摘要: 采用密度泛函理論中處理遠程弱作用的M06-2X和MN15雜化交換泛函方法以及SMD模型方法(處理溶劑效應(yīng)), 對生理環(huán)境下二價鎂纈氨酸(Val·Mg2+)的對映異構(gòu)(S手性→R手性)轉(zhuǎn)變過程的機制進行研究. 對映異構(gòu)反應(yīng)通道研究結(jié)果表明: 手性Val·Mg2+對映異構(gòu)反應(yīng)通道分別是H質(zhì)子以羰基O為橋、 羰基O與氨基N聯(lián)合為橋以及氨基N獨自為橋遷移. 反應(yīng)過程的自由能勢能面計算表明: H質(zhì)子以N獨自為橋的遷移反應(yīng)具有優(yōu)勢; 在水溶劑的極性作用下, 優(yōu)勢反應(yīng)通道速度控制步驟的能壘為210.4 kJ/mol, 水分子(簇)的催化使該能壘降至116.1~118.3 kJ/mol. "水液相下二價鎂纈氨酸配合物對映異構(gòu)的速度極緩慢, 其可安全用于生命體, 二價鎂離子和纈氨酸同補.
關(guān)鍵詞: ""纈氨酸; 二價鎂; 配合物; 溶劑效應(yīng); 密度泛函理論; 對映異構(gòu); 自由能壘
中圖分類號: O641.12""文獻標(biāo)志碼: A""文章編號: 1671-5489(2024)06-1479-12
Density Functional Theory of "Enantiomerism of Bivalent Magnesium Valine Complexes (Val·Mg2+) "in Aqueous Liquid Phase
QU Yanan1, "YANG Wenfu2,3, "YANG Ying2, "LIU Fang2, "WANG Zuocheng2, "JIANG Chunxu2,3, "CONG Jianmin4, YANG Zhen5
(1. Department of Civil Engineering, "Baicheng Normal University, "Baicheng 137000, Jilin Province, "China;
2. Theoretical Computing Center, Baicheng Normal University, Baicheng 137000, Jilin Province, "China;
3. Department of Media, "Baicheng Normal University, "Baicheng 137000, Jilin Province, China;
4. Crop Research Institute, School of Agricultural and Biological Engineering, "Taizhou Vocational College of Science and Technology, "Taizhou 318020, "Zhejiang Province, "China;
5. National Quality Inspection and Testing Center for Biobased Products, Jilin Province Product Quality Supervision and Inspection Institute, "Changchun 130103, China)
Abstract: """The enantiomerism transformation mechanism of bivalent magnesium valine complexes (Val·Mg2+) in physiological environment was studied by using M06-2X and MN15 hybrid exchange functional methods for dealing with remote weak interactions of density functional theory and SMD model method (for solvent effects). The results of the study on enantiomerism reaction channels show that there are three enantiomerism reaction channels of chiral Val·Mg2+, "which are H proton uses carbonyl O as a bridge, "carbonyl O combined with amino N as a bridge, "and amino N as a bridge alone. The calculation of free energy potential energy surface of the reaction process shows that it is advantageous for H proton using amino N as a bridge alone for migration reaction. Under the polarity of the water solvent, "the energy barrier for speed control step of the dominant reaction channel is 210.4 kJ/mol, "and the catalysis of water molecules (clusters) reduces the energy barrier to 116.1—118.3 kJ/mol. The "enantiomization rate of bivalent magnesium valine complexes in the aqueous liquid phase is extremely slow, "and it can be "safely "used to complement bivalent magnesium ions and valine in living organisms.
Keywords: "valine; "bivalent magnesium; "complex; "solvent effect; "density functional theory; "enantiomerism; "free energy barrier
鎂是生命體必需的元素, 在生命體內(nèi)以Mg2+存在, 在治療肺炎、 冠心病、 癲癇、 哮喘和神經(jīng)系統(tǒng)等疾病過程中有著極其重要的作用\1"計算方法
在M06-2X\2"結(jié)果與討論
水液相下金屬(離子)與兩性氨基酸配合物的構(gòu)型最穩(wěn)定\
在水極性及水分子(簇)配位、 氫鍵及范德華力等作用下進行S-Val·Mg2+對映異構(gòu). 為研究水極性和水分子(簇)對異構(gòu)的影響, 分別討論隱性溶劑效應(yīng)(僅水極性作用)和顯性溶劑效應(yīng)(水極性與水分子(簇)共同作用)下S-Val·Mg2+對映異構(gòu)的速控步驟.
2.1 "隱性水溶劑效應(yīng)下的S-Val·Mg2+對映異構(gòu)S-Val·Mg2+可通過α-H以O(shè)為橋、 "α-H遷移到O后, N上的H再從N遷移到α-C和H以N為橋遷移3種途徑實現(xiàn)其對映異構(gòu)(分別命名為a,b,c通道). 異構(gòu)歷經(jīng)的過程如圖2~圖4所示, 異構(gòu)過程的能量如圖5所示.
2.1.1"a和b通道
1) 公用過程.
1基元. 首先, S-Val·Mg2+(底物)的C13,O12和Mg20三個原子的鍵角C13—O12—Mg20從87.8°增加至119.1°, 形成C13,O12和Mg20三原子剪式振動的過渡態(tài)S-T1a(b)(S手性), 越過該過渡態(tài)需克服26.0 kJ/mol能壘. 其次, 越過過渡態(tài), C13,O12和Mg20三原子的鍵角從119.1°增加至123.0°, 形成S-I1a(b)(S手性第一中間體).
2基元. 首先, S-I1a(b)的C19和H18鍵拉伸, 鍵長從0.109 06 nm增加至0.151 94 nm, C19—H18的ρBCP和2ρ從0.283 75和-0.985 24變?yōu)?.098 88和-0.005 65, 共價鍵C19—H18強度大幅度減弱(幾乎斷裂); C13和O11的鍵長從0.122 75 nm增加至0.129 70 nm, "ρBCP和2ρ從0.393 23和-0.642 33變?yōu)?.340 14和-0.383 42, C13—O11共價鍵減弱; Mg20,O12,C13三原子的鍵角從123.1°增加至130.2°, 骨架二面角N16-C19-C17-C13從122.5°增加至124.5°, 二面角N16-C19-C13-O12從-6.2°變?yōu)?32.5°, C13—C19右視順時針旋轉(zhuǎn)38.8°, 形成過渡態(tài)T2a(b), 其產(chǎn)生的能壘為267.7 kJ/mol. 其次, 越過過渡態(tài)T2a(b), H18沿過渡態(tài)虛頻振動負向遷移至O11, O12—H18共價鍵作用(ρBCP和2ρ分別為0.354 11和-2.569 16), 鍵長為0.096 60 nm; N16,C19,C17,C13,O11,O12,Mg20,H18和H10超共軛大π鍵作用(ρBCP和2ρ分別為2.045 56和8.623 30), 形成第二中間體I2a(b), C19的雜化態(tài)從sp3過渡到sp2(該過程體系吸熱, 下面相似處不再說明). 該基元反應(yīng)過程中, H18的電量先從0.266 e變?yōu)?.486 e, 再變?yōu)?.522 e, 該過程是H質(zhì)子遷移. 下面H遷移均為質(zhì)子遷移, 不再說明.
2) a通道專屬過程.
3基元. "首先, I2a(b)的O11—H18和C19—C17鍵長分別從0.096 60,0.134 88 nm拉伸至0.119 72,0.147 83 nm, 電子密度拓撲分析表明, 二共價鍵強度不同程度減弱, 形成過渡態(tài)T3a, 其產(chǎn)生的能壘為167.2 kJ/mol. 其次, 越過T3a, H18遷移至C19, C19—H18共價鍵作用, C19的雜化態(tài)從sp2過渡到sp3(該過程體系放熱, 下面相似處不再說明), 形成手性第三中間體R-I3a, S-Val·Mg2+實現(xiàn)了向R手性轉(zhuǎn)變.
4基元. "首先, R-I3a的Mg20—O12—C13鍵角從123.0°減小至119.1°, 形成剪式振動的R手性過渡態(tài)R-T4a, 過渡態(tài)產(chǎn)生的能壘僅為3.0 kJ/mol. 其次, Mg20—O12—C13鍵角沿虛頻振動的負向振動, 越過過渡態(tài), Mg20—O12—C13鍵角從119.1°減小至87.8°, 形成R手性產(chǎn)物R-Val·Mg2+a. 結(jié)構(gòu)分析表明, R-Val·Mg2+a是S-Val·Mg2+的對映體, 即S-Val·Mg2+在a通道完成對映異構(gòu).
3) b通道的專屬過程.
3基元. "首先, I2a(b)的N16—H14,N16—C19和C19—C13鍵長分別從0.102 61,0.146 95,0.134 88 nm分別拉伸至0.126 46,0.152 37,0.139 64 nm, 鍵特性分析表明, 3個共價鍵強度不同程度減弱, 形成過渡態(tài)T3b, 其產(chǎn)生的能壘為173.6 kJ/mol. 其次, 越過T3b, H14遷移至C19, C19—H14共價鍵作用, C19的雜化態(tài)從sp2過渡到sp3, 形成R手性第三中間體R-I3b, S-Val·Mg2+實現(xiàn)了向R手性的轉(zhuǎn)變.
4基元. "首先, R-I3b的二面角N16-C19-C13-O12從22.1°變?yōu)?92.3°或82.1°, C13—C19右視順時針(或逆時針)內(nèi)旋轉(zhuǎn), 形成過渡態(tài)R-T4mb或R-T4nb, 產(chǎn)生的能壘分別為23.0,16.9 kJ/mol. "其次, 越過R-T4mb或R-T4nb, 羧基-鎂基團繼續(xù)順時針(或逆時針)旋轉(zhuǎn), 當(dāng)二面角N16-C19-C13-O12變?yōu)?79.6°時, 形成R-手性第4中間體R-I4b.
5基元. 首先, R-I4b的O11—H18鍵長從0.100 58 nm拉伸至0.113 36 nm, 共價鍵強度略減弱, 形成過渡態(tài)R-T5b, 其產(chǎn)生的能壘為5.5 kJ/mol. 該過渡態(tài)產(chǎn)生的能壘很小, 原因是從R-I4b到R-T5b過程, 僅O11—H18鍵強度略減弱, 且R-T5b的O11—H18—N16—C19—C13形成五元環(huán)(電子密度拓撲分析表明, 其ρRCP和2ρ均為正). 其次, 越過R-T5b, H18遷移至N16, N16—H18形成共價鍵, 得到R手性的中間體R-I5b.
6基元. 首先, R-I5b的C13—O12—Mg20鍵角從124.2°減小至116.4°, 形成剪式振動的R手性過渡態(tài)R-T6b, 過渡態(tài)產(chǎn)生的能壘為2.6 kJ/mol. 其次, C13—O12—Mg20鍵角沿虛頻振動的正向振動, 越過過渡態(tài), C13—O12—Mg20鍵角從116.4°減小至88.0°, 異構(gòu)成R-Val·Mg2+b. 結(jié)構(gòu)分析表明, R-Val·Mg2+b全同于S-Val·Mg2+的手性對映體R-Val·Mg2+a, 記作R-Val·Mg2+b(a).
2.1.2"c通道
1基元. 首先, 反應(yīng)底物S-Val·Mg2+的Mg20—O11—C13鍵角從88.0°增加至116.4°, 形成剪式振動的S手性過渡態(tài)S-T1c, 過渡態(tài)產(chǎn)生的能壘為24.9 kJ/mol. 其次, Mg20—O11—C13鍵角沿虛頻振動的負向振動, 越過過渡態(tài), Mg20—O11—C13鍵角從116.4°增加至124.6°, 形成S手性第一中間體S-I1c.
2基元. 首先, S-I1c的N16—H10鍵長從0.102 43 nm拉伸至0.141 16 nm, 共價鍵強度減弱, 形成過渡態(tài)S-T2c, 其產(chǎn)生的能壘為43.4 kJ/mol. 其次, 越過S-T2c, H10遷移至O12, O12—H10形成共價鍵, 得到S手性的第二中間體S-I2c.
3基元.
首先, S-I2c的O12—H10俯逆視時針(或順時針)內(nèi)旋轉(zhuǎn), 二面角H10-O12-C13-C19從0.1°變?yōu)?2.3°或-92.1°, 形成過渡態(tài)S-T3mc或S-T3nc, S-T3mc和S-T3nc產(chǎn)生的能壘分別為68.6,66.4 kJ/mol. 其次, 越過過渡態(tài)S-T3mc或S-T3nc, 羥基H10—O12繼續(xù)逆時針(或順時針)旋轉(zhuǎn), 當(dāng)二面角H10-O12-C13-C19變?yōu)?177.5°時, 形成S-手性第三中間體S-I3c.
4基元. 首先, S-I3c的C19和H18原子間的共價鍵長度從0.109 30 nm拉伸至0.128 53 nm, ρBCP和2ρ分別從0.280 36和-0.959 71變?yōu)?.115 38和-0.006 16, C19和H18的共價鍵作用減弱; C19和N16原子間的鍵長從0.145 45 nm拉伸至0.152 04 nm, ρRCP和2ρ分別從0.269 36和-0.709 20變?yōu)?.224 15和-0.431 99, C19和N16間的共價鍵作用變?nèi)酰?二面角N16-C19-C17-C13從125.7°增加至156.8°、 二面角N16-C19-C13-O12從-15.1°變?yōu)?.2°, C13—C19右視逆時針旋轉(zhuǎn)20.3°, 形成過渡態(tài)T4c, 其產(chǎn)生的能壘為210.4 kJ/mol. 其次, 越過過渡態(tài)T4c, H18沿過渡態(tài)虛頻振動正向遷移至N16, N16—H18共價鍵作用(ρBCP為正, 2ρ為負), 鍵長為0.102 56 nm; N16,C19,C17,C13,O11,O12,Mg20,H14和H10超共軛大π鍵作用(ρRCP和2ρ均為正), 形成第四中間體I4c, C19的雜化態(tài)從sp3過渡到sp2.
5基元. 首先, I4c的N16—H15,N16—C19和C19—C13鍵長分別從0.102 95,0.146 99,0.134 76 nm拉伸至0.126 10,0.151 95,0.139 30 nm, 電子密度拓撲分析表明, 這3個共價鍵的強度不同程度減弱, 形成過渡態(tài)T5c, 其產(chǎn)生的能壘為169.5 kJ/mol. 其次, 越過T5c, H15遷移至C19, C19—H15共價鍵作用, C19的雜化態(tài)從sp2過渡到sp3, 形成R手性第五中間體R-I5c, S-Val·Mg2+實現(xiàn)了向R手性轉(zhuǎn)變.
6基元. 首先, R-I5c的O12—H10俯順視時針(或逆時針)內(nèi)旋轉(zhuǎn), 二面角H10-O12-C13-C19從176.9°變?yōu)?1.5°或-97.8°, 形成過渡態(tài)R-T6mc或R-T6nc, R-T6mc和R-T6nc產(chǎn)生的能壘分別為39.7,41.7 kJ/mol. 其次, 越過過渡態(tài)R-T6mc或R-T6nc, 羥基H10—O12繼續(xù)順時針(或逆時針)旋轉(zhuǎn), 當(dāng)二面角H10-O12-C13-C19變?yōu)?0.7°時, 形成R-手性第六中間體R-I6c.
7基元和8基元. 結(jié)構(gòu)分析表明, R-I6c全同于R-4Ib, 之后的異構(gòu)反應(yīng)過程同于R-4Ib的異構(gòu)反應(yīng). b通道的5和6基元反應(yīng)即為c通道的第七和第八基元反應(yīng)(見b通道的討論).
當(dāng)僅考慮水的極性作用時, S-Val·Mg2+在c通道對映異構(gòu)有優(yōu)勢, 4基元是決速步, 自由能壘為210.4 kJ/mol. S-Val·Mg2+在a和b通道對映異構(gòu)處于劣勢, 2基元是決速步, 自由能壘為267.7 kJ/mol. 自由能壘為210.4 kJ/mol比化學(xué)反應(yīng)不能進行的能壘167.3 kJ/mol1\2.2"顯性溶劑效應(yīng)下S-Val·Mg2+對映異構(gòu)的決速步
與反應(yīng)物(含基元反應(yīng)的中間體反應(yīng)物)范德華力和氫鍵弱作用, 由于未參與反應(yīng)的水分子和水簇對相關(guān)反應(yīng)能壘影響很小\2.2.1"S-I1a(b)→T2a(b)→I2a(b)過程
1) 1個配位水的情況. "首先, 1個水分子H2O和Mg20配位且與O11氫鍵作用, 2聚水(H2O)2在S-I1a(b)的前面與H18和O11分別氫鍵和范德華力作用得到S-I1←H2O·(H2O)a(b)2(相關(guān)弱作用距離見圖6中的S-I1←H2O·(H2O)a(b)2正偏俯視圖).
其次, C19—H18鍵長從0.109 22 nm拉伸至0.135 60 nm, ρBCP從0.282 92減小至0.145 16, 2ρ均為負值, 共價鍵C19—H18強度減弱; O24—H26和O27—H29鍵長分別從0.097 56,0.097 47 nm拉伸至0.152 26,0.140 96 nm, 變?yōu)闅滏I作用; C13—O11從0.124 10 nm拉伸至0.130 46 nm, ρBCP和2ρ計算表明, 該共價鍵強度減弱; O11—H22從0.179 90 nm拉伸至0.200 31 nm, ρBCP和2ρ計算表明, 該氫鍵作用減弱, 形成過渡態(tài)T2←H2O·(H2O)a(b)2. 其C19—H18—O24—H26—O27—H29—O11—C13的ρRCP=0.007 55, 2ρ=0.036 21, 過渡態(tài)成環(huán); O12-C13-C19-N16二面角從2.4°變?yōu)?4.6°, T2←H2O·(H2O)a(b)2過渡態(tài)產(chǎn)生了155.3 kJ/mol的內(nèi)稟能壘.
最后, H19,H26和H29分別遷移至O24,O27和O11上, 形成中間體產(chǎn)物I2←H2O·(H2O)a(b)2(氫鍵等弱作用距離見圖6中I2←H2O·(H2O)a(b)2上的標(biāo)注), 實現(xiàn)了H質(zhì)子從C19向O11的凈遷移. 越過水分子(簇)存在的過渡態(tài)T2←H2O·(H2O)a(b)2遠小于越過無水分子存在的過渡態(tài)T2a(b)所需能量, 水分子(簇)具有較好的正催化作用, 原因主要為: 1) T2a(b)未成環(huán), T2←H2O·(H2O)a(b)2成八元環(huán), 電子離域程度高, 強成鍵, 相對穩(wěn)定; "2) 兩個過渡態(tài)對應(yīng)的反應(yīng)物S-I1←H2O·(H2O)a(b)2和S-I1a(b)相比, C19—H18鍵長拉伸了0.000 19 nm, ρBCP減小了0.000 83, 紅外振動頻率減?。t移, 從3 139.85 cm1下降至3 132.81 cm-1), C19—H18鍵被活化.
2) 2個配位水的情況. 首先, 2個水分子H2O和Mg20配位(其中一個H2O還和O11氫鍵作用), (H2O)2和S-I1a(b)作用形成S-I1←2H2O·(H2O)a(b)2(相關(guān)弱作用鍵長見圖6中S-I1←H2O·(H2O)a(b)2 正偏俯視圖). 其次, C19—H18的鍵長從0.109 20 nm拉伸至0.1354 5 nm, 共價鍵強度減弱; O24—H26和O27—H29鍵長分別從0.097 56,0.097 52 nm拉伸至0.153 54,0.143 95 nm, 共價作用變?yōu)闅滏I作用; C13—O11和O11—H22鍵長分別從0.124 26,0.179 71 nm拉伸至0.130 75,0.200 55 nm, 共價和氫鍵作用變?nèi)酰?形成過渡態(tài)T2←H2O·(H2O)a(b)2, 且過渡態(tài)成環(huán), 產(chǎn)生了157.6 kJ/mol的內(nèi)稟能壘. 最后, H18,H29和H32分別遷移至O27,O30和O11上, 得到I2←H2O·(H2O)a(b)2.
3) 5個配位水的情況. 首先, 5個水分子H2O和Mg20配位(二價鎂最高是6配位, 此時為滿配狀態(tài), 其中一個H2O還和O11氫鍵作用), (H2O)2和S-I1a(b)作用形成S-I1←5H2O·(H2O)a(b)2. "S-I1←5H2O·(H2O)a(b)2經(jīng)T2←5H2O·(H2O)a(b)2過渡態(tài), 異構(gòu)成I2←5H2O·(H2O)a(b)2, T2←5H2O·(H2O)a(b)2產(chǎn)生的內(nèi)稟能壘為158.0 kJ/mol(反應(yīng)過程中相關(guān)原子間距離的變化見圖6).
可見, "隨著配位水個數(shù)的增加, 反應(yīng)能壘略增加, 原因是隨著配位水個數(shù)的增加, C19—H18鍵長逐漸變小, ρBCP略增加, 紅外振動頻率略增加(藍移), C19—H18鍵被鈍化.
2.2.2"S-I3c→T4c→I4c過程
1) 1個配位水的情況. 首先, 1個水分子H2O和Mg20配位且與O11氫鍵作用, 2聚水(H2O)2在S-I3的右側(cè)與H18和N16作用形成中間體反應(yīng)物S-I3←H2O·(H2O)c2(相關(guān)弱作用鍵長見圖6中S-I3←H2O·(H2O)c2左視圖).
其次, C19—H18鍵長從0.109 53 nm拉伸至0.130 02 nm, ρBCP和2ρ從0.280 """01和-0.901 23變?yōu)?.145 16和-0.222 29, 共價作用變??; O24—H26和O27—H28鍵長從0.097 79,0.097 887 nm拉伸至0.164 25,0.187 67 nm, 二共價作用變?yōu)闅滏I作用; C19—N16鍵長從0.146 07 nm拉伸至0.149 42 nm, 共價作用變?nèi)酰?二面角N16-C19-C13-C17從125.4°變?yōu)?28.7°, 骨架少許形變; C19—C13旋轉(zhuǎn)29.2°; 形成T4←H2O·(H2O)c2過渡態(tài). C19—H18—O24—H26—O27—H28—N16的ρRCP為0.002 99, 2ρ為0.014 23, 過渡態(tài)成環(huán), T4←H2O·(H2O)c2產(chǎn)生了116.1 kJ/mol的內(nèi)稟能壘.
最后, H19,H26和H28分別遷移至O24,O27和N16上, 形成中間體產(chǎn)物I4←H2O·(H2O)c2(氫鍵等弱作用距離見圖6中I4←H2O·(H2O)c2上的標(biāo)注), 實現(xiàn)了H質(zhì)子從C19向N16的凈遷移. 因此, H2O和(H2O)2對該過程有較好的催化作用.
2) 5個配位水的情況. 首先, 5個水分子H2O和Mg20配位, 二價鎂滿配(其中一個H2O還和O11氫鍵作用), (H2O)2在S-I3c的左側(cè)(右視圖的左側(cè))與H18和N16作用形成S-I3←5H2O·(H2O)c2. "S-I3←5H2O·(H2O)c2經(jīng)T4←5H2O·(H2O)c2過渡態(tài), 3質(zhì)子轉(zhuǎn)移, 得到I4←5H2O·(H2O)c2, T4←5H2O·(H2O)c2產(chǎn)生的內(nèi)稟能壘為118.3 kJ/mol(反應(yīng)過程中相關(guān)原子間距離的變化見圖6).
由a和b通道的討論可知, 隨著配位水個數(shù)的增加, 反應(yīng)能壘略增加, 原因是隨著配位水個數(shù)的增加, 導(dǎo)致C19—H18鍵長變小, ρBCP增加, 紅外振動頻率增加(藍移), C19—H18鍵被鈍化.
由于水分子及水分子簇的作用未改變S-Val·Mg2+對映異構(gòu)反應(yīng)通道的優(yōu)劣, 因此c通道仍有優(yōu)勢, 其決速步能壘為116.1~118.3 kJ/mol. 該能壘接近只能緩慢進行化學(xué)反應(yīng)的自由能壘120.0 J/mol\表明顯性水溶劑效應(yīng)下S-Val·Mg的對映異構(gòu)過程十分緩慢,可利用氨酸鎂配合物為生命體補充氨酸和金屬鎂.
3"結(jié)"論
本文采用DFT理論的MN15和M06-2X方法對Val·Mg2+在水液相下的對映異構(gòu)進行研究, 得到如下結(jié)果:
1) "二價鎂纈氨酸對映異構(gòu)有H質(zhì)子以羰基O為橋、 羰基O與氨基N聯(lián)合為橋以及氨基N獨自為橋遷移等3個通道a,b和c.
2) 在水極性作用下, 二價鎂纈氨酸對映異構(gòu)是c通道具有優(yōu)勢, 決速步能壘為210.4 kJ/mol.
3) 在水極性和水分子(簇)作用下, 二價鎂纈氨酸對映異構(gòu)仍然是c通道具有優(yōu)勢, 決速步能壘下降至116.1~118.3 kJ/mol.
結(jié)果表明, 人們可利用纈氨酸鎂配合物為生命體補充纈氨酸和金屬鎂.
參考文獻
[1]"李相伍, 文永植. 鎂在神經(jīng)系統(tǒng)疾病中的應(yīng)用[J]. 國外醫(yī)學(xué)(醫(yī)學(xué)地理分冊), 2011, 32(4): 301-302. (LI X W, "WEN Y Z. Application of Magnesium in Neurological Diseases[J]. Foreign Medical Science Section of Medgeography, "2011, 32(4): 301-302.)
[2]"李相伍, 文永植. 鎂在呼吸系統(tǒng)疾病治療中的應(yīng)用[J]. 國外醫(yī)學(xué)(醫(yī)學(xué)地理分冊), 2011, 32(4): 299-300. (LI X W, "WEN Y Z. Magnesium in the Treatment of Respiratory Diseases [J]. Foreign Medical Science Section of Medgeography, "2011, 32(4): 299-300.)
[3]"朱雪梅, 李娜, 向蓉, 等. Ca2+、 Mg2+對Caco-2腸道細胞屏障損傷模型的修復(fù)作用[J]. 營養(yǎng)學(xué)報, 2022, 44(5): 484-490. (ZHU X M, "LI N, "XIANG R, "et al. Repair Effect of ""Ca2+,Mg2+"on a "Caco-2 Intestinal Cell Barrier Injury Model[J]. Acta Nutrimenta Sinica, "2022, 44(5): 484-490.)
[4]"韓拓, 姚智會, 范雅潔, 等. 血漿Mg2+濃度與血脂、 血尿酸的關(guān)系及其初步機制分析[J]. 解放軍醫(yī)學(xué)雜志, 2022, 47(11): 1116-1124. (HAN T, "YAO Z H, "FAN Y J, "et al. Correlation and Potential Mechanism of Plasma Magnesium Concentration with Blood Lipids and Uric Acid[J]. Medical Journal of Chinese People’s Liberation Army, "2022, 47(11): 1116-1124.)
[5]"王志宏, 孫兆林, 韓仲巖. Mg2+在缺血性腦損傷中的作用[J]. 國外醫(yī)學(xué)(腦血管疾病分冊), 2000, "8(3): 153-156. (WANG Z H, "SUN Z L, "HAN Z Y. The Role of Mg2+"in Ischemic Brain Injury[J]. International Journal of Cerebrovascular Diseases, "2000, 8(3): 153-156.)
[6]"何邦平, 陳杰, 李東方, 等. 高血壓合并高血脂癥患者血清鈣鎂含量變化的研究[J]. 中國現(xiàn)代醫(yī)學(xué)雜志, 2003, 13(5): 55-56. (HE B P, "CHEN J, "LI D F, "et al. Study on the Levels of Serum Ca2+"Mg2+"in Hypertension Complicated with Hyperlipemia[J]. China Journal of Modern Medicine, 2003, 13(5): 55-56.)
[7]"TER BRAAKE A D, TINNEMANS P T, SHANAHAN C M, et al. Magnesium Prevents Vascular Calcification in vitro by Inhibition of Hydroxya-Patite Crystal Formation[J]. Scientific "Repprts, "2018, "8(1): "2069-1-2069-11.
[8]"VAN LAECKE S, VAN BIESEN W, VANHOLDER R. Hypomagnesaemia, the Kidney and the Vessels[J]. Nephrology "Dialysis Transplantation, 2012, 27(11): "4003-4010.
[9]"杜俊, 張俊豪, 方賓. 氨基酸配合物的性質(zhì)及應(yīng)用[J]. 化學(xué)進展, 2003, 15(4): "288-294. "(DU J, "ZHANG J H, "FANG B. Properties and Applications of Amino-acid Complex[J]. Progress in Chemistry, 2003, 15(4): "288-294.)
[10]"梁媛, "王昕, "趙婷婷, "等. 食品中鈣吸收的機理與鈣體外轉(zhuǎn)化新方法探討[J]. 食品研究與開發(fā), "2016, "37(4): "195-199. "(LIANG Y, "WANG X, "ZHAO T T, "et al. Mechanism and Method of Calcium Absorption in Food and Discussion of Transforming Calcium in vitro[J]. Food Research and Development, "2016, "37(4): "195-199.)
[11]"馬宏源, 喬朝陽, 張雪嬌, "等. α-丙氨酸Cr(Ⅲ)配合物手性反轉(zhuǎn)及水溶劑效應(yīng)的理論研究[J]. 武漢大學(xué)學(xué)報(理學(xué)版), 2023, 69(3): 363-372.
(MA H Y, "QIAO C Y, "ZHANG X J, "et al. Theoretical Study on Chiral Reverse and Aqueous Solvent Effect of α-Alanine Cr(Ⅲ) Complexes[J]. Journal of "Wuhan University (Natural Science Edition), "2023, 69(3): 363-372.)
[12]"漆劍. "L-Val和D-Val構(gòu)型轉(zhuǎn)換的研究[D]. "南昌: 南昌大學(xué), "2006. (QI J. Study of L-Val and D-Val Conformational Conversions[D]. Nanchang: "Nanchang University, "2006.)
[13]"劉芳, 姜春旭, 楊曉翠, "等. α-丙氨酸及其金屬配合物的旋光異構(gòu)理論研究進展[J]. 武漢大學(xué)學(xué)報(理學(xué)版), "2022, 68(6): 665-679. (LIU F, "JIANG C X, "YANG X C, "et al. Progress in Theoretical Study on Optical Isomerism of α-Alanine and Its Metal Complexes[J]. "Journal of "Wuhan University (Natural Science Edition), "2022, 68(6): 665-679.)
[14]"董雷剛, 楊應(yīng), 黃筱珂, "等. 水溶液環(huán)境下賴氨酸鈉配合物手性轉(zhuǎn)變的理論研究[J]. 江西師范大學(xué)學(xué)報(自然科學(xué)版), 2023, 47(3): 227-236. (DONG L G, "YANG Y, "HUANG X K, "et al. The Theoretical Study on the Chiral Flip of Lysine Na+ Complex in Aqueous Solution[J]. Journal of Jiangxi Normal University (Natural Science), "2023, 47(3): 227-236.)
[15]"崔金玉, 黃筱珂, 張方堅, 等. 水液相下兩性Lys→Mg(Ⅱ)配合物對映異構(gòu)的理論研究[J]. 南開大學(xué)學(xué)報(自然科學(xué)版), 2023, 56(5): "99-112. (CUI J Y, "HUANG X K, "ZHANG F J, "et al. Theoretical Study on the Enantiomerism of Amphoteric Lys→Mg(Ⅱ) Complex in Aqueous-Liquid Environment[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, "2023, "56(5): "99-112.)
[16]"JIANG C X, nbsp;TAN Y, "WANG T T, "et al. Theoretical Investigations on the Chiral Transitionof Cu(Ⅱ) Chelated by Bis-α-alanine in Theaqueous-Liquid Phase[J]. New Journal of "Chemistry, "2023, "47: 10347-10359.
[17]"高峰, 徐亞華, 孫永欣, 等. 水液相環(huán)境α-丙氨酸Ni(Ⅱ)配合物的對映異構(gòu)機理[J]. 武漢大學(xué)學(xué)報(理學(xué)版), 2022, 68(6): 655-664. (GAO F, "XU Y H, "SUN Y X, "et al. Enantiomerization Mechanism of α-Alanine Ni(Ⅱ)Complex in Water-Liquid Environment[J]. Journal of "Wuhan University (Natural Science Edition), 2022, 68(6): 655-664.)
[18]"彭國強, 劉芳, 張雪嬌, 等. 水液相下α-丙氨酸Co(Ⅱ)旋光異構(gòu)的密度泛函理論研究[J]. """"武漢大學(xué)學(xué)報(理學(xué)版), 2022, 68(4): 444-454. "(PENG G Q, "LIU F, "ZHANG X J, "et al. Density Functional Theory Study on the Optical Isomerism of α-Alanine Co(Ⅱ) in Water-Liquid Phase Environment[J]. Journal of "Wuhan University (Natural Science Edition), "2022, 68(4): 444-454.)
[19]"楊應(yīng), 黃筱珂, 趙麗紅, 等. 水液相下Phe分子與Na+配合物對映異構(gòu)的DFT研究[J]. 江西師范大學(xué)學(xué)報(自然科學(xué)版), 2023, 47(2): 154-163. (YANG Y, "HUANG X K, "ZHAO L H, "et al. The Density Functional Theory Study on Enantiomeric Isomerization of Phenylalanine with Na+ Complex in Aqueous Liquid Phase[J]. Journal of Jiangxi Normal University (Natural Science), 2023, 47(2): 154-163.)
[20]"趙麗紅, 彭國強, 郝成欣, 等. 水液相下苯丙氨酸鉀配合物對映異構(gòu)的DFT研究[J]. 化學(xué)研究與應(yīng)用, 2023, 35(7): 1686-1695. "(ZHAO L H, "PENG G Q, "HAO C X, "et al. DFT Study on the Enantiomeric Isomerization of Phenylalanine K Complex in Aqueous Liquid Phase Environment[J]. Chemical Research and Application, 2023, 35(7): 1686-1695.)
[21]"趙麗紅, 彭國強, 郝成欣, 等. 水溶液環(huán)境下手性配合物Phe·Ca2+對映異構(gòu)機理的DFT研究[J]. 中山大學(xué)學(xué)報(自然科學(xué)版)(中英文), 2023, 62(6): "50-60. (ZHAO L H, "PENG G Q, "HAO C X, "et al. The DFT Study on the Isomerization Mechanism of Chiral Complexes Phe·Ca2+"in Aqueous Solution[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, "2023, "62(6): "50-60.)
[22]"董雷剛, 楊應(yīng), 黃筱珂, 等. 水溶液環(huán)境下Phe→Mg(Ⅱ)配合物對映異構(gòu)的理論研究[J]. 江西師范大學(xué)學(xué)報(自然科學(xué)版), 2023, 47(4): 412-423. "(DONG L G, "YANG Y, "HUANG X K, "et al. The Theoretical Study on the Enantiomerism of Phe→Mg(Ⅱ) Complex in Aqueous Solution[J]. Journal of Jiangxi Normal University (Natural Science), 2023, 47(4): 412-423.)
[23]"WANG Y, "VERMA P, "ZHANG L J, "et al. M06-SX Screened-Exchange Density Functional for Chemistry and Solid-State Physics[J]. Proceedings of the National Academy of Sciences of the United States of America, "2020, "117(5): "2294-2301.
[24]"徐春雪, 楊應(yīng), 張希花, 等. 水溶劑環(huán)境下兩性苯丙氨酸分子對映異構(gòu)的密度泛函理論研究[J]. 復(fù)旦學(xué)報(自然科學(xué)版), 2023, 62(4): 486-495. (XU C X, "YANG Y, "ZHANG X H, "et al. "Density Function Theoretical Study on the Enantiomerization of Amphoteric Phenylalanine Molecule in Water-Liquid Phase Environment[J]. Journal of Fudan University (Natural Science), "2023, "62(4): "486-495.)
[25]"MARENICH A V, CRAMER C J, TRUHLAR D G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions [J]. The Journal of "Physical Chemistry B, "2009, "113(18): "6378-6396.
[26]"GARRETT B C, "TRUHLAR D G. Criterion of Minimum State Density in the Transition State Theory of Bimolecular Reactions[J]. The Journal of Chemical Physics, "1979, "70(4): "1593-1598.
[27]"HRATCHIAN H P, "SCHLEGEL H B. Using Hessian Updating to Increase the Efficiency of a Hessian Based Predictor-Corrector Reaction Path Following Method[J]. Journal of Chemical Theory and Computation, "2005, "1(1): "61-69.
[28]"YU H S, "HE X, "LI S H, "et al. MN15: "A Kohn-Sham Global-Hybrid Exchange-Correlation Density Functional with Broad Accuracy for Multi-reference and Single-Reference Systems and Noncovalent Interactions[J]. Chemical Science, "2016, "7(8): "5032-5051.
[29]"孫士紅, "陳鳳清, "高浩溟, "等. 水液相下脯氨酸Cu2+配合物手性反轉(zhuǎn)的密度泛函理論研究[J]. 復(fù)旦學(xué)報(自然科學(xué)版), "2022, "61(4): "472-484.
(SUN S H, "CHEN F Q, "GAO H M, nbsp;et al. A Density Functional Theory Study of Chiral Inversion of Pro·Cu2+"Complex in Water-Liquid Phase[J]. Journal of Fudan University (Natural Science), "2022, "61(4): "472-484.)
[30]"FRISCH M J, "TRUCKS G W, "SCHLEGEL H B, "et al. Gaussian 16 Revision C.01[CP/CD]. Pittsburgh: "Gaussian "Inc, "2019.
[31]"BIEGLER-KNBOHM F, "SCHNOBOHM J, "DERDAU R, "et al. AIM 2000, "Version 2.0[CP/CD]. ""Ontario: McMaster University, "2002.
[32]"GORB L, LESZCZYNSKI J. Intramolecular Proton Transfer in Mono-"and Dihydrated Tautomers of Guanine: "An ab initio Post Hartree-Fock Study[J]. Journal of the "American "Chemical Society, "1998, "120: "5024-5032.
[33]"田子德, "高峰, "楊曉翠, "等. 具有氨基和羧基間單氫鍵的α-Ala分子旋光異構(gòu)機理及水和羥自由基的作用[J]. 復(fù)旦學(xué)報(自然科學(xué)版), "2018, "57(4): "517-526.
(TIAN Z D, "GAO F, "YANG X C, "et al. Mechanism of Optical Ismerism of α-Ala Molecules with Hydrogen Bonds between Amino and Carboxyl Croups and Roles of Water and Hydroxyl Radicals[J]. Journal of Fudan University (Natural Science), "2018, "57(4): "517-526.)
(責(zé)任編輯: 單"凝)