摘要:
在傳統(tǒng)波阻板的基礎(chǔ)上,將屏障隔振改進(jìn)為相同厚度的雙層波阻板。基于非飽和多孔介質(zhì)和彈性介質(zhì)中的波動理論,研究非飽和土地基中雙層波阻板對S波的隔離效應(yīng)。根據(jù)Helmholtz原理,獲得S波入射下非飽和土地基中設(shè)置雙層波阻板后地表豎向位移解答。首先研究雙層波阻板的材料參數(shù)對其隔振性能的影響規(guī)律,研究發(fā)現(xiàn)通過調(diào)控雙層波阻板的密度和剪切模量能夠使雙層波阻板隔振屏障獲得最優(yōu)隔振效果;然后對比雙層波阻板與相同材質(zhì)的單層均質(zhì)波阻板的隔振效果,并分析入射角、頻率、飽和度、波阻板的厚度和埋深等物理力學(xué)參數(shù)對其隔振性能的影響規(guī)律。研究結(jié)果表明:同一厚度的波阻板隔振體系中,雙層波阻板的隔振效率比同等材質(zhì)的單層波阻板分別提高了49.18%和42.59%;雙層波阻板對低頻、中頻和高頻的環(huán)境振動均有較好的隔振效果。
關(guān)鍵詞:
雙層波阻板; 環(huán)境振動; 隔振效果; 非飽和土; 振幅衰減系數(shù)
中圖分類號: TU435""""" 文獻(xiàn)標(biāo)志碼:A"" 文章編號: 1000-0844(2024)05-1126-16
DOI:10.20000/j.1000-0844.20221031001
Isolation effect of double-layer wave impeding block
barrier on S-wave in unsaturated foundation
JIANG Ye1, MA Qiang1,2
(1. School of Civil Engineering, Qinghai University, Xining 810016, Qinghai, China;
2. Qinghai Provincial Key Laboratory of Energy-saving Building Materials and Engineering Safety, Xining 810016, Qinghai, China)
Abstract:
This paper presents an improvement to the traditional wave impeding block (WIB) barrier by introducing a double-layer WIB with the same overall thickness. The investigation focuses on the isolation effect of the double-layer WIB on S-waves in an unsaturated soil foundation, Using wave theory in unsaturated porous and elastic media. Based on Helmholtz's principle, the vertical displacement at the ground surface under S-wave incidence after the installation of the double-layer WIB in an unsaturated foundation was derived and obtained. The study initially analyzed the influence of the material parameters of the double-layer WIB on its vibration isolation performance. It was found that the optimal vibration isolation effect could be obtained by adjusting the density and shear modulus of the double-layer WIB. Subsequently, the vibration isolation effects of double-layer WIB were compared with those of a single-layer homogeneous WIB composed of the same material. The analysis included examining the influences of various physical and mechanical parameters, such as incident angle, frequency, saturation, thickness, and buried depth of the WIB on its vibration isolation performance. Results indicated that for WIBs of the same thickness, the double-layer WIB exhibited significantly higher vibration isolation efficiency, 49.18% and 42.59% higher than that of the corresponding single-layer WIB with the same material properties. The double-layer WIB demonstrated an effective vibration isolation effect across low, medium, and high frequencies in environmental vibrations. The double-layer WIB has a good vibration isolation effect on environmental vibration at low, medium, and high frequencies.
Keywords:
double-layer wave impeding block; environmental vibration; isolation effect; unsaturated soil; amplitude attenuation ratio
0 引言
自然界中的天然土體一般是由土顆粒所構(gòu)成的土骨架和孔隙中的水及空氣組成的,建筑工程中如大壩、公路、鐵路、機場跑道的壓實填土以及絕大多數(shù)建筑物的地基都是非飽和土。因此,選擇與實際情況更相符的土體,能夠反映非飽和狀態(tài)下的土地基在環(huán)境振動下的減振作用。隔振措施的研究具有重要的現(xiàn)實意義。
目前,學(xué)者們提出了多種方法對環(huán)境振動進(jìn)行隔離,即通過設(shè)置連續(xù)型屏障和非連續(xù)型屏障對振源進(jìn)行隔離[1-6]。Chouw等[7-8]提出一種在地基中人為設(shè)置波阻板(Wave Impeding Block,WIB)的隔振措施,其分析結(jié)果表明WIB的被動隔振效果要優(yōu)于填充溝。隨后,Schmid等[9]采用二維頻域邊界元法也驗證了WIB隔振的有效性。Yang等[10]和Hung等[11]比較了WIB和空溝的隔振效果,研究表明在低于截止頻率的頻率范圍內(nèi),WIB的隔振效果更好。為進(jìn)一步研究WIB在單相彈性和兩相飽和地基中的隔振性能,Peplow等[12]采用邊界積分方程法研究了二維雙層地基中WIB的主動隔振效果,結(jié)果表明WIB對低頻振動有較好的隔振效果。Gao等[13-14]利用數(shù)值軟件研究了彈性地基中WIB的隔振效果,結(jié)果表明WIB對低頻振動的隔振效果顯著。Thompson等[15]采用邊界元法對埋置在軌道下方的WIB隔振性能進(jìn)行研究,結(jié)果表明WIB可有效降低16~50 Hz的環(huán)境振動。謝偉平等[16]利用數(shù)值軟件分析了WIB對地鐵振動的控制效果,結(jié)果表明WIB對5~15 Hz的低頻振動隔離效果較好。李志江等[17]采用有限元法,比較了均質(zhì)波阻板和蜂窩波阻板的隔振效果,結(jié)論表明蜂窩波阻板的隔振效果更好,但均質(zhì)WIB在10 Hz以內(nèi)具有更好的隔振效果。Ma等[18-19]分析了移動荷載作用下彈性地基及飽和土地基中梯度非均勻波阻板的隔振效果。田抒平等[20]基于二維半解析邊界元法,研究了Duxseal材料在二維均質(zhì)彈性地基中的主動隔振效果。隨后,高盟等[21]提出了在WIB中填充Duxseal材料進(jìn)行聯(lián)合隔振的方法,試驗結(jié)果表明,DXWIB可以提高減振頻寬,尤其在5~70 Hz范圍內(nèi)均能取得較好的隔振效果。盡管上述研究表明,非均質(zhì)波阻板的隔振效果能夠提高WIB的隔振性能,改善WIB僅對低頻隔振有效的不足,但這些研究大多傾向于將地基土視為單相彈性或兩相飽和介質(zhì)以簡化復(fù)雜的動力學(xué)問題,難以模擬實際情況。
在實際工程中,非飽和土是土體在自然界中更為普遍的存在狀態(tài),飽和度的變化對波在土體中的傳播特性有顯著的影響。因此,針對非飽和土地基的振動控制問題需要進(jìn)一步研究。Shu等[22-24]分別研究了非飽和土地基中P1波通過單層和復(fù)合多層WIB的傳播特性,結(jié)果表明,WIB材料的密度和剪切模量對透、反射系數(shù)影響顯著。Jiang等[25]研究了S波入射下非飽和土地基中單層WIB的隔振性能,結(jié)果表明,土體飽和度變化對隔振效果影響顯著,WIB的隔振效果隨飽和度的增大而提高。此外,根據(jù)文獻(xiàn)[26]可知,多層薄層介質(zhì)交界面的差異性越大,其振動波透\,反射效應(yīng)越顯著。因此,本文提出了雙層波阻板作為隔振屏障的新型隔振體系。基于非飽和多孔介質(zhì)與單相彈性介質(zhì)中波的傳播理論及Snell定理,研究了S波入射下非飽和土地基中雙層波阻板的隔振性能;推導(dǎo)獲得了S波從基巖中入射到非飽和土場地后通過雙層波阻板后地表位移的解析解;通過數(shù)值算例,分析了密度和剪切模量對雙層WIB隔振效果的影響規(guī)律,比較了非飽和土地基中設(shè)置雙層WIB和單層WIB的隔振效果;分析了入射角度、入射頻率、飽和度、WIB的埋深、厚度等各種參數(shù)對非飽和土地基中雙層WIB隔振效果的影響規(guī)律,進(jìn)而為非飽和土地基中雙層WIB隔振的應(yīng)用提供參考。
1 數(shù)學(xué)模型
考慮在水平半無限基巖層上覆蓋一層厚度為H的非飽和土層,土中設(shè)置一定厚度的雙層波阻板,假設(shè)頻率為ω的入射S波以任意角度φ入射,其傳播示意圖如圖1所示。
4 數(shù)值分析
4.1 數(shù)值驗證
由于S波從基巖入射,經(jīng)過多個不同介質(zhì)交界面時其透、反射問題較為復(fù)雜,故將非飽和土地基中雙層波阻板退化,選擇Li等[32]研究的S波入射下非飽和土層-基巖體系的地面運動來驗證本文解的準(zhǔn)確性。取與文獻(xiàn)[32]一致的物理力學(xué)參數(shù),圖2
給出了S波入射下無量綱頻率ω/ω1=1.0時地表豎向位移放大系數(shù)隨入射角的變化曲線。從圖2可以看出,本文與文獻(xiàn)[32]的解有很好的一致性,驗證了本文方法的有效性。
4.2 雙層WIB材料參數(shù)對隔振效果的影響規(guī)律
本節(jié)采用MATLAB程序中的數(shù)值算例分別分析了雙層WIB的隔振效果受入射角度、入射波頻率、飽和度、阻抗比以及非飽和土地基中雙層WIB埋深和厚度的影響情況。具體步驟如下:
非飽和土地基的物理力學(xué)參數(shù)選自文獻(xiàn)[33],土層的材料參數(shù)如表1所列,基巖的材料參數(shù)如表2所列。
由于飽和度的變化將引起土一系列物理性質(zhì)的改變,在土的各物理參數(shù)中,隨飽和度變化較大且對地基動位移的影響也很大的物理量主要有剪切模量、滲透系數(shù)和有效應(yīng)力等參數(shù)[34-35]。因此,本文取內(nèi)摩擦角φ′=21°,并采用式(26)[34]對動剪切模量進(jìn)行修正:
μ=μs+2 050αln[(Se)-2-1+(Se)-1](tanφ′)(26)
式中:Se為有效飽和度。
當(dāng)入射S波從基巖入射到非飽和土?xí)r,存在入射臨界角φcr,其中φcr=arcsin(viS/vrP)≈32.3°。因此,在后文討論中,取入射角的變化范圍為0°~30°。
基于多層薄層介質(zhì)交界面差異性越大,彈性波振幅衰減越顯著的特性[26],本文將波阻板設(shè)計成由不同薄層材質(zhì)組合而成的“雙層板”隔振體系,重點討論波阻板的密度ρ和剪切模量μ的變化對雙層波阻板隔振效果的影響。選出最佳隔振效果對應(yīng)的密度和剪切模量,進(jìn)而獲得雙層板隔振體系設(shè)計的材料參數(shù)。討論波阻板密度有以下3種情況:
Case1:ρw1=ρw2=2 000 kg/m3;
Case2:ρw1=2 000 kg/m3lt;ρw2=2 700 kg/m3;
Case3:ρw1=2 700 kg/m3gt;ρw2=2 000 kg/m3。
取土層總厚度H=20 m,飽和度Sr=0.8,入射頻率ω=10 Hz,雙層波阻板厚度Hw1=Hw2=0.5 m,埋深H2=1.0 m,入射角φ=5°。圖4分別繪出了3種不同密度情況下地表豎向位移隨WIB1和WIB2的剪切模量同時變化的三維曲線。通過數(shù)值計算可分別求得3種情形下地表豎向位移最小值及與之對應(yīng)的剪切模量為:
Case1:當(dāng)ρw1=ρw2時,μw1=14.5×1013 Pa,μw2=19.9×1013 Pa,地表豎向位移最小值uz=1.23×10-7 m;
Case2:當(dāng)ρw1lt;ρw2時,μw1=19.6×1013 Pa,μw2=14.9×1013 Pa,地表豎向位移最小值uz=1.11×10-8 m;
Case3:當(dāng)ρw1gt;ρw2時,μw1=19.8×1013 Pa,μw2=14.7×1013 Pa,地表豎向位移最小值uz=1.73×10-9 m。
根據(jù)以上3種情況的計算結(jié)果可以看出,在本文考慮的剪切模量范圍內(nèi),當(dāng)ρw1=2 700 kg/m3gt;ρw2=2 000 kg/m3時,雙層波阻板取得最優(yōu)的隔振效果。根據(jù)文獻(xiàn)[25]可知,非飽和土地基中設(shè)置WIB后,通過增大WIB的剪切模量可以提高其隔振效果,但隨WIB剪切模量繼續(xù)增加,提高的幅度逐漸降低,且在實際工程中無限制的選擇剪切模量更大的材料有較大的難度。因此,可通過設(shè)計雙層波阻板層間的剪切模量和密度以達(dá)到隔振屏障的最優(yōu)隔振效果。
4.3 雙層WIB最優(yōu)隔振參數(shù)下隔振性能分析
取雙層波阻板最優(yōu)隔振效果時的材料參數(shù)(密度ρw1=2 700 kg/m3;ρw2=2 000 kg/m3;剪切模量μw1=19.8×1013 Pa;μw2=14.7×1013 Pa),對雙層板的隔振性能規(guī)律進(jìn)行分析。本文采用Woods[36]提出的振幅衰減系數(shù)AR來衡量雙層波阻板的隔振效果,其值越小,效果越好。表達(dá)式為:
AR=uu* (27)
式中:u為設(shè)置波阻板隔振屏障后的地表位移;u*為自由場地的地表位移。
4.3.1 單層WIB和雙層WIB的隔振性能對比
為了對比相同厚度下單層和雙層WIB的隔振效果隨入射角變化的影響規(guī)律,均取埋深H2=1.0 m,飽和度Sr=0.8,入射頻率ω=10 Hz,雙層WIB的密度為ρw1=2 700 kg/m3,ρw2=2 000 kg/m3,厚度Hw1=Hw2=0.5 m,剪切模量為μw1=19.8×1013 Pa,μw2=14.7×1013 Pa;單層波阻板的兩種材料與雙層波阻板中的每層材料參數(shù)對應(yīng),即單層板厚度均取1.0 m的前提下,(1)ρw=2 000 kg/m3,μw=14.7×1013 Pa;(2)ρw=2 700 kg/m3,μw=19.8×1013 Pa。圖5繪出了非飽和土地基中分別設(shè)置相同厚度的單層和雙層WIB后,地表豎直位移振幅衰減系數(shù)隨入射角度的變化曲線。從圖5中可以明顯看出,雙層WIB的隔振效果均優(yōu)于任一材料組成的單層均質(zhì)WIB。其中,當(dāng)入射角為4°~29°時雙層WIB隔振有效,此范圍內(nèi)的平均地表豎向位移振幅衰減系數(shù)AR=0.31;當(dāng)入射角為10°~28°時,ρw=2 000 kg/m3的單層WIB隔振有效,此范圍內(nèi)的平均地表豎向位移振幅衰減系數(shù)AR=0.61;當(dāng)入射角為9°~28°時,ρw=2 700 kg/m3的單層WIB隔振有效,此范圍內(nèi)的平均地表豎向位移振幅衰減系數(shù)AR=0.54。由此可知,相同厚度的隔振體系中雙層板比單層板隔振有效的角度范圍更大、效果更好,其隔振效率比ρw=2 000 kg/m3的單層板隔振體系提高了49.18%,比ρw=2 700 kg/m3的單層板隔振體系提高了42.59%。
4.3.2 飽和度對雙層WIB隔振性能的影響
為了研究飽和度對非飽和土地基中雙層波阻板隔振性能的影響規(guī)律,圖6繪出了H=20 m,雙層波阻板的厚度Hw1=Hw2=0.5 m,埋深H2=1.0 m,入射頻率ω=10 Hz時,其他參數(shù)如表1所列,飽和度Sr=0.2\,0.4\,0.6和0.8變化下非飽和土地基中設(shè)置雙層波阻板后,地表豎向位移振幅衰減系數(shù)隨入射角度變化的曲線。從圖6中可以看出,地表豎向位移振幅衰減系數(shù)隨入射角的增大先降低到最小值后又非線性增大,即雙層板屏障的隔振效果隨入射角增大先提高后降低。其中,當(dāng)S波入射角為5°時,地表豎向位移振幅衰減系數(shù)AR均接近于0。由圖6可知,Sr=0.2的平均振幅衰減系數(shù)AR=0.27;Sr=0.4的平均振幅衰減系數(shù)AR=0.20,隔振效率比Sr=0.2時提高了25.93%;Sr=0.6的平均振幅衰減系數(shù)AR=0.17,隔振效率比Sr=0.4時提高了15%;Sr=0.8的平均振幅衰減系數(shù)AR=0.31,
隔振效率比Sr=0.6時降低了45.16%。因此,隨著飽和度增大,雙層板隔振效果先提高后降低。
4.3.3 入射波頻率對雙層WIB隔振性能的影響
城市常見的環(huán)境振動中,強夯引發(fā)的振動主頻集中在10~20 Hz,高架引發(fā)的振動集中在20~25 Hz,地鐵引發(fā)的振動頻率則較高,集中在50~80 Hz,總體上環(huán)境振動的頻率一般不超過100 Hz。因此,本文取上述環(huán)境振動主頻率來討論非飽和土地基中雙層波阻板的隔振效果。圖7繪出了H=20 m,埋深H2=1.0 m,飽和度Sr=0.8,雙層波阻板厚度Hw1=Hw2=0.5 m,其他參數(shù)如表1所列,入射頻率ω=10 Hz\,25 Hz\,50 Hz\,100 Hz變化下非飽和土地基中設(shè)置雙層波阻板后,地表豎向位移振幅衰減系數(shù)隨入射角度的變化曲線。從圖7可以看出,ω=25 Hz的平均振幅衰減系數(shù)AR=0.49,隔振效率比ω=10 Hz時降低了37.43%;ω=50 Hz的平均振幅衰減系數(shù)AR=0.62,隔振效率比ω=25 Hz時降低了20.97%;ω=100 Hz的平均振幅衰減系數(shù)AR=0.29,隔振效率比ω=50 Hz提高了53.23%。由此可見,隨著頻率的增大,雙層WIB的隔振效果先降低后提高。
4.3.4 埋深對雙層WIB隔振性能的影響
為了研究雙層波阻板的埋深對非飽和土地基中雙層板隔振性能的影響規(guī)律,圖8繪出了H=20 m,雙層板厚度Hw1=Hw2=0.5 m,飽和度Sr=0.8,入射頻率ω=10 Hz,其他參數(shù)如表1所列,埋深H2=1.0 m\,2.0 m和3.0 m變化下非飽和土地基中設(shè)置雙層波阻板后,地表豎向位移振幅衰減系數(shù)隨入射角度的變化曲線。由圖8可知,H2=2.0 m的平均振幅衰減系數(shù)AR=0.23,隔振效率比H2=1.0 m時提高了25.81%;H2=3.0 m的平均振幅衰減系數(shù)AR=0.22,隔振效率比H2=2.0 m時提高了4.35%。因此,隨波阻板埋深增大,雙層板屏障隔振有效的角度范圍逐漸增大,其隔振效果逐漸提高,但提高的幅度有所降低,且WIB埋深的變化沒有改變AR取到最小值對應(yīng)的S波入射角。
4.3.5 厚度對雙層WIB隔振性能的影響
為了研究雙層波阻板的厚度對非飽和土地基中雙層板隔振性能的影響規(guī)律,圖9繪出了H=20 m,雙層板的埋深H2=1.0 m,飽和度Sr=0.8,入射頻率ω=10 Hz,其他參數(shù)如表1所列,雙層板的厚度Hw1=Hw2=0.3 m\,0.5 m\,0.7 m和0.9 m變化下非飽和土地基中設(shè)置雙層波阻板后,地表豎向位移振幅衰減系數(shù)隨入射角度的變化曲線。由圖9可知,Hw1=Hw2=0.3 m的平均振幅衰減系數(shù)AR=0.34,Hw1=Hw2=0.5 m的隔振效率比Hw1=Hw2=0.3 m時提高了8.82%;Hw1=Hw2=0.7 m的平均振幅衰減系數(shù)AR=0.29,隔振效率比Hw1=Hw2=0.5 m時提高了6.45%;Hw1=Hw2=0.9 m的平均振幅衰減系數(shù)AR=0.28,隔振效率比Hw1=Hw2=0.7 m時提高了3.45%。因此,隨波阻板厚度增大,雙層板屏障隔振有效的角度范圍逐漸增大,其隔振效果逐漸提高。同時還可發(fā)現(xiàn),隨著波阻板厚度的增大,取得最佳隔振效果對應(yīng)的S波入射角逐漸減小。
5 結(jié)語
本文基于非飽和多孔介質(zhì)與單相彈性介質(zhì)中波的傳播理論及Snell定理,研究了雙層波阻板在與實際更相符合的非飽和土地基中的隔振性能。比較了雙層波阻板和單層波阻板隔振性能,分析了入射頻率、飽和度、WIB的埋深、厚度等各種物理力學(xué)參數(shù)對非飽和土地基中雙層波阻板隔振效果的影響規(guī)律,得出如下結(jié)論:
(1) 雙層板的材料參數(shù)差異性對雙層波阻板隔振屏障的隔振效果影響顯著,相同厚度下雙層波阻板的隔振效率比相同材質(zhì)的單層波阻板分別提高了49.18%和42.59%。通過設(shè)計雙層波阻板的密度和剪切模量可獲得雙層波阻板的最優(yōu)隔振效果。就本文算例而言,當(dāng)S波入射角為5°時隔振效果最佳。
(2) 雙層波阻板隔振屏障能有效隔離城市中常見的環(huán)境振動。隨著入射頻率增加,雙層波阻板的隔振效果先降低后提高,ω=25 Hz的隔振效率比ω=10 Hz降低了37.43%;ω=50 Hz的隔振效率比ω=25 Hz降低了20.97%;ω=100 Hz的隔振效率比ω=50 Hz提高了53.23%。
(3) 雙層波阻板的隔振效果隨飽和度的增大先提高后降低;增加波阻板的厚度和埋深均可以擴(kuò)大隔振有效的S波入射角度范圍,也可以提高其隔振效果,但提高的幅度逐漸降低;隨S波入射角度增大,雙層波阻板的隔振效果先提高到最佳隔振效果后非線性降低。
參考文獻(xiàn)(References)
[1] 劉中憲,王少杰.非連續(xù)群樁屏障對平面P、SV波的隔離效應(yīng):二維寬頻帶間接邊界積分方程法模擬[J].巖土力學(xué),2016,37(4):1195-1207.
LIU Zhongxian,WANG Shaojie.Isolation effect of discontinuous pile-group barriers on plane P and SV waves:Simulation based on 2D broadband indirect boundary integration equation method[J].Rock and Soil Mechanics,2016,37(4):1195-1207.
[2] 徐平,周新民,夏唐代.應(yīng)用屏障進(jìn)行被動隔振的研究綜述[J].地震工程學(xué)報,2015,37(1):88-93.
XU Ping,ZHOU Xinmin,XIA Tangdai.Review on passive vibration isolation using barriers[J].China Earthquake Engineering Journal,2015,37(1):88-93.
[3] 巴振寧,劉世朋,吳孟桃,等.飽和土中周期排列管樁對平面SV波隔振的解析求解[J].巖土力學(xué),2021,42(3):627-637.
BA Zhenning,LIU Shipeng,WU Mengtao,et al.Analytical solution for isolation effect of plane SV waves by pipe piles with periodic arrangement in saturated soil[J].Rock and Soil Mechanics,2021,42(3):627-637.
[4] 姜廣州,王洋,張沖沖,等.層狀土中雙排環(huán)形排列樁隔振效果的研究[J].鐵道科學(xué)與工程學(xué)報,2021,18(4):918-925.
JIANG Guangzhou,WANG Yang,ZHANG Chongchong,et al.Study on vibration isolation effect of double rows of annular piles in layered soil[J].Journal of Railway Science and Engineering,2021,18(4):918-925.
[5] 周鳳璽,梁玉旺,劉佳.多空溝對彈性波的散射及隔振性能分析:SH波入射[J].振動與沖擊,2021,40(24):263-268.
ZHOU Fengxi,LIANG Yuwang,LIU Jia.Analysis of elastic wave scattering and vibration isolation performance of multiple open trenches:SH incident[J].Journal of Vibration and Shock,2021,40(24):263-268.
[6] 巴振寧,劉世朋,吳孟桃,等.周期分布樁體對平面SH波隔振效應(yīng)的解析求解[J].巖土力學(xué),2020,41(9):2861-2868.
BA Zhenning,LIU Shipeng,WU Mengtao,et al.Analytical solution for isolation effect of plane SH waves by periodically distributed piles[J].Rock and Soil Mechanics,2020,41(9):2861-2868.
[7] CHOUW N,LE R,SCHMID G.An approach to reduce foundation vibrations and soil waves using dynamic transmitting behavior of a soil layer[J].Bauingenieur,1991,66(1):215-221.
[8] CHOUW N,LE R,SCHMID G.Propagation of vibration in a soil layer over bedrock[J].Engineering Analysis with Boundary Elements,1991,8(3):125-131.
[9] SCHMID G,CHOUW N,LE R.L.Shielding of structures from soil vibrations[C]//Proceedings of the Fifth International Conference on Soil Dynamic and Earthquake Engineering.Southampton:Computational Mechanics Publications,1991:651-662.
[10] YANG Y B,HUNG H H.A parametric study of wave barriers for reduction of train-induced vibrations[J].International Journal for Numerical Methods in Engineering,1997,40(20):3729-3747.
[11] HUNG H H,YANG Y B,CHANG D W.Wave barriers for reduction of train-induced vibrations in soils[J].Journal of Geotechnical and Geoenvironmental Engineering,2004,130(12):1283-1291.
[12] PEPLOW A T,JONES C,PETYT M.Vibration transmission in a layered ground with a wave impedance block[M]//Ground Dynamics and Man-made Processes:Prediction,Design and Management.London:Thomas Telford Publishing,1998:57-67.
[13] GAO G Y,CHEN J,GU X Q,et al.Numerical study on the active vibration isolation by wave impeding block in saturated soils under vertical loading[J].Soil Dynamics and Earthquake Engineering,2017,93:99-112.
[14] GAO G Y,ZHANG Q W,CHEN J,et al.Field experiments and numerical analysis on the ground vibration isolation of wave impeding block under horizontal and rocking coupled excitations[J].Soil Dynamics and Earthquake Engineering,2018,115:507-512.
[15] THOMPSON D J,JIANG J,TOWARD M G R,et al.Mitigation of railway-induced vibration by using subgrade stiffening[J].Soil Dynamics and Earthquake Engineering,2015,79:89-103.
[16] 謝偉平,高俊濤,毛云.WIB用于地鐵引發(fā)低頻振動的減振分析[J].華中科技大學(xué)學(xué)報(城市科學(xué)版),2009,26(2):1-4.
XIE Weiping,GAO Juntao,MAO Yun.WIB for mitigation analysis of subway-induced low-frequency vibration[J].Journal of Civil Engineering and Management,2009,26(2):1-4.
[17] 李志江,何锃,譚燕,等.HWIB用于高速鐵路引發(fā)低頻振動的隔振分析[J].華中科技大學(xué)學(xué)報(自然科學(xué)版),2011,39(3):34-38.
LI Zhijiang,HE Zeng,TAN Yan,et al.Isolation analysis of low-frequency vibration from high speed railways by using HWIB[J].Journal of Huazhong University of Science and Technology (Natural Science Edition),2011,39(3):34-38.
[18] MA Q,ZHOU F X,ZHANG W Y.Vibration isolation of saturated foundations by functionally graded wave impeding block under a moving load[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2019,41(2):108.
[19] 馬強,周鳳璽,劉杰.梯度波阻板的地基振動控制研究[J].力學(xué)學(xué)報,2017,49(6):1360-1369.
MA Qiang,ZHOU Fengxi,LIU Jie.Analysis of ground vibration control by graded wave impeding block[J].Chinese Journal of Theoretical and Applied Mechanics,2017,49(6):1360-1369.
[20] 田抒平,高盟,王瀅,等.二維均質(zhì)彈性地基Duxseal材料主動隔振研究[J].振動工程學(xué)報,2019,32(4):701-711.
TIAN Shuping,GAO Meng,WANG Ying,et al.Two dimensional analysis of Duxseal material as active vibration isolation in homogeneous elastic foundation[J].Journal of Vibration Engineering,2019,32(4):701-711.
[21] 高盟,張致松,王崇革,等.豎向激振力下WIB-Duxseal聯(lián)合隔振試驗研究[J].巖土力學(xué),2021,42(2):537-546.
GAO Meng,ZHANG Zhisong,WANG Chongge,et al.Field test on vibration isolation performance by WIB-Duxseal under vertical excitation[J].Rock and Soil Mechanics,2021,42(2):537-546.
[22] SHU J H,MA Q.Study the propagation characteristics of P1-wave passing through composite multilayer wave impeding block in unsaturated soil[J].The European Physical Journal Plus,2022,137(4):503.
[23] 舒進(jìn)輝,馬強,周鳳璽,等.非飽和土地基中P1波通過波阻板的傳播特性研究[J].巖土力學(xué),2022,43(4):1135-1146.
SHU Jinhui,MA Qiang,ZHOU Fengxi,et al.Propagation characteristics of P1 wave passing through wave impeding block in unsaturated soil[J].Rock and Soil Mechanics,2022,43(4):1135-1146.
[24] 舒進(jìn)輝,馬強,張吾渝.非飽和土地基中P1波通過復(fù)合多層波阻板的傳播特性研究[J].振動工程學(xué)報,2023,36(2):445-457.
SHU Jinhui,MA Qiang,ZHANG Wuyu.Propagation behavior of P1-wave passing through composite multilayer wave impeding block in unsaturated soil[J].Journal of Vibration Engineering,2023,36(2):445-457.
[25] JIANG Y,MA Q.Study on vibration isolation effect of wave impeding block in unsaturated soil under S-wave incidence[J].Acta Mechanica,2022,233(10):4119-4139.
[26] 孫成禹,李振春.地震波動力學(xué)基礎(chǔ)[M].北京:石油工業(yè)出版社,2011.
SUN Chengyu,LI Zhenchun.Foundation of seismic wave dynamics[M].Beijing:Petroleum Industry Press,2011.
[27] CHEN W Y,XIA T D,HU W T.A mixture theory analysis for the surface-wave propagation in an unsaturated porous medium[J].International Journal of Solids and Structures,2011,48(16-17):2402-2412.
[28] WEI C F,MURALEETHARAN K K.A continuum theory of porous media saturated by multiple immiscible fluids:I. Linear poroelasticity[J].International Journal of Engineering Science,2002,40(16):1807-1833.
[29] BORJA R I.On the mechanical energy and effective stress in saturated and unsaturated porous continua[J].International Journal of Solids and Structures,2006,43(6):1764-1786.
[30] DULLIEN F A L.Porous media:fluid transport and pore structure[M].2nd ed.San Diego:Academic Press,1992.
[31] VAN GENUCHTEN M T.A closed-form equation for predicting the hydraulic conductivity of unsaturated soils1[J].Soil Science Society of America Journal,1980,44(5):892.
[32] LI W H,ZHENG J,TRIFUNAC M D.Saturation effects on ground motion of unsaturated soil layer-bedrock system excited by plane P and SV waves[J].Soil Dynamics and Earthquake Engineering,2018,110:159-172.
[33] 陳煒昀,夏唐代,陳偉,等.平面P波在彈性介質(zhì)和非飽和多孔彈性介質(zhì)分界面上的傳播[J].應(yīng)用數(shù)學(xué)和力學(xué),2012,33(7):781-795.
CHEN Weiyun,XIA Tangdai,CHEN Wei,et al.Propagation of plane P-waves at the interface between an elastic solid and an unsaturated poroelastic medium[J].Applied Mathematics and Mechanics,2012,33(7):781-795.
[34] 徐明江,魏德敏.非飽和土地基的三維非軸對稱動力響應(yīng)[J].工程力學(xué),2011,28(3):78-85.
XU Mingjiang,WEI Demin.3D non-axisymmetrical dynamic response of unsaturated soils[J].Engineering Mechanics,2011,28(3):78-85.
[35] LU Z,F(xiàn)ANG R,YAO H L,et al.Dynamic responses of unsaturated half-space soil to a moving harmonic rectangular load[J].International Journal for Numerical and Analytical Methods in Geomechanics,2018,42(9):1057-1077.
[36] WOODS R D.Screening of surface wave in soils[J].Journal of the Soil Mechanics and Foundations Division,1968,94(4):951-979.
(本文編輯:任 棟)