摘要: 針對傳統(tǒng)吸附材料吸附容量低、 難以固液分離且易導(dǎo)致二次污染等缺點, "以羧甲基纖維素(CMC)、 聚乙烯醇(PVA)、 丙烯酸(AA)和鐵酸鋅(ZnFe2O4)為單體, 通過水溶液聚合法, 制備易成型、 毒性低、 吸附容量大且可磁性遙控分離的CMC/PVA/PAA/ZnFe2O4纖維素基磁性水凝膠. 采用掃描電子顯微鏡(SEM)、 Fourier變換紅外光譜(FT-IR)、 X射線衍射(XRD)和振動樣品磁強計(VSM)等表征其形態(tài)結(jié)構(gòu)并測試其結(jié)構(gòu)性能, 通過吸附動力學(xué)和吸附熱力學(xué)考察其對水中左氧氟沙星(LEV)的吸附性能和吸附機制. 結(jié)果表明: 負載ZnFe2O4磁性納米粒子可增加水凝膠磁性遙控分離能力和吸附能力; 在25 ℃、 pH=5、 吸附4 h時, 水凝膠對LEV的最大吸附量可達405 mg/g, 5次吸附解吸實驗后其吸附能力仍可達原吸附能力的84%; 水凝膠對LEV的吸附過程更符合準二級反應(yīng)動力學(xué)和顆粒內(nèi)擴散模型, 遵循Freundlich等溫線模型.
關(guān)鍵詞: "羧甲基纖維素; 鐵酸鋅; 磁性水凝膠; 左氧氟沙星; 吸附
中圖分類號: X52""文獻標志碼: A""文章編號: 1671-5489(2024)06-1499-12
Adsorption of Levofloxacin by Cellulose-Based Magnetic Hydrogels
ZHAO Xinyu1, ZHANG Xinren1, ZHANG Enxu2, SHEN Li3, LIU Wanyi1, OUYANG Yunan1
(1. ""Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation of Ministry of Education, College of Resource and Environment Science, Jilin Agricultural University, """Changchun 130118, China; "2. Yanji Customs ""Comprehensive Technical Service Center, Yanji 133000, "Jilin Province, China; "3. Jilin Provincial Ecological Environment Monitoring Center, "Changchun 130118, China)
Abstract: ""Aiming at the shortcomings of traditional adsorption materials, such as low adsorption capacity, nbsp;difficulty in solid-liquid separation, "and easy to lead to secondary pollution, "carboxymethyl cellulose (CMC), "polyvinyl alcohol (PVA), "acrylic acid (AA), "and zinc ferrite (ZnFe2O4) were used as monomers to prepare CMC/PVA/PAA/ZnFe2O4 cellulose based magnetic hydrogels that was easy to form, "low toxicity, "large adsorption capacity, "and could be separated by magnetic remote control through aqueous solution polymerization. Their morphological structure and structural performance were characterized by scanning electron microscopy (SEM), "Fourier transform infrared spectroscopy (FT-IR), "X-ray diffraction (XRD), "and vibrating sample magnetometer (VSM). The adsorption kinetics and thermodynamics were used to investigate their adsorption performance on levofloxacin (LEV) in water and adsorption mechanism. The results show that loaded ZnFe2O4 "magnetic nanoparticles can increase the magnetic remote separation ability and adsorption ability of hydrogels. ""The maximum adsorption capacity of the hydrogel for LEV can reach 405 mg/g at 25 ℃, "pH=5 and 4 h of adsorption, "and its adsorption capacity can still reach 84% of the original adsorption capacity after five adsorption and desorption experiments. "The adsorption process of hydrogel for LEV is more in line with the quasi second order reaction kinetics and intraparticle diffusion model, "and follows the Freundlich isotherm model.
Keywords: carboxymethylcellulose; "zinc ferrite; magnetic hydrogel; "levofloxacin; "adsorption
抗生素是一類具有抗細菌、 抗真菌以及致病微生物的活性物質(zhì). 左氧氟沙星(LEV)是一種臨床普遍使用的第三代氟喹諾酮類(FQs)抗生素, 具有形成“超級細菌”的風險, 可以低濃度存在于環(huán)境中且具有活性, 已在多個國家的湖泊、 河流和飲用水中檢測出LEV\1"實"驗
1.1"試劑與儀器
PVA和AA購于麥克林生化科技(上海)有限公司; 過硫酸銨(APS)購于天津市華東試劑廠; N,N′-亞甲基雙丙烯酰胺(MBA)購于羅恩試劑上海易恩化學(xué)技術(shù)有限公司; CMC購于天津科茂化學(xué)試劑有限公司; LEV購于合肥博美責任有限公司; 氯化鋅(ZnCl2)、 三氯化鐵(FeCl3·6H2O)和甲醇(CH3OH)購于天津鑫鉑特化工有限公司; 乙酸(CH3COOH)、 乙二醇(EG)、 乙酸鈉(NaAc)和無水乙醇(CH3CH2OH)購于國藥集團化學(xué)試劑有限公司; 氫氧化鈉(NaOH)購于北京化工廠. 以上試劑均為分析純試劑.
SA31000型比表面積/孔徑分布和孔隙分析(BET)儀(美國Bechman Coulter公司); XL-30掃描電子顯微鏡(SEM, 美國FEI 公司); IRAffinity-1S型Fourier變換紅外光譜(FT-IR)儀(日本島津公司); XRD-7000型X射線衍射(XRD)儀(日本津島公司); 7307型振動樣品磁強計(VSM, "美國LakeShore公司); TGA-DSC1型熱重分析(TGA)儀(美國Mettler Toledo公司); "Nano ZS90型Zetasizer納米粒度電位(DLS)儀(英國Malvern Panalytical公司).
1.2"纖維素基磁性水凝膠的制備
ZnFe2O4磁性納米粒子的制備: "將適量FeCl3·6H2O、 ZnCl2和NaAc溶于350 mL EG溶液中, 磁力攪拌上述混合溶液60 min, 將其轉(zhuǎn)移至聚四氟乙烯反應(yīng)釜中, 密封后于220 ℃恒溫保持6 h. 反應(yīng)結(jié)束后, 待反應(yīng)釜冷卻至室溫, 將混合物進行強磁分離收集沉淀物, 用CH3CH2OH溶液和去離子水反復(fù)洗滌沉淀物, 經(jīng)充分干燥后得到ZnFe2O4磁性納米粒子.
CMC/PVA/PAA水凝膠的制備: "準確稱取1.0 g CMC, 于100 mL去離子水中完全溶解; 準確稱取10.0 g AA于50 mL去離子水中, 用NaOH調(diào)節(jié)AA溶液中和度至70%; "準確稱取2.0 g PVA于20 mL去離子水中, 于90 ℃恒溫攪拌至完全溶解; 將引發(fā)劑APS和交聯(lián)劑MBA加入上述三者共混溶液中, 以超聲脫氣, 于60 ℃氮氣保護條件下攪拌至共混溶液開始出現(xiàn)凝膠狀態(tài)為止, 于75 ℃恒溫水浴反應(yīng)12 h, 用CH3OH溶液和去離子水將反應(yīng)產(chǎn)物洗滌浸泡, 得到純凈CMC/PVA/PAA水凝膠.
CMC/PVA/PAA/ZnFe2O4水凝膠的制備: 以上述相同溶液質(zhì)量比加入CMC,AA,PVA后, 在共混體系中加入0.8 g ZnFe2O4, 通過超聲使混合液分散均勻, 按上述相同步驟得到CMC/PVA/PAA/ZnFe2O4水凝膠.
將CMC/PVA/PAA水凝膠和CMC/PVA/PAA/ZnFe2O4水凝膠于65 ℃恒溫干燥至恒質(zhì)量, 研磨過篩, 得到固體粉末, 以備后續(xù)表征及吸附實驗使用. 其中SEM表征所用樣品為-40 ℃冷凍干燥制備所得樣品.
1.3"吸附實驗
準確稱取0.01 g干凝膠粉末于50 mL LEV溶液中, 160 r/min恒溫振蕩至吸附平衡, 用紫外分光光度計在290 nm處測試吸附反應(yīng)后LEV溶液的吸光度, 并計算水凝膠對LEV的吸附量(Qe)和去除率(R)[9]
1.4"循環(huán)吸附實驗
使用強磁鐵收集吸附LEV后的CMC/PVA/PAA/ZnFe2O4水凝膠, 并用V(CH3OH)∶V(CH3COOH)=9∶1的溶液和去離子水對其進行洗脫、 干燥, 進行反復(fù)5次吸附解吸實驗, 考察水凝膠的循環(huán)使用性能.
2"結(jié)果與討論
2.1"材料的表征
吸附LEV前后的CMC/PVA/PAA/ZnFe2O4水凝膠SEM表征結(jié)果如圖1所示. 由圖1(A)可見, 水凝膠內(nèi)部可見明顯清晰絲狀網(wǎng)格結(jié)構(gòu), 其結(jié)構(gòu)疏松多孔, 孔洞均勻密集, 該結(jié)構(gòu)是聚合過程中CMC,PVA和AA劇烈離子交聯(lián)所致, 提高了水凝膠對LEV的吸附性能[10]由圖I(B)可見,水凝膠網(wǎng)格結(jié)構(gòu)中均勻分布大量凸起的球形顆粒狀物質(zhì),表明ZnFe,04磁性納米粒子已成功負載于所制備水凝膠內(nèi)部網(wǎng)絡(luò).CMC/PVA/PAA水凝膠和CMC/PVA/PAA/ZnFe,()。水凝膠的分析結(jié)果列于表l.由表1可見,包埋于CMC/PVA/PAA水凝膠內(nèi)部的ZnFe2 04磁性納米粒子與粒子之間形成了更致密的網(wǎng)狀交聯(lián)結(jié)構(gòu),使負載ZnFe2 04磁性納米粒子后的水凝膠的比表面積、孔徑和總孔容均有增加.
由圖1(C),(D)可見, "吸附LEV后的水凝膠表面致密光滑, 表明其網(wǎng)格結(jié)構(gòu)和表面吸附點位已基本被LEV占據(jù)填滿, 放大后的SEM照片(圖1(D))可清晰地觀察到其網(wǎng)狀結(jié)構(gòu)更緊實充盈, ZnFe2O4磁性納米粒子的球形凸起狀態(tài)也更明顯. 進一步表明ZnFe2O4磁性納米粒子可顯著增加水凝膠比表面積和表面螯合點位數(shù)量, 使LEV迅速進入水凝膠內(nèi)部, 縮短吸附平衡時間, 進而有效提升水凝膠吸附能力.
圖2為材料的FT-IR,XRD,VSM和TGA曲線,由圖2(A)可見,在ZnFe2 04的FT-IR譜中,位于561. 33,447. 26 cm-l處的峰為ZnFe2 04中Fe()的特征吸收峰[ll].在CMC/PVA/PAA水凝膠的FT-IR譜中,位于3 557. 96,l 727. 70 cm-l處的峰為CMC中O "H和C=O的紅外特征峰,位于2 929,l 256. 65 cm-l處的峰為CMC中CH:的不對稱伸縮振動和面外搖擺振動峰[lO],位于l 551. 80,1 "436. 31 cm-l處的峰為PAA中 "COOH和 "COO "基團的紅外特征峰[12].在CMC/PVA/PAA/ZnFe2 04水凝膠的FT-IR譜中:位于3 469. 81 cm-l處的峰為CMC/PVA/PAA水凝膠在3 557. 96 cm-l處較強的() "H伸縮振動峰位移至此處,且變?yōu)橹械蛷姸确?,這是由于CMC和PVA中存在不同強度的O "H伸縮振動,導(dǎo)致() "H的存在形式增多,使O "H特征峰變寬、偏移;同時,交聯(lián)反應(yīng)中O "H不斷消耗也是該峰變寬變?nèi)醯脑騕13];位于I 166. 08 cm-l處的峰為ZnFe2 04的Fe()C伸縮振動峰;位于509. 71,417. 26 cm-l處的峰為Fe O的紅外特征峰,與ZnFe2 04中對應(yīng)的峰相比發(fā)生了藍移.綜上可見,ZnFel 04成功負載于CMC/PVA/PAA水凝膠表面,與SEM表征結(jié)果一致,在吸附LEV后的CMC/PVA/PAA/ZnFe2()。水凝膠FT-IR譜中:在3 300 cm-l處出現(xiàn)了來自LEV的 "NH紅外吸收峰[4 在l 721. 64 cm-l處原屬于PAA中COOH的C=O特征吸收峰明顯增強,說明在吸附過程中,酸性條件使水凝膠中部分COO官能團已逐步轉(zhuǎn)化為COOHD-l,證明LEV已成功吸附于CMC/PVA/PAA/ZnFe,()。水凝膠內(nèi)部.
由圖2(B)可見,在ZnFe,04的XRD譜中,在20=35。,43。,53。,56。,62。,74。處有明顯特征衍射峰,這與ZnFe2 04的PDF標準卡片(PDF#22-1012)相符,在CMC的XRD譜中,由于CMC的半結(jié)晶性,因此在20=22。處出現(xiàn)明顯的特征衍射峰[16].在CMC/PVA/PAA水凝膠和CMC/PVA /PAA/ZnFe2 04水凝膠的XRD譜中,在20=22。處出現(xiàn)來自CMC明顯變寬變?nèi)醯奶卣餮苌浞澹f明CMC與PVA和PAA發(fā)生了交聯(lián)反應(yīng),導(dǎo)致其晶型能力降低,從而轉(zhuǎn)為非晶體性結(jié)構(gòu)[17].同時,在CMC/PVA/PAA/ZnFe2 04水凝膠的XRD譜中,在20=35.2?!?4。處也可觀察到與ZnFe2 04的XRD譜相比明顯變?nèi)醯奶卣餮苌浞澹摤F(xiàn)象表明ZnFe2 04磁性納米粒子均勻摻雜于CMC/PVA/PAA/ZnFe2 04水凝膠網(wǎng)絡(luò)中,與SEM和FT-IR結(jié)論一致.
由圖2(C)可見,吸附LEV前盾CMC/PVA/PAA/ZnFe2 04水凝膠的磁滯回線關(guān)于原點對稱,無剩磁和矯頑力,說明制備的水凝膠具有超順磁性,無磁滯現(xiàn)象,即水凝膠在外加磁場作用下具有磁性,撤掉磁場,磁性消失,該特性有利于水凝膠的分離回收,水凝膠的最大磁飽和強度隨磁場強度的增加而增大,最大磁飽和強度為5. 89 A/m;吸附LEV后,水凝膠的最大磁飽和強度降低至1.91 A/m.這是由于吸附反應(yīng)導(dǎo)致LEV與ZnFe2 04發(fā)生配合,水凝膠表面由ZnFe2 04粒子產(chǎn)生的吸附位點減少,使水凝膠磁飽和強度降低[l8].
由圖2(D)可見,CMC/PVA/PAA/ZnFe,04水凝膠的熱分解可分為3個階段:第一階段
(34~311℃),水凝膠失去部分質(zhì)量,質(zhì)量損失率為28. 29%,這是由于隨著溫度升高,水凝膠內(nèi)部失去大量結(jié)合水所致;第二階段(311~537℃),水凝膠失質(zhì)量現(xiàn)象明顯,其內(nèi)部大量含氧官能團發(fā)生熱降解,導(dǎo)致該過程質(zhì)量損失率可達37. 02%;第三階段(537~800℃),水凝膠內(nèi)部仍存在一定數(shù)量小分子揮發(fā)性產(chǎn)物,該過程質(zhì)量損失率約為11. 750/,此時水凝膠內(nèi)部大分子碳鏈結(jié)構(gòu)開始熱解,水凝膠逐漸碳化.
2.2 "吸附時間、溫度、ph值子強度對吸附的影響
在20~240 min內(nèi),考察吸附時間對CMC/PVA/PAA/ZnFe2 04水凝膠吸附性能的影響,結(jié)果如圖3所示,由圖3可見,在吸附初期的40 min內(nèi),水凝膠對LEV的吸附速率迅速增大,此時吸附量(Q。)可達吸附總量的80%,這種快速的動力學(xué)過程主要歸因于水凝膠表面大量的活性點位以及高濃度LEV的吸附驅(qū)動力[19].但隨著吸附反應(yīng)進行,水凝膠表面吸附點位被大量占據(jù),且體系中LEV濃度降低,導(dǎo)致吸附阻力增大,從而吸附速率顯著降低,在200 min時基本達到吸附平衡,其平衡吸附量約為405 mg/g,LEV去除率(R)約為81%.不同吸附材料對LEV的吸附性能比較列于表2.由表2可見,與其他材料相比,CMC/PVA/PAA/ZnFe2 04水凝膠的吸附性能優(yōu)勢明顯.
在15~55 ℃內(nèi)考察環(huán)境溫度對CMC/PVA/PAA/ZnFe2O4水凝膠吸附性能的影響, 結(jié)果圖4所示. 由圖4可見: 當環(huán)境溫度為15 ℃~25 ℃時, 水凝膠對LEV的吸附速率趨于穩(wěn)定, 在25 ℃時達到最佳吸附效果, 其吸附量約為405 mg/g; 當環(huán)境溫度大于25 ℃時, 凝膠對LEV的吸附速率逐步降低. 這是因為適當升高環(huán)境溫度能激發(fā)LEV分子在溶液中的熱運動而增加其與水凝膠有效官能團的接觸幾率, 從而提高水凝膠的吸附能力[27],但過高的環(huán)境溫度會導(dǎo)致水凝膠內(nèi)部結(jié)構(gòu)坍塌,表面張力減弱,吸附位點減少,且部分已吸附在水凝膠表面的LEV出現(xiàn)解吸現(xiàn)象,從而水凝膠對LEV的吸附量有所下降28].由于環(huán)境溫度變化對水凝膠吸附性能的影響不顯著,因此適宜水凝膠吸附的溫度范圍相對較寬,但其吸附過程仍可定義為放熱反應(yīng),升高環(huán)境溫度不利于吸附反應(yīng)進行.
在pH=I~II內(nèi),考察溶液pH值對CMC/PVA/PAA/ZnFe2 04水凝膠吸附性能和Zeta電位的影響,結(jié)果如圖5所示,由圖5可見:水凝膠表面電位隨溶液pH值的升高而顯著減小,在溶液pHgt;I后出現(xiàn)等電點,其表面轉(zhuǎn)變帶有負電荷;水凝膠對LEV的吸附量隨溶液pH值的升高呈先增大后減小的趨勢,在pH=5時具有最佳吸附性能,吸附量約為365 mg/g,去除率約為73%. LEV的pK;,,和pK;。。分別為5.97和8.28[29],當溶液pH=I時,水凝膠交聯(lián)網(wǎng)絡(luò)中的 "COO-和 "NH:發(fā)生質(zhì)子化,分別轉(zhuǎn)變?yōu)?"COOH和 "NH3+,此時帶正電荷的水凝膠表面與溶液中帶正電荷的LEV+發(fā)生排斥反應(yīng),從而導(dǎo)致水凝膠對LEV的吸附量相對較低30],當溶液pHgt;I時,H+的競爭作用隨其數(shù)量的減少而下降,水凝膠表面也因出現(xiàn)等電點而帶有負電荷,此時帶負電荷的水凝膠與溶液中帶正電荷的LEV+發(fā)生靜電吸引,水凝膠吸附量顯著增大,在pH=5時靜電引力作用達到最大,此時吸附效果最佳31],當5lt;pHlt;9時,LEV以兩性離子形式存在,LEV+數(shù)量減少,水凝膠吸附量下降,但 "COO-向 "COOH轉(zhuǎn)化的緩沖行為導(dǎo)致其吸附量的下陣趨勢并不明顯‘30].當pHgt;9時,水凝膠表面 COOH和 "NH::發(fā)生去質(zhì)子化,轉(zhuǎn)化為 "COO-和 "NH:,此時LEV主要以LEV-存在,與帶有相同負電荷的水凝膠產(chǎn)生靜電排斥,導(dǎo)致吸附量下降顯著30].
考慮實際環(huán)境水樣成分的復(fù)雜性與非均質(zhì)性,通過實驗篩選抗生素廢水中普遍存在的共存離子,評估其強度對CMC/PVA/PAA/ZnFe,()。水凝膠吸附性能的影響,結(jié)果如圖6所示,共存離子價態(tài)對水凝膠吸附性能影響程度大致表現(xiàn)為Mg2~-≈Ca2+ gt;Na+,表明共存離子水合半徑越大,對水凝膠吸附性能影響越大31],但隨著共存離子(Na+,Mg2+,Ca2+)的離子強度增加,水凝膠對LEV的吸附量和去除率均呈下降趨勢,表明高濃度離子對水凝膠吸附LEV具有明顯的阻礙作用,這是因為吸附過程在溶液pH=5時進行,此時LEV主要以LEV+存在,共存陽離子會與LEV+競爭水凝膠表面的有限吸附位點,從而使LEV+與水凝膠的接觸幾率降低[201;同時,增大共存離子的離子強度會使水凝膠表面雙電層變薄,并與LEV之間產(chǎn)生靜電屏蔽作用[31],從而導(dǎo)致水凝膠對LEV的吸附效果下降,該現(xiàn)象進一步驗證了靜電吸附對水凝膠與LEV之間起主導(dǎo)吸附作用,與FT-IR表征和pH值對水凝膠吸附性能影響的結(jié)論一致.
2.3 "水凝膠對LEV的吸附動力學(xué)
采用準一級反應(yīng)動力學(xué)、準二級反應(yīng)動力學(xué)、液膜擴散模型和粒子內(nèi)擴散模型對CMC/PVA/PAA/ZnFe2 04水凝膠吸附LEV的過程進行擬合‘32],其吸附動力學(xué)擬合結(jié)果如圖7和表3所示,
擬合結(jié)果表明,水凝膠對LEV的準二級比準一級反應(yīng)動力學(xué)模型擬合相關(guān)系數(shù)更優(yōu),且準二級反應(yīng)動力學(xué)模型擬合得到的理論平衡吸附量(377. 36 mg/g)與實測值(405 mg/g)更接近,說明水凝膠對LEV的吸附更遵循準二級反應(yīng)動力學(xué)模型,即吸附過程主要為化學(xué)吸附,由于吸附過程可能由一個或多個速率控制,單憑準一級或準二級反應(yīng)動力學(xué)模型無法完整判斷整個吸附過程,因此通過液膜擴散和粒子內(nèi)擴散擬合進一步分析LEV與水凝膠之間的吸附機制.根據(jù)水凝膠對LEV的液膜擴散和粒子內(nèi)擴散模型擬合數(shù)據(jù),水凝膠對LEV的吸附分為快速表面吸附、顆粒內(nèi)擴散及吸附和脫附平衡動態(tài)過程3個階段,每個階段擬合得到的吸附量Q,與£0.5均呈線性相關(guān),其邊界層擴散速率常數(shù)K1d
和顆粒內(nèi)擴散速率常數(shù)k2d遠大于吸附和脫附平衡動態(tài)速率常數(shù)k3d和液膜擴散常數(shù)Kf,且各自擬合相關(guān)系數(shù)也符合上述結(jié)果,說明以邊界層擴散為主的快速表面吸附和顆粒內(nèi)擴散過程是水凝膠吸附LEV主要的控速步驟.但準一級動力學(xué)和準二級動力學(xué)的擬合曲線均未通過坐標原點,因此存在如液膜擴散等其他因素共同影響CMC/PVA/PAA/ZnFe2 04水凝膠與LEV之間的相互作用.
2.4 "水凝膠對LEV的吸附等溫線與熱力學(xué)參數(shù)采用Langmuir, Freundlich和Temkin模型對不同初始質(zhì)量濃度的LEV(20,30,40,50,60,100,200,300,400 mg/L)在CMC/PVA/PAA/ZnFe70。水凝膠上吸附量變化的實驗數(shù)據(jù)進行擬合[33],擬合結(jié)果如圖8和表4~表6所示.由圖8可見,水凝膠對LEV的吸附量在LEV質(zhì)量濃度較低時增加較
迅速,之后隨著LEV初始質(zhì)量濃度增大,其吸附量增加趨勢變緩并逐漸達到平衡吸附,表明初始質(zhì)量濃度變化對LEV和水凝膠之間的傳質(zhì)驅(qū)動力起一定促進作用,從而增加了LEV相水凝膠的相互作用;當水凝膠質(zhì)量不變,初始質(zhì)量濃度逐漸增大的LEV使其在水凝膠表面的覆蓋率增大,導(dǎo)致溶液中游離的LEV向水凝膠內(nèi)部更深孑L徑的傳質(zhì)受到阻力,使這些游離的LEV難以被水凝膠順利捕獲,從而導(dǎo)致水凝膠對LEV的吸附量呈先快速增加后放緩的狀態(tài)34], 由表4~表6可見,在不同溫度(288,289,308 K)下,水凝膠對LEV的Freundlich吸附等溫模型均優(yōu)于Langmuir和Temkin吸附等溫模型的擬合相關(guān)系數(shù)R2,表明Freundlich吸附等溫模型更適合解釋水凝膠對LEV的吸附過程,即吸附過程是多相多分子層吸附30],其中,F(xiàn)reundlich模型擬合得到的n值可衡量吸附過程的吸附動力和吸附位能,l/n值越小,說明水凝膠吸附性能越好,吸附越易進行20].不同溫度下水凝膠對LEV的擬合結(jié)果l/n值均小于l,表明該吸附反應(yīng)能自主進行;隨著吸附溫度逐漸升高,l/n值逐漸增大,從而驗證了環(huán)境溫度對水凝膠吸附性能影響的結(jié)論,即升高溫度會增加吸附難度. CMC/PVA/PAA/ZnFe,()。水凝膠對LEV的吸附熱力學(xué)參數(shù)擬合結(jié)果列于表7.由表7可見:在不同溫度(288,289,308 K)下,水凝膠吸附LEV的AG均為負值,表明水凝膠對LEV的吸附是一種自發(fā)吸附行為[];當環(huán)境溫度從288 K升高至308 K時,AG的絕對值呈先增大后減小的趨勢,表明適宜的環(huán)境溫度可增大吸附推動力,提高水凝膠吸附LEV的自發(fā)趨勢,但溫度過高會阻礙吸附反應(yīng)進行;AH表示水凝膠和LEV發(fā)生吸附反應(yīng)所需熱能,該吸附過程擬合得到的AH為負值,表明水凝膠吸附LEV為放熱反應(yīng),即升高溫度不利于反應(yīng)進行;擬合得到的AS為正值,表明吸附過程導(dǎo)致固液界面無序度增加,吸附LEV后水凝膠內(nèi)部結(jié)構(gòu)變化明顯,反應(yīng)體系自由度顯著變大36].
當熱力學(xué)過程擬合得到AG=0~-20 kj/mol,且AHlt;84 kj/mol時,表明該熱力學(xué)過程存在物理吸附‘36],上述熱力學(xué)擬合數(shù)據(jù)符合該結(jié)論.在2.3節(jié)中的動力學(xué)擬合結(jié)果也證明化學(xué)吸附是水凝膠對LEV的主控吸附步驟,因此水凝膠對LEV的吸附是以化學(xué)吸附為主,物理吸附為輔,由二者共同控制的吸附機制.
2.5 "水凝膠對LEV的脫附再生
LEV在/PVA/PAA/ZnFe2 04水凝膠上的脫附再生效果如圖9所示.由圖9可見,水凝膠
對LEV的吸附量隨脫附次數(shù)的增加逐漸降低,這可能是由于在吸附解吸過程中,由CH30H生成的HCOOH無法對吸附位點解吸完全,從而導(dǎo)致部分吸附位點缺失[37].同時,由于解吸溶液中的NaOH降低了體系酸度,導(dǎo)致H+數(shù)量減少,使水凝膠內(nèi)部 "NH。質(zhì)子化程度減弱,因此無法生成足量的NH3~-與吸附的LEV+發(fā)生充分排斥反應(yīng)38].經(jīng)5次吸附解吸實驗后,水凝膠對LEV的吸附量從405 mg/g降至343. 96 mg/g,但其吸附效率仍可達到初次吸附效率的84%,表明制備的纖維素基磁性水凝膠具有良好的重復(fù)使用性能,是一種具有實際應(yīng)用前景的處理抗生素廢水吸附劑.
3 "結(jié) "論
綜上所述,本文采用水溶液聚合法成功制備了CMC/PVA/PAA/ZnFe2 04水凝膠,用于對LEV的吸附研究,得到如下結(jié)論.
1)材料表征結(jié)果表明,CMC/PVA/PAA/ZnFe2 04水凝膠結(jié)構(gòu)穩(wěn)定,具有良好的超順磁性,當CMC/PVA/PAA/ZnFe70。水凝膠在最佳吸附條件(吸附時間4h、環(huán)境溫度25℃、溶液pH=5)時,對LEV最大吸附量可達405 mg/g.高濃度共存離子(Na~-,Mg2+,Ca2+)對水凝膠吸附LEV具有明顯的阻礙作用,其影響程度大致表現(xiàn)為Mg-+~Ca2+ gt;Na+.
2) CMC/PVA/PAA/ZnFe204水凝膠對LEV的吸附主要以化學(xué)吸附為主,邊界層擴散和顆粒內(nèi)擴散是主要控速步驟,且吸附過程是自發(fā)進行的多相多分子層吸附的放熱反應(yīng).在最佳吸附條件下,CMC/PVA/PAA/ZnFe2 04水凝膠經(jīng)5次吸附解吸后,其吸附效率仍可達到原吸附效率的84%,說明其具有良好的循環(huán)再生利用性能.
3)本文所用污染物為實驗室配置的單一模擬污染水體,且配置濃度大于實際水體,為以后開展實際水體研究提供了理論依據(jù).
參考文獻
[1]"LIU Y, "GUO H G, "ZHANG Y L, "et al. Heterogeneous Activation of Peroxymonosulfate by Sillenite Bi25FeO40: "Singlet Oxygen Generation and Degradation for Aquatic Levofloxacin [J]. Chemical Engineering Journal, "2018, "343: "128-137.
[2]"ASMAA K M, "MOHAMED E M. Encapsulation of Starch Hydrogel and Doping Nanomagnetite onto Metal-Organic Frameworks for Efficient Removal of Fluvastatin Antibiotic from Water [J]. Carbohydrate Polymers, "2020, "245: "116438-1-116438-10.
[3]"XU Z Y, "XIANG Y J, "ZHOU H, "et al. Manganese Ferrite Modified Biochar from Vinasse for Enhanced Adsorption of Levofloxacin: "Effects and Mechanisms [J]. Environmental Pollution, "2021, "272: "115968-1-115968-8.
[4]"LENG "L J, "WEI L, "XIONG Q, "et "al. Use of Microalgae Based Technology for the Removal of Antibiotics from Wastewater: "A Review[J]. Chemosphere, "2019, "238: "124680-1-124680-14.
[5]"LIU "J M, "JI Z Y, "SHI Y B, "et al. Effective Treatment of Levofloxacin Wastewater by an Electro-Fenton Process with Hydrothermal-Activated Graphite Felt as Cathode[J]. Environmental Pollution, "2020, "266: "115348-1-115348-9.
[6]"ZHAO "J, "YANG X, "LIANG G W, "et al. Effective Removal of Two Ffluoroquinolone Antibiotics by PEG-4000 Stabilized Nanoscale Zero-Valent Iron Supported onto Zeolite (PZ-NZVI)[J]. Science of the Total Environment, "2020, "710: "136289-1-136289-13.
[7]"GE "W J, "SHUAI J B, "WANG Y Y, "et "al. Progress on Chemical Modification of Cellulose in “Green” Solvents[J]. Polymer Chemistry, "2022, "13: "359-372.
[8]"張陸雨. 竹納米纖維素基自愈合雙交聯(lián)水凝膠的制備及其應(yīng)用基礎(chǔ)研究[D]. 長沙: 中南林業(yè)科技大學(xué), "2022.
(ZHANG L Y. Basic Research on Preparation and Application of Bamboo Nano Cellulose Based Self-healing Double Crosslinked Hydrogel[D]. Changsha: Central South University of Forestry and Technology, "2022.)
[9]"MA "Y F, "LI M, "LI P, "et al. Hydrothermal Synthesis of Magnetic Sludge Biochar for Tetracycline and Ciprofloxacin Adsorptive Removal[J]. Bioresource Technology, "2021, "319: "124199-1-124199-10.
[10]"吳淑茗, "劉鈺成, "吳佳斌, "等. 玉米淀粉/羧甲基纖維素生物復(fù)合凝膠的制備及吸附行為研究[J]. 塑料科技, "2023, "51(3): "73-78.
(WU S M, "LIU Y C, "WU J B, "et "al. Preparation and Adsorption Behavior of Corn Starch/CMC Biomass Composite Hydrogel[J]. Plastics Sceince and "Technology, "2023, "51(3): "73-78.)
[11]"CHEN "X, "HUANG Z, "LUO S Y, "et al. Multi-functional Magnetic Hydrogels Based on Millettia speciosa Champ Residue Cellulose and Chitosan: "Highly Efficient and Reusable Adsorbent for Congo Red and Cu2+"Removal[J]. Chemical Engineering Journal, "2021, "423: "130198-1-130198-13.
[12]"韓珊珊, "陳元濤, "張煒, "等. Cu(Ⅱ)交聯(lián)羧甲基纖維素水凝膠制備及對鈾的吸附[J]. 環(huán)境科學(xué)學(xué)報, "2024, 44(3): "83-94. "(HAN S S, "CHEN Y T, "ZHANG W, "et "al. The Preparation of Cu(Ⅱ) Cross Linked Carboxymethyl Cellulose Hydrogels and Its Adsorption for Uranium[J]. Acta Scientiae Circumstantiae, "2024, "44(3): "83-94.)
[13]"張宏宇, "田錦濤, "畢程程, "等. β-環(huán)糊精/聚乙烯醇/丙烯酸水凝膠對左氧氟沙星吸附性能及機理研究[J]. 化學(xué)研究與應(yīng)用, "2022, "34(11): "2636-2646. (ZHANG H Y, "TIAN J T, "BI C C, "et ""al. Study on the Adsorption Performance and Mechanism of Levofloxacin by β-Cyclodextrin/Polyvinyl Alcohol/Acrylic Acid Hydrogel[J]. Chemical Research and Applications, "2022, "34(11): "2636-2646.)
[14]"ZHANG "Y, "LI Y H, "WANG Y Y, "et ""al. Adsorption of Levofloxacin by Ultraviolet Aging Microplastics [J]. Chemosphere, "2023, 343: "140196-1-140196-9.
[15]"WANG "Z R, "JIANG H M. Comparative Study on Characteristics and Mechanism of Levofloxacin Adsorption on Swine Manure Biochar [J]. Bioresource Technology, "2022, "351: "127025-1-127025-10.
[16]"KONG "Q P, "ZHANG H Z, "WANG P G, "et ""al. NiCo Bimetallic and the Corresponding Monometallic Organic Frameworks Loaded CMC Aerogels for Adsorbing Cu2+: "Adsorption Behavior and Mechanism [J]. International Journal of Biological Macromolecules, "2023, "244: "125169-1-125169-12.
[17]"MICHEAL "B, "IMBERTY A, "HEGGSET E B, "et al. Adsorption Characterization of Various Modified β-Cyclodextrins onto TEM PO-Oxidized Cellulose Nanofibril Membranes and Cryogels [J]. Sustainable Chemistry and Pharmacy, "2021, "24: "100523-1-100523-11.
[18]"馮琬淇, "哈尼夏·巴合提, "葛雨璇, "等. 磁性PASP/PAM半互穿水凝膠的制備及性能 [J]. 化工進展, "2023, "42(6): "3130-3137. (FENG W Q, "HANISHA B, "GE Y X, "et ""al. Preparation and Properties of Magnetic PASP/PAM Semi-interpenetrating Hydrogels [J]. Chemical Industry and Engineering Progress, "2023, "42(6): "3130-3137.)
[19]"鄭云香, "高藝倫, "李宴汝, "等. 氨基三乙酸酐改性多孔雙網(wǎng)絡(luò)水凝膠的制備及吸附性能 [J]. 化工進展, "2024, 43(8): 4542-4549. (ZHENG Y X, "GAO Y L, "LI Y R, "et ""al. Preparation and Adsorption Properties of Aaminotriacetic Anhydride Modified Porous Double-Network Hydrogels [J]. Chemical Industry and Engineering Progress, "2024, 43(8): 4542-4549.)
[20]"劉自超, "任亞男, "周文靜, 等. 左氧氟沙星在鐵氧化物表面的吸附: 動力學(xué)和pH的影響 [J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, "2023, "42(2): "362-372. (LIU Z C, "REN Y N, "ZHOU W J, "et "al. Adsorption of Levofloxacin on the Surface of Iron Oxides: "Kinetics and Effects of pH [J]. Journal of Agro-Environment Science, "2023, "42(2): "362-372.)
[21]"RAHMAN "N, "RAHEEM A. Mechanistic Investigation of Levofloxacin Aadsorption on Fe(Ⅲ)-Tartaric Acid/Xanthan Gum/Graphene Oxide/Polyacrylamide Hydrogel: Box-Behnken Design and Taguchi Method for Optimization [J]. Journal of Industrial and Engineering Chemistry, "2023, "127: "110-124.
[22]"劉桂燕, "車暉賢, "賓萬艷, "等. 氮摻雜生物質(zhì)炭吸附抗生素左氧氟沙星的研究 [J]. 炭素技術(shù), "2024, "43(2): "43-48. (LIU G Y, "CHE H X, "BIN W Y, "et al. Research on the Adsorption of Antibiotic Levofloxacin by N-Doped Biochar [J]. Carbon Techniques, "2024, "43(2): "43-48.)
[23]"劉松林. 柿生物質(zhì)功能材料對左氧氟沙星的吸附行為研究[D]. 桂林: 桂林電子科技大學(xué), "2023.
(LIU S L. Study on the Adsorption Behavior of Persimmon Biomass Functional Materials for Levofloxacin[D]. "Guilin: Guilin University of Electronic Science and Technology, "2023.)
[24]"吳欽岳. 制藥污泥制備生物炭吸附和催化降解左氧氟沙星的研究[D]. 無錫: 江南大學(xué), "2023.
(WU Q Y. Study on the Adsorption and Catalytic Degradation of Levofloxacin by Biochar Prepared from Pharmaceutical Sludge[D]. Wuxi: Jiangnan University, "2023.)
[25]"王磊, "王方園, "戴勝偉, "等. 硫酸改性火山石對水中左氧氟沙星的吸附研究 [J]. 環(huán)境保護科學(xué), "2022, "48(2): "89-95.
(WANG L, "WANG F Y, "DAI S W, "et al. Study on the Adsorption of Levofloxacin in Water by Volcanic Rocks "Modified by Sulfuric Acid "[J]. "Environmental Protection Science, "2022, "48(2): "89-95.)
[26]"AL-JABARI "M H, "SULAIMAN S, "ALI S, "et al. Adsorption Study of Levofloxacin on Reusable Magnetic Nanoparticles: "Kinetics and Antibacterial Activity [J]. Journal of Molecular Liquids, "2019, "19: "111249-1-111249-9.
[27]"LIN "L, "LI X, "SHI C L, "et ""al. Desorption of Hydrolyzed Poly(AM/DMDAAC) from Bentonite and Its Decomposition in Saltwater under High Temperatures [J]. E-Polymers, "2019, "19(1): 527-534.
[28]"劉宛宜, "王天野, "王鋮熠, "等. 聚(丙烯酸酸-co-丙烯酰胺)水凝膠對陽離子染料亞甲基藍和孔雀石綠吸附性能的研究 [J]. 分析化學(xué), "2019, "47(11): "1785-1793. (LIU W Y, "WANG T Y, "WANG C Y, "et ""al. Study of Adsorption Properties of Cationic Dyes Methylene Blue and Malachite Green by Ploy(acrylate-co-acrylamide) "Hydrogel[J]. Chinese Journal of Analytical Chemistry, "2019, "47(11): "1785-1793.)
[29]"PIC "Y, "ANDREU V. Fluoroquinolones in Soil-Risks and Challenges [J]. Analytical and Bioanalytical Chemistry, "2007, "387(4): "1287-1299.
[30]"MAHMOUD "M E, "SAAD S R, "EI-GHANAM A M, "et al. Developed Magnetic Fe3O4-MoO3-AC Nanocomposite for Effective Removal of Ciprofloxacin from Water [J]. Materials Chemistry Physics, "2021, "257: "123454-1-123454-13.
[31]"YU "F, "LI Y, "HAN S, "et al. Adsorptive Removal of Ciprofloxacin by Sodium Alginate/Graphene Oxide Composite Beads from Aqueous Solution [J]. Journal of Colloid and Interface Science, "2016, "484: "196-204.
[32]"侯曉蕊. SBA-3的控制合成及其吸附性能研究[D]. "太原: 太原理工大學(xué), "2022. (HOU X R. Study on Controlled Synthesis and Adsorption Property of SBA-3 [D]. Taiyuan: Taiyuan University of Technology, "2022.)
[33]"ARAUJO "C S T, "ALMEIDA I L S, "REZENDE H C, "et ""al. Elucidation of Mechanism Involved in Adsorption of Pb(Ⅱ) onto Lobeira Fruit (Solanum lycocarpum) Using Langmuir, "Freundlich and Temkin Isotherms [J]. Microchemical Journal, "2018, "137: "348-354.
[34]"SINGLA "P, "GOEL N, "SINGHAL S. Affnity of Boron Nitride Nanomaterials towards Antibiotics Established by Exhaustive Experimental and Theoretical Investigations [J]. Chemical Engineering Joumal, "2016, "299: "403-414.
[35]"HU "Y Y, "PAN C, ZHENG X H, "et al. Removal of Ciprofloxacin with Aluminum-Pillared Kaolin Sodium Alginate Beads (CA-Al-KABs): "Kinetics, "Isotherms, "and BBD Model [J]. Water, "2020, "12: "905-1-905-20.
[36]"SHADPOUR "M, "VAJIHEH B, "FERESHTEH M. Adsorptive Performance of Alginate/Carbon Nanotube-Carbon Dot-Magnesium Fluorohydroxyapatite Hydrogel for Methylene Blue-Contaminated Water [J]. Journal of Environmental Chemical Engineering, "2021, "9(2): "105170-1-105170-11.
[37]"王忠凱, "季軍榮, "湯睿, "等. 雙有機改性磁性膨潤土對Cu(Ⅱ)和Zn(Ⅱ)的吸附 [J]. 高?;瘜W(xué)工程學(xué)報, "2022, "36(2): "276-286. "(WANG Z K, "JI J R, "TANG R, "et "al. Preparation of Dual "Organic Modified Magnetic Bentonite for Cu(Ⅱ) and Zn(Ⅱ) "Adsorption[J]. Journal of Chemical Engineering of Chinese Universities, "2022, "36(2): "276-286.)
[38]"MO "Y Y, "VINCENT T, "GUIBAL E, "et "al. Se(Ⅵ) Sorption from Aqueous Solution Using Alginate/Polyethylenimine Membranes: "Sorption Performance and Mechanism [J]. International Journal of Biological Macromolecules, "2020, "147: "832-843.
(責任編輯: 單"凝)