摘要: 采用光譜分析和計(jì)算機(jī)模擬技術(shù)研究金雞菊苷與CYP3A4/CYP2D6的結(jié)合特性和穩(wěn)定性. 結(jié)果表明: 金雞菊苷以靜態(tài)猝滅為主、 "動(dòng)態(tài)猝滅為輔的方式猝滅細(xì)胞色素P450同工酶(CYPs)的固有熒光; 金雞菊苷與CYP3A4的結(jié)合力大于與CYP2D6的結(jié)合力; "金雞菊苷與CYPs發(fā)生相互作用形成復(fù)合物; 金雞菊苷與CYPs結(jié)合, 導(dǎo)致CYPs二級(jí)結(jié)構(gòu)發(fā)生改變; "金雞菊苷主要通過氫鍵和范德華力與CYPs結(jié)合; 金雞菊苷與兩種CYPs形成的復(fù)合物穩(wěn)定.
關(guān)鍵詞: "金雞菊苷; 細(xì)胞色素P3A4; 細(xì)胞色素P2D6; 結(jié)合特性; 穩(wěn)定性
中圖分類號(hào): O65""文獻(xiàn)標(biāo)志碼: A""文章編號(hào): 1671-5489(2024)06-1491-08
Binding Characteristics and Stability of Coreopsin with CYP3A4/CYP2D6
LI Li, "LI Yuan, TAO Yanzhou, "LIAN Di, CUI Jingjing, "DU Yutong
(College of Chemistry, "Changchun Normal University, "Changchun 130032, "China)
Abstract: """The binding characteristics and stability of coreopsin with CYP3A4/CYP2D6 was studied by "using spectroscopy analysis and computer simulation techniques. The results show that the intrinsic fluorescence of cytochrome P450 proteins (CYPs) is quenched mainly by static quenching and supplemented by dynamic quenching. The binding capacity of coreopsin with CYP3A4 is greater than that of CYP2D6. The coreopsin interacts with "CYPs to form a complex. The binding of coreopsin to CYPs leads to changes in "the secondary structure of CYPs. The coreopsin mainly binds to CYPs through hydrogen bonds and van der Waals forces. The "complex formed by coreopsin and two types of CYPs is stable.
Keywords: "coreopsin; "cytochrome P3A4; "cytochrome P2D6; binding characteristics; """stability
0"引"言
CYP3A4和CYP2D6為CYP450代謝酶中兩種重要亞型酶, 分別參與50%和25%以上的臨床藥物代謝[1-2]. 研究已證明由同一種細(xì)胞色素P450同工酶(CYP)代謝的兩種以上藥物同時(shí)服用, 可導(dǎo)致藥物相互作用, 增加聯(lián)合用藥風(fēng)險(xiǎn)\一些黃抑制CYP3A4或CYP2D6活性而導(dǎo)致相互作用的研究已引起人們廣泛關(guān)注、兩色金雞菊具有預(yù)防糖尿病、降血壓、抗氧化和抗炎等多種生物活性,其主要活性成分為黃酮,金雞菊背(圖1)是一種來源于兩色金雞菊的黃酮類成分,研究金雞菊苷與CYP3A4/CYP2D6相互作用對(duì)預(yù)知其與某些藥物是否發(fā)生相互作用具有重要意義.
本文通過光譜分析CYP3A4/CYP2D6與金雞菊苷結(jié)合前后的特征光譜及二級(jí)結(jié)構(gòu)的變化. 利用計(jì)算機(jī)模擬金雞菊苷與兩種CYPs最佳結(jié)合模式, 及其形成復(fù)合物的穩(wěn)定性. 提示金雞菊苷與一些由CYP3A4和CYP2D6負(fù)責(zé)代謝的藥物同時(shí)服用可增加藥物相互作用風(fēng)險(xiǎn).
1"實(shí)"驗(yàn)
1.1"材料與儀器
CYP3A4和CYP2D6購于美國(guó)Sigma公司, 金雞菊苷購于寶雞辰光生物科技有限公司, 其他試劑均為國(guó)產(chǎn)分析純?cè)噭?
F-7000型熒光光譜儀(日本島津公司), MOS-500型圓二色譜儀(法國(guó)Biologic公司), Cary300型紫外-可見分光光度計(jì)(美國(guó)安捷倫公司).
1.2"方"法
1.2.1"熒光光譜
將金雞菊苷滴入CYPs(11 μmol/L)中, 使金雞菊苷終濃度分別為0,4.6,13.79,22.96,32.12,41.25,50.37 μmol/L. 分別于298,303,310 K孵育30 min. 熒光測(cè)定條件: 激發(fā)和發(fā)射狹縫寬度為5 nm, 激發(fā)波長(zhǎng)為280 nm, 波長(zhǎng)為295~450 nm. 于298 K, Δλ=15,60 nm測(cè)定同步熒光光譜, 樣品濃度與熒光光譜的樣品濃度相同. 掃描范圍為220~400 nm, 激發(fā)波長(zhǎng)為210~350 nm, 增量為2 nm. 測(cè)量三維熒光光譜時(shí)的CYPs和金雞菊苷濃度分別為11,50.37 μmol/L.
1.2.2"紫外光譜
將金雞菊苷加入CYPs(11 μmol/L), 得到與1.2.1節(jié)中相同濃度的金雞菊苷溶液, 進(jìn)行紫外光譜測(cè)試, 以相同濃度的金雞菊苷為空白. 紫外光譜的波長(zhǎng)為200~400 nm, 狹縫寬度為1 nm.
1.2.3"圓二色光譜
CYPs濃度為11 μmol/L, 分別配制n(金雞菊苷)∶n(CYPs)=0∶1,4.6∶1,9.2∶1的溶液用于測(cè)定CD光譜, 采用Dichroweb計(jì)算CYPs二級(jí)結(jié)構(gòu)變化.
1.2.4"計(jì)算機(jī)模擬
從PDB(protein data bank)下載CYP3A4(1TQN)和CYP2D6(3QM4)模板, "在King Draw中優(yōu)化金雞菊苷3D結(jié)構(gòu), 利用Autodock 4.0對(duì)接, 對(duì)接盒子尺寸為5.0 nm×5.0 nm×5.0 nm, 格框間距為0.037 5 nm, 對(duì)接次數(shù)為100次. 采用PyMOL(1.7.2)處理結(jié)果.
利用 Gromacs 2020.6進(jìn)行動(dòng)力學(xué)模擬. 選擇 AMBER99SB-ILDN 和Gaff作為CYPs和金雞菊苷力場(chǎng). 建立 TIP3P模型, 建立水盒子, 添加Na+平衡體系; 將分子對(duì)接結(jié)果作為初始結(jié)構(gòu), 采用最快下降法進(jìn)行最大步數(shù)(50 000步)的能量最小化. 宏觀正則系綜(NVT)和等溫等壓(NPT)平衡采用優(yōu)化體系步長(zhǎng)為2 fs, 總時(shí)長(zhǎng)為100 ps. 模擬溫度為298 K, 模擬時(shí)間為100 ns, 時(shí)間間隔為2 fs. 通過均方根偏差(RMSD)、 "均方根浮動(dòng)(RMSF)和回旋半徑(Rg)評(píng)估穩(wěn)定性.
2"結(jié)果分析與討論
2.1"熒光猝滅機(jī)理
CYP3A4-金雞菊苷和CYP2D6-金雞菊苷的熒光光譜如圖2所示. 由圖2可見, 兩種CYPs在338 nm附近出現(xiàn)強(qiáng)熒光發(fā)射峰, 其中金雞菊苷的熒光強(qiáng)度很低, 可忽略. 加入金雞菊苷降低了CYPs的熒光強(qiáng)度, 并導(dǎo)致CYPs的峰藍(lán)移, 表明金雞菊苷與CYPs結(jié)合可有效猝滅CYPs內(nèi)源性熒光, 使發(fā)射基團(tuán)處于更疏水環(huán)境[8]. CYP3A4-金雞菊苷和CYP2D6-金雞菊苷的Stern-Volmer曲線如圖3所示. 由圖3可見, 金雞菊苷的濃度c與F0/F的曲線彎向y軸, 并向上伸展, 表明金雞菊苷對(duì)CYPs的猝滅機(jī)制是混合型猝滅. 利用
F0F=eKsvc,(1)
F0F=1+Ksvc=1+Kqτ0c(2)
計(jì)算Ksv和Kq, 結(jié)果列于表1, "其中c為金雞菊苷濃度, F0和F分別表示CYPs和金雞菊苷-CYPs的熒光強(qiáng)度, Ksv和Kq分別表示Stern-Volmer猝滅常數(shù)和猝滅速率常數(shù), τ0 表示CYPs平均壽命(τ0=10-8"s). 由表1可見, Ksv值隨溫度的升高而降低, "Kq高于最大動(dòng)態(tài)猝滅常數(shù)(2×1010"L/(mols)), 表明反應(yīng)體系猝滅方式主要為靜態(tài)猝滅[9].
曲線a~g為c(金雞菊苷)=0,4.6,13.79,22.96,32.12,41.25,50.37 μmol/L; 曲線h為c(CYPs)=11 μmol/L.
CYP3A4-金雞菊苷和CYP2D6-金雞菊苷的Benesi-Hildebrand曲線和Van’t Hoff圖如圖4所示. 由圖4可見, "1/(F-F0)與濃度的倒數(shù)呈線性相關(guān), 與濃度平方的倒數(shù)呈非線性, 說明CYPs-金雞菊苷的化學(xué)計(jì)量比是1∶1.
根據(jù)
1F-F0=1F1-F0+1KbF1-F0cn, (3)
ln Kb=-ΔH0RT+ΔS0R,(4)
ΔG0= ΔH0-TΔS0=-RTln Kb(5)
計(jì)算結(jié)合常數(shù)、 反應(yīng)的Gibbs自由能變(ΔG0)、 焓變(ΔH0)和熵變(ΔS0), 計(jì)算結(jié)果列于表2. 其中, F1為金雞菊苷過量時(shí)CYPs的熒光強(qiáng)度, "Kb和n表示結(jié)合常數(shù)和結(jié)合位點(diǎn)數(shù), R為熱力學(xué)常數(shù), T為溫度(K). 由表2可見, "Kb值在104~105"L/mol之間, 表明金雞菊苷與CYPs間存在中等及較強(qiáng)的親和力. Kb值與溫度呈負(fù)相關(guān), 說明溫度升高, "CYPs-金雞菊苷復(fù)合物的穩(wěn)定性降低. CYP3A4-金雞菊苷強(qiáng)于CYP2D6-金雞菊苷的結(jié)合能力\
2.2"CYPs二級(jí)結(jié)構(gòu)變化
圖5為CYP3A4-金雞菊苷和CYP2D6-金雞菊苷的紫外光譜. "由圖5可見, 隨著金雞菊苷濃度的增大, 位于206 nm處的峰強(qiáng)度下降并伴隨明顯紅移, 位于258 nm處的峰未移動(dòng)但強(qiáng)度顯著增加. 兩個(gè)復(fù)合體系的紫外光譜的變化趨勢(shì)相似, "表明兩種CYPs-金雞菊苷復(fù)合物形成導(dǎo)致蛋白多肽鏈改變\
曲線a~g為c(金雞菊苷)=0,4.6,13.79,22.96,32.12,41.25,50.37 μmol/L.
酪氨酸(Tyr)和色氨酸(Trp)為蛋白主要熒光團(tuán), 同步熒光光譜在Δλ=15,60 nm處可監(jiān)測(cè)Tyr和Trp變化. 圖6為CYP3A4-金雞菊苷和CYP2D6-金雞菊苷的同步熒光光譜. 由圖6可見, 隨著金雞菊濃度的增大, 兩種CYPs的熒光強(qiáng)度有規(guī)律地降低. "Tyr和Trp發(fā)生微小藍(lán)移, 表明Tyr和Trp殘基暴露在親水性較低的環(huán)境中. 熒光猝滅比(RSFQ)分析表明, 金雞菊苷對(duì)CYPs熒光猝滅主要來自Trp的貢獻(xiàn)\FF0.(6)曲線a~g的c(金雞菊苷)=0,4.6,13.79,22.96,32.12,41.25,50.37 μmol/L.
CYP3A4,CYP3A4-金雞菊苷和CYP2D6,CYP2D6-金雞菊苷的三維熒光光譜如圖7所示. 由圖7可見, 金雞菊苷與CYPs結(jié)合后, 峰1的熒光強(qiáng)度顯著下降并出現(xiàn)微小藍(lán)移, 表明金雞菊苷導(dǎo)致Trp和Tyr微環(huán)境疏水性增強(qiáng). 峰2的熒光強(qiáng)度顯著下降并發(fā)生微小藍(lán)移, 表明金雞菊苷和CYPs結(jié)合導(dǎo)致酶肽鏈改變.
圖8為CYP3A4-金雞菊苷和CYP2D6-金雞菊苷的CD光譜. 由圖8可見, 在209,222 nm處有兩條負(fù)CD譜帶, 屬于α-螺旋典型特征, 兩條負(fù)帶強(qiáng)度隨金雞菊苷的加入而下降. CYPs-金雞菊苷的二級(jí)結(jié)構(gòu)變化列于表3. 由表3可見, 當(dāng)金雞菊苷比例增加時(shí), 兩種CYPs的α-螺旋變化明顯, 表明金雞菊苷主要通過增加α-螺旋改變CYPs構(gòu)象[13]
2.3"計(jì)算機(jī)模擬
根據(jù)最多親和構(gòu)象簇和最小能量選擇最佳對(duì)接模式, 結(jié)果如圖9所示. CYP3A4/CYP2D6-金雞菊苷對(duì)接能量分別為-32.65,-31.52 kJ/mol, 與熒光測(cè)量ΔG略有不同\由圖9可見, 金雞菊苷與CYP3A4中的ALA305 (0.255 nm )、 "SER312 (0.402 nm)和LEU483 (0.349,0.347,0.475 nm )形成5個(gè)氫鍵. 金雞菊苷與CYP2D6中的ALA209 (0.348 nm)和ALA209 (0.351 nm)形成2個(gè)氫鍵. 因?yàn)棣2(范德華能、 氫鍵能和脫溶劑自由能)大于ΔE3(靜電能), 表明兩種復(fù)合物主要通過氫鍵和范德華力形成[10]
圖10為CYP3A4-金雞菊苷和CYP2D6-金雞菊苷的模擬動(dòng)力學(xué)圖,由圖10可見,CYPs與金雞菊苷結(jié)合后,RMSD在0.1~0.3mm內(nèi)波動(dòng),表明金雞菊苷與CYPs形成穩(wěn)定復(fù)合物,RMSF可分析蛋白柔韌性和氨基酸運(yùn)動(dòng)變化、CYPs與金雞菊苷結(jié)合后,部分氨基酸殘基略高于游離CYPs的RMSF值,表明金雞菊增強(qiáng)了這些殘基的柔韌性,而部分殘基略小于游離CYPs的RMSF值,表明金雞菊苷使這些殘基的自由度降低,CYPs與金雞菊苷結(jié)合后,在0~100ns時(shí)間內(nèi),R值在一定范圍內(nèi)波動(dòng),當(dāng)復(fù)合物略大于游離CYPs的R,值時(shí),說明金雞菊使CYPs結(jié)構(gòu)變松數(shù):當(dāng)復(fù)合物略小子游離CYPs的R,值時(shí),說明金雞使CYPs結(jié)構(gòu)變得更緊密“,計(jì)算機(jī)模擬結(jié)果表明,加入金雞菊改變了CYPs的二級(jí)結(jié)構(gòu).
綜上所述, 金雞菊苷對(duì)CYPs表現(xiàn)出靜態(tài)猝滅為主、 動(dòng)態(tài)猝滅為輔的猝滅機(jī)制; "金雞菊苷與CYPs結(jié)合, 改變了CYPs的二級(jí)結(jié)構(gòu); 金雞菊苷通過氫鍵和范德華力與CYPs形成復(fù)合物, 復(fù)合物體系穩(wěn)定. 研究結(jié)果表明, 金雞菊苷與一些由CYP3A4/CYP2D6負(fù)責(zé)代謝的藥物同時(shí)服用可增加藥物相互作用風(fēng)險(xiǎn).
參考文獻(xiàn)
[1]"WILKINSON G R. Cytochrome P4503A (CYP3A) Metabolism: "Prediction of in vivo Activity in Humans[J]. Journal of Pharmacokinetics and Biopharmaceutics, "1996, "24(5): 475-490.
[2]"INGELMAN-SUNDBERG M. "Genetic Polymorphisms of Cytochrome P450 2D6 (CYP2D6): "Clinical Consequences, "Evolutionary Aspects and Functional Diversity[J]. The Pharmacogenomics Journal, "2005, "5(1): "6-13.
[3]"WANG Y R, "WANG C X, "WANG S H, "et al. Cytochrome P450-Based Drug-Drug Interactions of Vonoprazan in vitro and in vivo[J]. Frontiers in Pharmacology, "2020, "11: "53-62.
[4]"GUO Y, "CHEN Y, "TAN Z R, "et al. Repeated Administration of Berberine Inhibits Cytochromes P450 in Humans[J]. European Journal of Clinical Pharmacology, "2012, "68(2): "213-217.
[5]"NIU L F, "DING L N, "LU C Y, et al. Flavokawain A Inhibits Cytochrome P450 in vitro Metabolic and Inhibitory Investigations[J]. Journal of Ethnopharmacology, "2016, 191: "350-359.
[6]"姚新成, 田麗萍, 秦冬梅, 等. "兩色金雞菊化學(xué)成分及生物活性研究進(jìn)展[J]. 西北藥學(xué)雜志, "2014, "29(6): "655-658. (YAO X C, "TIAN L P, "QIN D M, "et al. Research Advances in the Chemical Constituents and Biological Activities of Corepsis tinctoria Nutt[J]. Northwest Journal of Pharmacy, "2014, "29(6): "655-658.)
[7]"姜保平, 許利嘉, 賈曉光, 等. 兩色金雞菊的化學(xué)成分和藥理作用研究進(jìn)展[J]. 現(xiàn)代藥物與臨床, 2014, 29(5): "567-573. (JIANG B P, "XU L J, "JIA X G, "et al.Research Progress on the Chemical Constituents and Pharmacological Activities of Coreopsis tinctoria [J]. Modern Drugs amp; Clinic, "2014, 29(5): "567-573.)
[8]"XIONG G Y, "GAO X Q, "WANG P, "et al. Comparative Study of Extraction Efficiency and Composition of Protein Recovered from Chicken Liver by Acid-Alkaline Treatment[J]. Process Biochemistry, "2016, "51(10): "1629-1635.
[9]"REN S C, "LI K K, "LIU Z L, "et al. Research on the Influences of Five Food-Borne Polyphenols on in vitro Slow Starch Digestion and the Mechanism of Action[J]. Journal of Agricultural and Food Chemistry, "2019, "67(31): "8617-8625.
[10]"衛(wèi)鶯. 有機(jī)錫抗癌化合物與CYP3A4代謝酶的相互作用[D]. 太原: "山西醫(yī)科大學(xué), "2017.
(WEI Y. Interaction of Organotin Anticancer Compounds with CYP3A4 Metabolic Enzymes[D]. Taiyuan: "Shanxi Medical University, "2017.)
[11]"ZHU M Q, "WANG L J, "WANG Y, "et al. Biointeractions of Herbicide Atrazine with Human Serum Albumin: "UV-Vis, "Fluorescence and Circular Dichroism Approaches[J]. International Journal of Environmental Research and Public Health, "2018, "15(1): "116-1-116-16.
[12]"METI M D, "XU Y, "XIE J F, "et al. Multi-spectroscopic Studies on the Interaction between Traditional Chinese Herb, "Helicid with Pepsin[J]. Molecular Biology Reports, "2018, "45(6): "1636-1646.
[13]"XU Y J, "DAI T T, "HUANG K C, "et al. Analyses on the Binding Interaction between Rice Glutelin and Conjugated Linoleic Acid by Multi-spectroscopy and Computational Docking Simulation[J]. Journal of Food Science and Technology, "2020, "57(3): "886-894.
[14]"ZENG H J, "HU G Z, "YOU J, "et al. Spectroscopic and Molecular Modeling Investigation on the Interactions between Hyaluronidase and Baicalein and Chrysin[J]. Process Biochemistry, "2015, "50(5): "738-745.
[15]"SHAO Y X, "ZHAO P, "LI Z, "et al. The Molecular Basis for the Inhibition of Human Cytochrome P450 1A2 by Oroxylin and Wogonin[J]. European Biophysics Journal, "2012, "41(3): "297-306.
[16]"BHARDWAJ P, "BISWAS G P, "MAHATA N, "et al. Exploration of Binding Mechanism of Triclosan towards Cancer Markers Using Molecular Docking and Molecular Dynamics[J]. Chemosphere, "2022, "293: "133550-1-133550-10.
[17]"PAUL S K, "SADDAM M, "RAHAMAN K A, "et al. Molecular Modeling, "Molecular Dynamics Simulation, "and Essential Dynamics Analysis of Grancalcin: "An Upregulated Biomarker in Experimental Autoimmune Encephalomyelitis Mice[J]. Heliyon, "2022, "8(10): "e11232-1-e11232-14.
[18]"WU X Q, "ZHANG G W, "HU M M, "et al. Molecular Characteristics of Gallocatechin Gallate Affecting Protein Glycation[J]. Food, Hydrocolloids, "2020, "105: "105782-1-105782-11.
[19]"ZHOU B J, "ZHOU H, "XU L N, "et al. An Insight into the Interaction between Indisulam and Human Serum Albumin: "Spectroscopic Method, "Computer Simulation and in vitro Cytotoxicity Assay[J]. Bioorganic Chemistry, "2022, "127: "106017-1-106017-13.
(責(zé)任編輯: 單"凝)