0.421,因此,F(xiàn)aCSN5蛋白可能為不穩(wěn)定的疏水性蛋白。
利用NCBI網(wǎng)站以及Blast工具分析FaCSN5蛋白的保守結(jié)構(gòu),結(jié)果顯示FaCSN5在51~323位氨基酸之間含有一個(gè)MPN保守結(jié)構(gòu)域(圖3)。采用TMHMM 2.0對(duì)蛋白的跨膜結(jié)構(gòu)域進(jìn)行分析,發(fā)現(xiàn)FaCSN5無跨膜結(jié)構(gòu)(圖4)。
利用NPS和Swiss Model在線分析蛋白質(zhì)二級(jí)和三級(jí)結(jié)構(gòu)(圖5)。FaCSN5蛋白的二級(jí)結(jié)構(gòu)由4個(gè)結(jié)構(gòu)組成,分別為α螺旋(α-helix)、β轉(zhuǎn)角(Beta turn)、無規(guī)則卷曲(random coil)和延伸鏈(extended strand)(圖5-A),Alpha helix包含144個(gè)氨基酸,占比為40.11%;Beta turn包含11個(gè)氨基酸,占比為3.06%;Random coil 包含152個(gè)氨基酸,占比為42.34%;Extended strand包含52個(gè)氨基酸,占比為14.48%。
2.3 草莓FaCSN5的原核表達(dá)分析
FaCSN5-His原核表達(dá)分析如圖6所示,對(duì)包括SDS-PAGE(圖6-A)及Anti-His抗體進(jìn)行Western Blot檢測(cè)(圖6-B),F(xiàn)aCSN5-His目的蛋白條帶大小在55~70 ku之間,約66 ku,其中含His標(biāo)簽0.84 ku。
2.4 草莓FaCSN5的亞細(xì)胞定位
草莓FaCSN5-GFP融合蛋白的亞細(xì)胞定位分析如圖7所示,細(xì)胞核和細(xì)胞質(zhì)有綠色熒光,表明FaCSN5-GFP融合蛋白定位于細(xì)胞核和細(xì)胞質(zhì)。
2.5 草莓FaCSN5的時(shí)空表達(dá)
草莓根、莖、葉、花、種子和全紅期果實(shí)的FaCSN5相對(duì)表達(dá)量如圖8-A所示,根的FaCSN5相對(duì)表達(dá)量最高,其次是全紅期果實(shí)、莖、葉和花,種子的表達(dá)量最低。其中,根的FaCSN5表達(dá)量可達(dá)種子的8倍,表明FaCSN5具有明顯的組織特異性。如圖8-B所示,在草莓果實(shí)發(fā)育的不同階段,F(xiàn)aCSN5相對(duì)表達(dá)量從褪綠期開始就一直呈現(xiàn)上升的趨勢(shì),在全紅時(shí)期達(dá)到最高,表明FaCSN5參與了草莓果實(shí)的發(fā)育。
2.6 草莓FaCSN5促進(jìn)草莓果實(shí)成熟
為驗(yàn)證FaCSN5在草莓果實(shí)發(fā)育中的功能,分別構(gòu)建FaCSN5 RNAi和FaCSN5 OE載體,轉(zhuǎn)化GV3101農(nóng)桿菌,通過農(nóng)桿菌介導(dǎo)瞬時(shí)侵染草莓果實(shí),每天拍照記錄表型(圖9-A),通過RT-qPCR檢測(cè)FaCSN5表達(dá)水平(圖9-B)。結(jié)果表明,F(xiàn)aCSN5過表達(dá)能夠促進(jìn)草莓果實(shí)成熟;沉默F(xiàn)aCSN5表達(dá)則會(huì)抑制草莓果實(shí)成熟。以上結(jié)果初步證明FaCSN5在草莓果實(shí)成熟過程中起著重要作用。
2.7 草莓FaCSN5在激素誘導(dǎo)下的表達(dá)分析
為了進(jìn)一步分析FaCSN5的功能,以紅顏草莓基因組DNA為模板,擴(kuò)增FaCSN5起始密碼子至上游約2000 bp的堿基序列(圖10),PCR產(chǎn)物長度1726 bp,與NCBI查詢到的二倍體草莓啟動(dòng)子序列進(jìn)行比對(duì),其相似率為100%。將FaCSN5啟動(dòng)子序列與八倍體草莓艷麗的啟動(dòng)子序列[16]進(jìn)行比較,發(fā)現(xiàn)2條啟動(dòng)子序列符合條件,并且與FaCSN5啟動(dòng)子序列的相似率達(dá)88.07%。表2顯示了FaCSN5基因啟動(dòng)子的順式作用元件及其功能,F(xiàn)aCSN5啟動(dòng)子有不同類型的響應(yīng)元件,它們的功能也各不相同,其中,茉莉酸甲酯響應(yīng)元件、赤霉素響應(yīng)元件為激素響應(yīng)元件。
FaCSN5基因表達(dá)水平會(huì)受到MeJA、GA和ABA不同程度的誘導(dǎo),圖11表示不同外源激素處理草莓果實(shí)后FaCSN5基因表達(dá)水平。外施MeJA處理1 h后,F(xiàn)aCSN5基因表達(dá)水平略低于對(duì)照組,處理后的2~5 h,F(xiàn)aCSN5基因表達(dá)水平均高于對(duì)照組;外施GA處理1~5 h后,F(xiàn)aCSN5基因表達(dá)水平均高于對(duì)照組,在處理1 h后表達(dá)量最高。外施ABA處理后FaCSN5基因表達(dá)水平均高于對(duì)照組,且在處理3 h后表達(dá)量最高。
3 討 論
草莓是薔薇科多年生草本植物,味道甘甜,香氣濃郁,含有豐富的營養(yǎng)物質(zhì)。草莓是研究非呼吸躍變型果實(shí)發(fā)育成熟機(jī)制的模式植物[12-13]。草莓果實(shí)發(fā)育和成熟受到諸多因素的影響,如溫度、光照等因素的影響,其中植物激素的協(xié)同作用扮演了重要的角色[17]。
CSN參與協(xié)調(diào)植物的生長發(fā)育[18]。筆者在本研究中以草莓果實(shí)不同發(fā)育時(shí)期轉(zhuǎn)錄組數(shù)據(jù)為基礎(chǔ),克隆出草莓CSN5基因。FaCSN5只有一個(gè)MPN功能域,系統(tǒng)發(fā)育分析表明,其與二倍體草莓和月季等薔薇科植物的進(jìn)化關(guān)系較近,說明CSN5在進(jìn)化過程中結(jié)構(gòu)和功能較為保守。原核表達(dá)FaCSN5-His后,通過SDS-PAGE和Western Blot檢測(cè),發(fā)現(xiàn)FaCSN5-His目的蛋白條帶約66 ku。通過亞細(xì)胞定位分析,F(xiàn)aCSN5-GFP融合蛋白定位于細(xì)胞核和細(xì)胞質(zhì)。
關(guān)于CSN的表達(dá)模式已有一些研究報(bào)道,如GmCSN5s在大豆的根和根瘤中的表達(dá)量高于其他組織[19];HbCSN5在橡膠樹的膠乳中表達(dá)量最高,在雄花中表達(dá)量最低[20];OsCSN5基因在水稻的莖尖分生組織中表達(dá)量較高[21]。筆者在本研究中利用RT-qPCR檢測(cè)了草莓根、莖、葉、花、種子和全紅期果實(shí)的相對(duì)表達(dá)量,發(fā)現(xiàn)FaCSN5在草莓根中表達(dá)量最高,其次是全紅期果實(shí)、莖、葉和花,種子的表達(dá)量最低,表明FaCSN5具有組織特異性。FaCSN5在全紅期表達(dá)量最高,在褪綠期表達(dá)量最低,從褪綠期到全紅期,F(xiàn)aCSN5表達(dá)量呈現(xiàn)上升的趨勢(shì),表明FaCSN5可能參與草莓果實(shí)的發(fā)育。為了驗(yàn)證FaCSN5在果實(shí)發(fā)育過程中的功能,筆者通過農(nóng)桿菌介導(dǎo)瞬時(shí)侵染草莓果實(shí)記錄表型,檢測(cè)FaCSN5的表達(dá)水平,結(jié)果表明,F(xiàn)aCSN5過表達(dá)能夠促進(jìn)草莓果實(shí)成熟;沉默F(xiàn)aCSN5表達(dá)則會(huì)抑制草莓果實(shí)成熟。以上研究表明FaCSN5在草莓果實(shí)成熟過程中起著重要作用。
CSN參與包括乙烯、脫落酸、生長素、水楊酸等多種植物激素的調(diào)控過程[22-25]。OsCSN1通過CUL1的E4連接酶降解SLR3,最終影響內(nèi)源激素GA的合成[26]。筆者在本研究中發(fā)現(xiàn)FaCSN5啟動(dòng)子區(qū)域含有茉莉酸甲酯和赤霉素激素響應(yīng)元件,推測(cè)FaCSN5基因表達(dá)可能受到這兩種激素誘導(dǎo)。因此,通過圓片溫育和外源激素處理試驗(yàn),發(fā)現(xiàn)茉莉酸甲酯和赤霉素處理后,F(xiàn)aCSN5基因表達(dá)明顯受到誘導(dǎo),且顯著響應(yīng)赤霉素。草莓是非呼吸躍變型果實(shí),脫落酸在草莓果實(shí)發(fā)育過程中起著重要的作用,通過脫落酸處理后,發(fā)現(xiàn)FaCSN5基因表達(dá)顯著受到脫落酸的調(diào)控。
綜上所述,F(xiàn)aCSN5基因可能通過多種激素信號(hào)轉(zhuǎn)導(dǎo)途徑促進(jìn)草莓果實(shí)的成熟。
4 結(jié) 論
FaCSN5蛋白條帶約66 ku,在細(xì)胞核和細(xì)胞質(zhì)存在定位。FaCSN5表達(dá)受到脫落酸、茉莉酸甲酯和赤霉素的誘導(dǎo)調(diào)控,推測(cè)FaCSN5基因可能通過多種激素信號(hào)轉(zhuǎn)導(dǎo)途徑促進(jìn)草莓果實(shí)的成熟??傊?,本研究結(jié)果為深入研究FaCSN5在草莓果實(shí)中的分子機(jī)制和功能奠定了基礎(chǔ)。
參考文獻(xiàn)References:
[1] WEI N,CHAMOVITZ D A,DENG X W. Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development[J]. Cell,1994,78(1):117-124.
[2] SINHA A,ISRAELI R,CIRIGLIANO A,GIHAZ S,TRABELCY B,BRAUS G H,GERCHMAN Y,F(xiàn)ISHMAN A,NEGRI R,RINALDI T,PICK E. The COP9 signalosome mediates the Spt23 regulated fatty acid desaturation and ergosterol biosynthesis[J]. The FASEB Journal,2020,34(4):4870-4889.
[3] QIN N X,XU D Q,LI J G,DENG X W. COP9 signalosome:Discovery,conservation,activity,and function[J]. Journal of Integrative Plant Biology,2020,62(1):90-103.
[4] DUBIEL D,ROCKEL B,NAUMANN M,DUBIEL W. Diversity of COP9 signalosome structures and functional consequences[J]. FEBS Letters,2015,589(19):2507-2513.
[5] KWOK S F,SOLANO R,TSUGE T,CHAMOVITZ D A,ECKER J R,MATSUI M,DENG X W. Arabidopsis homologs of a c-Jun coactivator are present both in monomeric form and in the COP9 complex,and their abundance is differentially affected by the pleiotropic cop/det/fus mutations[J]. The Plant Cell,1998,10(11):1779-1790.
[6] JIN D,LI B S,DENG X W,WEI N. Plant COP9 signalosome subunit 5,CSN5[J]. Plant Science,2014,224:54-61.
[7] CUI K C,LIU M,KE G H,ZHANG X Y,MU B,ZHOU M,HU Y,WEN Y Q. Transient silencing of VvCSN5 enhances powdery mildew resistance in grapevine (Vitis vinifera)[J]. Plant Cell,Tissue and Organ Culture,2021,146(3):621-633.
[8] DENTI S,F(xiàn)ERNANDEZ-SANCHEZ M E,ROGGE L,BIANCHI E. The COP9 signalosome regulates Skp2 levels and proliferation of human cells[J]. Journal of Biological Chemistry,2006,281(43):32188-32196.
[9] LOZANO-DUR?N R,ROSAS-D?AZ T,GUSMAROLI G,LUNA A P,TACONNAT L,DENG X W,BEJARANO E R. Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana[J]. The Plant Cell,2011,23(3):1014-1032.
[10] SHANG Y F,WANG K X,SUN S C,ZHOU J,YU J Q. COP9 signalosome CSN4 and CSN5 subunits are involved in jasmonate-dependent defense against root-knot nematode in tomato[J]. Frontiers in Plant Science,2019,10:1223.
[11] SINGH A K,YADAV B S,DHANAPAL S,BERLINER M,F(xiàn)INKELSHTEIN A,CHAMOVITZ D A. CSN5A subunit of COP9 signalosome temporally buffers response to heat in Arabidopsis[J]. Biomolecules,2019,9(12):805.
[12] LIAO X,LI M S,LIU B,YAN M L,YU X M,ZI H L,LIU R Y,YAMAMURO C. Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(49):E11542-E11550.
[13] MOYA-LE?N M A,STAPPUNG Y,MATTUS-ARAYA E,HERRERA R. Insights into the genes involved in ABA biosynthesis and perception during development and ripening of the Chilean strawberry fruit[J]. International Journal of Molecular Sciences,2023,24(10):8531.
[14] 鄭珍珍,陳雪雪,沈元月,黃蕓. 轉(zhuǎn)錄因子FabHLH148參與草莓果實(shí)的顏色發(fā)育[J]. 果樹學(xué)報(bào),2022,39(8):1358-1367.
ZHENG Zhenzhen,CHEN Xuexue,SHEN Yuanyue,HUANG Yun. Transcription factor FabHLH148 is involved in the color development of strawberry fruit[J]. Journal of Fruit Science,2022,39(8):1358-1367.
[15] 楊潔. 丹參SmMYB36與SmCSN5蛋白的互作關(guān)系鑒定及其作用分析[D]. 楊凌:西北農(nóng)林科技大學(xué),2021.
YANG Jie. Identification and analysis of interaction between SmMYB36 and SmCSN5 protein in Salvia miltiorrhiza[D]. Yangling:Northwest A & F University,2021.
[16] MAO J X,WANG Y,WANG B T,LI J Q,ZHANG C,ZHANG W S,LI X,LI J,ZHANG J X,LI H,ZHANG Z H. High-quality haplotype-resolved genome assembly of cultivated octoploid strawberry[J]. Horticulture Research,2023,10(1):uhad002.
[17] GU T T,JIA S F,HUANG X R,WANG L,F(xiàn)U W M,HUO G T,GAN L J,DING J,LI Y. Transcriptome and hormone analyses provide insights into hormonal regulation in strawberry ripening[J]. Planta,2019,250(1):145-162.
[18] MUSAZADE E,LIU Y X,REN Y X,WU M,ZENG H,HAN S N,GAO X W,CHEN S H,GUO L Q. OsCSN1 regulates the growth and development of rice seedlings through the degradation of SLR1 in the GA signaling pathway[J]. Agronomy,2022,12(12):2946.
[19] 張夢(mèng)柯. GmCSN5s的克隆及其調(diào)控大豆適應(yīng)低磷脅迫的機(jī)制初探[D]. 廣州:華南農(nóng)業(yè)大學(xué),2019.
ZHANG Mengke. Clonging and charaterizatino of GmCSN5s functions in soybean adaptation to phosphorus deficiency[D]. Guangzhou:South China Agricultural University,2019.
[20] 吳紹華,張世鑫,鄧小敏,陳月異,田維敏. 橡膠樹COP9家族基因的克隆及表達(dá)分析[J]. 熱帶作物學(xué)報(bào),2019,40(2):281-288.
WU Shaohua,ZHANG Shixin,DENG Xiaomin,CHEN Yueyi,TIAN Weimin. Gene cloning and expression analysis of the COP9 signalosome members in laticifer cells of rubber tree[J]. Chinese Journal of Tropical Crops,2019,40(2):281-288.
[21] 龔茵茵. CSN5通過調(diào)節(jié)AsA的穩(wěn)態(tài)介導(dǎo)水稻鹽脅迫響應(yīng)的分子機(jī)制[D]. 長沙:湖南大學(xué),2020.
GONG Yinyin. The molecular mechanism of CSN5 mediates salt stress response in rice by regulating AsA homeostasis[D]. Changsha:Hunan University,2020.
[22] SHI B Z,HOU J Q,YANG J,HAN I J,TU D Y,YE S Q,YU J F,LI L J. Genome-wide analysis of the CSN genes in land plants and their expression under various abiotic stress and phytohormone conditions in rice[J]. Gene,2023,850:146905.
[23] ZHENG Q Z,ZHANG L,ZHANG Q,PANG Z Y,SUN Y,YIN Z,LOU Z Y. Discovery of interacting proteins of ABA receptor PYL5 via covalent chemical capture[J]. ACS Chemical Biology,2019,14(12):2557-2563.
[24] JIN D,WU M,LI B S,B?CKER B,KEIL P,ZHANG S M,LI J G,KANG D M,LIU J,DONG J,DENG X W,IRISH V,WEI N. The COP9 signalosome regulates seed germination by facilitating protein degradation of RGL2 and ABI5[J]. PLoS Genetics,2018,14(2):e1007237.
[25] BAI X X,HUANG X L,TIAN S X,PENG H,ZHAN G M,GOHER F,GUO J,KANG Z S,GUO J. RNAi-mediated stable silencing of TaCSN5 confers broad-spectrum resistance to Puccinia striiformis f. sp. tritici[J]. Molecular Plant Pathology,2021,22(4):410-421.
[26] HAN S N,LIU Y X,BAO A,ZENG H,HUANG G H,GENG M,ZHANG C Y,ZHANG Q,LU J M,WU M,GUO L Q. OsCSN1 regulates the growth of rice seedlings through the GA signaling pathway in blue light[J]. Journal of Plant Physiology,2023,280:153904.