摘要:【目的】研究氮肥配施硝化抑制劑雙氰胺(DCD)對(duì)鮮食玉米生長(zhǎng)及N2O排放的影響,為指導(dǎo)海南鮮食玉米生產(chǎn)中氮肥一次性基施及降低N2O排放提供理論依據(jù)?!痉椒ā恳蕴K糯6號(hào)玉米品種為供試材料,通過田間小區(qū)試驗(yàn),設(shè)空白對(duì)照(CK,不施尿素)、氮肥一次性基施(S1,尿素+DCD)、氮肥2次施入(S2,尿素40%基施,60%于大喇叭口期追施)和氮肥3次施入(S3,尿素20%基施,40%于小喇叭口期追施,40%于抽雄期追施)4個(gè)處理。于每次施肥后的第2、5和8 d采集N2O氣體,之后按每周1次的頻率進(jìn)行采集,用于測(cè)定土壤N2O排放通量及累積排放量,施肥前和采氣時(shí)采集土壤樣品測(cè)定土壤pH等化學(xué)性質(zhì),玉米采收期測(cè)定植株生物量、產(chǎn)量、氮肥利用率等指標(biāo)?!窘Y(jié)果】各施氮處理土壤pH與CK無顯著差異(Pgt;0.05,下同),但S1處理土壤pH最低,且顯著低于S2處理(Plt;0.05,下同);S1處理顯著降低了土壤全氮含量,分別較S2和S3處理顯著降低6.15%和12.86%;S1處理有利于提高土壤有效磷含量,卻不利于速效鉀的積累,S2和S3處理對(duì)土壤有效磷和速效鉀含量無顯著影響。施氮顯著提高了玉米植株生物量和產(chǎn)量,且均以S1處理最高,S1處理玉米植株生物量分別較S2和S3處理顯著提高30.42%和10.95%,產(chǎn)量分別顯著提高13.37%和19.05%;S1處理氮肥利用率最高,分別較S2和S3處理顯著提高37.00%和59.38%;施氮顯著提高了玉米植株各器官氮含量,S1處理玉米植株累積氮含量分別較S2和S3處理顯著提高22.95%和34.69%;S1和S3處理有利于氮分配到莖葉上,而S2處理未改變氮的分配方式。施氮促進(jìn)了N2O排放,各施氮處理N2O累積排放量均顯著高于CK,以S2處理最高,S1和S3處理分別較S2處理降低54.46%和54.33%,S1和S3處理間無顯著差異。各處理的土壤HN4+-N含量在大喇叭口期至采收期有1次明顯的峰值,而土壤NO3--N含量峰值出現(xiàn)時(shí)間存在差異。相關(guān)分析結(jié)果表明,N2O排放通量與NO3--N含量和土壤含水量呈極顯著正相關(guān)(Plt;0.01,下同),而與5 cm土壤溫度呈極顯著負(fù)相關(guān)?!窘Y(jié)論】與分次施氮相比,氮肥配合硝化抑制劑一次性基施可顯著促進(jìn)海南鮮食玉米生長(zhǎng),提高玉米產(chǎn)量和氮肥利用率,同時(shí)降低N2O排放,可作為海南鮮食玉米的推薦施肥模式。
關(guān)鍵詞:鮮食玉米;氮肥;硝化抑制劑;玉米產(chǎn)量;氮肥利用率;N2O排放
中圖分類號(hào):S513.06.2 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2095-1191(2024)11-3265-10
Effects of nitrogen fertilizer combined with nitrification inhibi?tor on growth and N2O emission of fresh maize in Hainan
ZHANG Xue-bin1,2, MENG Lei1*, CAO Ming3, ZHENG Ji-cheng1, ZHU Qi-lin1, HU Tian-yi1, LIU Li-jun1, TANG Shui-rong1, WU Yan-zheng1, Ahmed Elrys1
(1School of Breeding and Multiplication, Hainan University, Sanya, Hainan 572025,China; 2Guangxi South Subtropical Agricultural Research Institute, Chongzuo, Guangxi 532400, China; 3Sanya Agro-technique Extension Center, Sanya, Hainan 572000, China)
Abstract:【Objective】In order to provide theoretical basis for guiding the one-time base application of nitrogen ferti- lizer and reducing N2O emission in the production of fresh maize in Hainan,the effects of nitrogen fertilizer combined with nitrification inhibitor dicyandiamide( DCD) on the growth and N2O emission of fresh maize were studied.【 Method】Sunuo No. 6 maize was selected as test material,and a field plot experiment was conducted. There are 4 treatments including con‐trol( CK,no urea applied),one-time base application of nitrogen fertilizer( S1,urea+DCD),two-time application of nitro‐gen fertilizer( S2,urea applied at 40% base,60% urea applied at large trumpet stage) and three-time application of nitro‐gen fertilizer( S3,urea applied at 20% base,40% urea was applied in the small trumpet stage,40% urea was applied in the tasseling stage). The N2O gas was collected at the 2nd,5th and 8th d after fertilization,and collected once each week later to determine the soil N2O emission flux and cumulative emission,soil samples were collected before fertilization and during gas extraction to determine soil pH and other chemical properties, plant biomass,yield and nitrogen use efficiency were determined during maize harvesting.【 Result】There was no significant difference between soil pH of nitrogen application treatment and CK( Pgt;0.05,the same below),but soil pH of S1 treatment was the lowest and significantly lower than that of S2 treatment( Plt;0.05,the same below). Compared with S2 and S3 treatments,S1 treatment significantly reduced soil total nitrogen content by 6.15% and 12.86% respectively. S1 treatment was beneficial to increase soil available P content,but not conducive to the accumulation of available potassium,S2 and S3 treatment has no significant effect on soil availa-ble phosphorus and available potassium content. Nitrogen application significantly increased maize plant biomass and yield,both values in S1 treatment were the highest. Compared with S2 and S3 treatments,S1 treatment significantly in‐creased maize plant biomass by 30.42% and 10.95%,and yield significantly increased by 13.37% and 19.05% respec‐tively. The nitrogen efficiency of S1 treatment was the highest,which was significantly increased by 37.00% and 59.38% compared with S2 and S3 treatment respectively. Nitrogen application significantly increased nitrogen content in maize or‐gans. The cumulative nitrogen uptake of maize plants under S1 treatment was 22.95% and 34.69% higher than that under S2 and S3 treatment respectively. S1 and S3 treatments were beneficial for nitrogen distribution to stems and leaves,but S2 treatments did not change the way of nitrogen distribution. Nitrogen application promoted N2O emission,and the cumu‐lative N2O emission of all nitrogen application treatments was significantly higher than that of CK,and the highest N2O emission was found in S2 treatment,which decreased by 54.46% and 54.33% in S1 and S3 treatments respectively,com‐pared with S2 treatment. The HN4+-N content of soil in each treatment had an obvious peak from the trumpet stage to the harvest stage,while the peak time of NO3--N content in soil was different. Correlation analysis results showed that N2O emission flux was extremely significantly and positively correlated with NO3--N content and soil water content( Plt;0.01,the same below), and extremely significantly and negatively correlated with 5 cm soil temperature. 【Conclusion】Com‐pared with multiple nitrogen application,nitrogen fertilizer combined with nitrification inhibitor one-time base application can significantly promote the fresh maize growth,yield,nitrogen efficiency and also reduce N2O emission at the same time. It can be used as the recommended fertilization mode for fresh maize in Hainan.
Key words: fresh maize; nitrogen fertilizer; nitrification inhibitor; maize yield; nitrogen use efficiency; N2O emi-ssion
Foundation items: National Natural Science Foundation of China(42067008); Hainan Natural Science Foundation for High-level Talents(320RC493)
【研究意義】玉米對(duì)氮素較敏感,在生產(chǎn)中具有氮肥投入量大、施肥次數(shù)多的特點(diǎn)(張林等,2021)。海南鮮食玉米種植過程中多采用基施復(fù)合肥,然后多次追施氮肥方式以提高產(chǎn)量(符佩嬌等,2021)。然而,多次施肥的后期田間操作難度較大,投入勞動(dòng)力較多,導(dǎo)致種植成本增加。若采用播種前將玉米整個(gè)生育期所需肥料一次性基施的“一炮轟”施肥方式,雖可提高勞動(dòng)效率、降低施肥成本(葛均筑等,2013),但增產(chǎn)效果不明顯,且氮肥利用率低,易造成氮肥流失,對(duì)生態(tài)環(huán)境構(gòu)成威脅(曾子豪等,2021;張林等,2021)。作為重要溫室氣體之一的氧化亞氮(N O),其排放量會(huì)隨著施氮量增加呈指數(shù)式增2長(zhǎng)(Wu et al.,2020;Shi et al.,2023)。海南作為全國(guó)著名旅游勝地,對(duì)生態(tài)環(huán)境質(zhì)量要求較高,鮮食玉米是海南冬季種植的重要經(jīng)濟(jì)作物,其農(nóng)田土壤N O2排放量對(duì)海南生態(tài)環(huán)境質(zhì)量有重要影響。因此,探究既能減少施氮次數(shù)、降低N2O排放量,又能保障鮮食玉米產(chǎn)量的施肥措施,對(duì)海南鮮食玉米產(chǎn)業(yè)高效發(fā)展及生態(tài)環(huán)境保護(hù)均具有重要意義。【前人研究進(jìn)展】前人研究表明,氮肥分次施用能及時(shí)為玉米生長(zhǎng)提供所需氮素,從而提高氮肥利用率,促進(jìn)玉米生長(zhǎng)和提高產(chǎn)量(王春虎和楊文平,2011;曾子豪等,2021),而氮肥一次性基施易受降雨和灌溉的影響,造成氮素隨水向土層下淋洗,導(dǎo)致作物生長(zhǎng)后期氮素供應(yīng)不足(Xu et al.,2018),進(jìn)而影響作物生長(zhǎng),同時(shí)加大N2O排放風(fēng)險(xiǎn)。朱永昶等(2016)研究表明,在華北的春玉米生長(zhǎng)季內(nèi),添加硝化抑制劑使N2O排放平均減少33.39%,同時(shí)促進(jìn)玉米增產(chǎn)6.35%。方雅各等(2018)通過室內(nèi)培養(yǎng)試驗(yàn)發(fā)現(xiàn),等氮量下普通氮肥分2次和3次施入引起的N2O排放量低于一次性施入氮肥。硝化抑制劑在肥料上的應(yīng)用,能延緩銨態(tài)氮向硝態(tài)氮的轉(zhuǎn)化,從而使銨態(tài)氮在土壤中保持較長(zhǎng)時(shí)間(Mukhtar and Lin,2019),以滿足作物生長(zhǎng)的需求,保證作物產(chǎn)量,同時(shí)提高氮肥利用率,減少氮肥流失,并降低N2O排放。符佩嬌等(2021)利用盆栽試驗(yàn)研究氮肥添加硝化抑制劑對(duì)海南鮮食玉米產(chǎn)量及N2O排放的影響,結(jié)果表明,氮肥添加硝化抑制劑一次性基施與氮肥未添加硝化抑制劑2次分施的玉米產(chǎn)量無顯著差異,但較3次分施顯著提高,同時(shí)還可降低N2O排放量。Dawar等(2021)研究表明,與單獨(dú)施用尿素相比,尿素配施硝化抑制劑(2-氯-6-三氯甲基吡啶)的玉米生物量和籽粒產(chǎn)量分別顯著提高23%和17%,而N2O排放量減少39%~43%。有機(jī)無機(jī)肥混合施用并添加硝化抑制劑(DMPP)玉米的N2O排放量較未添加顯著降低32.5%,而產(chǎn)量則無顯著差異(Dong et al.,2022)。張俊等(2024)研究表明,等氮量下,尿素配施硝化抑制劑一次性基施的夏玉米產(chǎn)量和氮肥利用率分別較尿素單獨(dú)施用顯著提高13.83%和67.53%。【本研究切入點(diǎn)】 硝化抑制劑的抑制效果受氣候、土壤類型和pH等諸多因素影響(De Antoni Migliorati et al.,2020;Dong et al.,2021;Meng et al.,2021),本課題組前期進(jìn)行了相關(guān)盆栽試驗(yàn)(符佩嬌等,2021),但盆栽試驗(yàn)環(huán)境與大田環(huán)境差異較大,研究結(jié)果不能直接用于指導(dǎo)田間施肥,需通過大田試驗(yàn)進(jìn)一步驗(yàn)證?!緮M解決的關(guān)鍵問題】通過田間小區(qū)試驗(yàn),探討氮肥配施硝化抑制劑處理對(duì)海南鮮食玉米生長(zhǎng)、氮肥利用率、N2O排放量及土壤化學(xué)性質(zhì)的影響,以期為指導(dǎo)海南鮮食玉米生產(chǎn)中氮肥一次性基施及降低N2O排放提供理論依據(jù)。
1 材料與方法
1. 1 試驗(yàn)地點(diǎn)及試驗(yàn)材料
試驗(yàn)地點(diǎn)位于海南省三亞市熱帶設(shè)施農(nóng)業(yè)科技示范園區(qū)(18°17′16″N,109°35′52″E)。該地年均氣溫25.5 ℃,年均降水量1347.5 mm。供試地塊土壤類型為潛育型水稻土,土壤質(zhì)地為黏壤土,pH 6.65,主要養(yǎng)分含量:有機(jī)質(zhì)7.25 g/kg、全氮0.62 g/kg、速效鉀114.00 mg/kg、有效磷51.29 mg/kg。
供試玉米品種為蘇糯6號(hào)(南京綠領(lǐng)種業(yè)有限公司)。硝化抑制劑為雙氰胺(DCD,有效成分含量98.0%,國(guó)藥集團(tuán)化學(xué)試劑有限公司)。
1. 2 試驗(yàn)方法
試驗(yàn)設(shè)4個(gè)處理:(1)空白(CK,不施尿素);(2)氮肥一次性基施(S1,尿素+尿素用量3.5%的DCD混勻一次性施入);(3)氮肥2次施入(S2,尿素40%基施,60%于大喇叭口期追施);(4)氮肥3次施入(S3,尿素20%基施,40%于小喇叭口期追施,40%于抽雄期追施)。每處理3次重復(fù),隨機(jī)排列。共12個(gè)小區(qū),小區(qū)長(zhǎng)11.0 m、寬4.3 m,面積為47.3 m2。壟寬及溝深均與當(dāng)?shù)胤N植習(xí)慣一致,各試驗(yàn)小區(qū)邊界用防水膜隔開,防止竄水竄肥。
玉米于2021年4月12日播種,6月20日采收,生育期69 d。種植密度為37230株/ha,株行距為39 cm×40 cm,每穴播種2粒,出苗7 d后開始間苗,每穴留苗1株。分別于4月11日施入基肥,5月5日追施小喇叭口期肥,5月20日追施大喇叭口期肥,5月27日追施抽雄期肥。各處理的基肥施入方式為撒施,即將肥料均勻施撒于土壤表面,然后用旋耕機(jī)將肥料旋入土壤中,追肥是將肥料撒入灌好水的施肥溝里。
試驗(yàn)肥料用量為N 180 kg/ha、P2O5 90 kg/ha和K2O 210 kg/ha,其中氮肥為尿素(N 46%),磷肥為過磷酸鈣(P2O5 16%),鉀肥為氯化鉀(K2O 60%)。所有處理的磷鉀肥均采用一次性基施方式。
1. 3 氣體樣品采集與測(cè)定
土壤N2O采用靜態(tài)箱法進(jìn)行采集(田偉等,2019)。該裝置由箱體(40 cm×40 cm×40 cm)和帶凹槽的底座組成,均為PVC材料,箱頂設(shè)有溫度計(jì)和帶有硅膠塞的氣孔,底座固定在玉米種植壟上。采氣時(shí)間為8:00—10:00,采氣頻率為每周1次,但在氮肥施入時(shí)須進(jìn)行加密采氣,即施肥后第2、5和8 d進(jìn)行采氣。采氣前在氣體收集箱的凹槽中注水,之后蓋上采氣箱,于蓋上采氣箱后的0、10和20 min分別采集氣體。采氣時(shí)使用100 mL針筒來回抽取數(shù)次,以混勻箱體內(nèi)部氣體,并抽取30 mL,注入20 mL真空玻璃瓶中。氣體采用津島GC-2014氣相色譜儀分析,檢測(cè)所用標(biāo)準(zhǔn)氣體由中國(guó)計(jì)量科學(xué)研究院提供。土壤N2O排放通量及累積排放量參照胡玉麟等(2019)的計(jì)算方法,公式如下:
式中,F(xiàn)為N2O排放通量[μg(/ m2·h)];ρ為標(biāo)準(zhǔn)狀態(tài)下N2O的密度(kg/m3);ΔC/Δt 為采樣過程中箱內(nèi)N2O排放速率;T為采樣時(shí)箱內(nèi)平均溫度(℃);h為采氣箱高度(m)。
式中,M為N2O累積排放量(μg/m2);Fi和Fi+1為第i次和第i+1次采氣時(shí)的N2O排放通量[μg(/ m2·h)]; t為采樣時(shí)間(d);i為采樣次數(shù);n為總測(cè)定次數(shù);ti+1和ti為第i+1和i次采樣的間隔天數(shù)。
1. 4 土壤樣品采集與測(cè)定
在施入基肥前采集土壤樣品測(cè)定土壤背景值,之后每采集一次氣體,同時(shí)測(cè)定5 cm深度土壤溫度并采集土壤樣品測(cè)定土壤含水量及銨態(tài)氮(NH4+-N)和硝態(tài)氮(NO3--N)含量。玉米采收結(jié)束后,每小區(qū)統(tǒng)一采集土壤樣品測(cè)定土壤化學(xué)性質(zhì)。本研究土壤樣品采集深度為0~20 cm。土壤含水量采用烘干法測(cè)定,NH4+-N和NO3--N含量采用AA3連續(xù)流動(dòng)分析儀測(cè)定,土壤pH采用pH計(jì)測(cè)定(水土比為2.5∶1),有機(jī)質(zhì)含量采用重鉻酸鉀—硫酸消化法測(cè)定,總氮含量采用半微量凱氏定氮法測(cè)定,有效磷含量采用鉬藍(lán)比色法測(cè)定,速效鉀含量采用火焰光度計(jì)法測(cè)定。
1. 5 植物樣品采集與測(cè)定
在玉米采收期,每小區(qū)挑選8株具有代表性的植株,測(cè)定玉米穗粒數(shù)、穗粒重和單穗重。以小區(qū)玉米鮮穗產(chǎn)量換算公頃產(chǎn)量。采樣時(shí)將植株連同根系一起挖出,洗凈根部泥土后用剪刀剪下所有根系,并分為根、莖葉和果穗,置于105 ℃烘箱內(nèi)殺青30 min后,于65 ℃下烘干至恒重,測(cè)定生物量。隨后將根、莖葉和果穗分別用粉碎機(jī)粉碎,采用H2SO4-H2O2消煮—?jiǎng)P氏定氮法測(cè)定氮含量,并計(jì)算氮肥利用率。
氮肥利用率(%)=(施氮區(qū)氮素累積量-不施氮區(qū)氮素累積量)/施氮量×100
1. 6 統(tǒng)計(jì)分析
采用Excel 2010進(jìn)行試驗(yàn)數(shù)據(jù)的整理,利用SPSS 17.0進(jìn)行數(shù)據(jù)的統(tǒng)計(jì)分析,處理間差異采用Duncan’s法進(jìn)行多重比較。
2 結(jié)果與分析
2. 1 不同施氮方式對(duì)土壤化學(xué)性質(zhì)的影響
由表1可知,不同處理的土壤化學(xué)性質(zhì)存在一定差異。各施氮處理的土壤pH與CK均無顯著差異(Pgt;0.05,下同),S1處理與S3處理的土壤pH差異不顯著,但顯著低于S2處理(Plt;0.05,下同);不同處理間土壤有機(jī)質(zhì)含量均無顯著差異;S1處理的土壤全氮含量較CK顯著降低,而S3處理則較CK顯著提高,各施氮處理間比較,S1處理的土壤全氮含量分別較S2和S3處理顯著降低6.15%和12.86%;S2和S3處理與CK的土壤有效磷和速效鉀含量無顯著差異,CK、S2和S3處理的有效磷含量均顯著低于S1處理,而速效鉀含量則均顯著高于S1處理。
2. 2 不同施氮方式對(duì)玉米生長(zhǎng)及產(chǎn)量的影響
由表2可知,施氮能顯著改善玉米產(chǎn)量構(gòu)成因素,從而提高玉米產(chǎn)量,各施氮處理的穗粒數(shù)、穗粒重、單穗重和產(chǎn)量均顯著高于CK。各施氮處理間,S1處理的穗粒數(shù)、穗粒重和單穗重均顯著高于S2和S3處理,S2處理的穗粒數(shù)和單穗重與S3處理無顯著差異,但穗粒重顯著高于S3處理。S1處理的玉米產(chǎn)量分別較S2和S3處理顯著提高13.37%和19.05%,S2和S3處理的產(chǎn)量差異不顯著。由圖1可看出,施氮還顯著提高了玉米植株生物量,不同處理間差異均達(dá)顯著水平,其中S1處理的玉米植株生物量最高,為6176.73 kg/ha,分別較S2和S3處理顯著提高30.42%和10.95%。
2. 3 不同施氮方式對(duì)玉米氮含量及氮肥利用率的
影響
由表3可知,施氮顯著提高了玉米植株各器官氮含量,且不同施氮處理間也存在明顯差異。各施氮處理根、莖葉和果穗的氮含量均顯著高于CK,且均以S1處理最高。S1處理的根和莖葉氮含量均顯著高于S2和S3處理,果穗氮含量顯著高于S3處理,與S2處理無顯著差異。S2處理的果穗氮含量高于莖葉,而S1和S3處理則相反,說明S1和S3處理有利于氮分配到莖葉上,S2處理未改變氮的分配方式。S1、S2和S3處理的玉米植株累積氮含量均顯著高于CK,且以S1處理最高,分別較S2和S3顯著提高22.95%和34.69%。S1處理的氮肥利用率最高,為52.50%,分別較S2和S3處理顯著提高37.00%和59.38%。
2. 4 不同施氮方式對(duì)土壤N2O排放的影響
由圖2可知,施氮可促進(jìn)N2O排放,不同施氮處理間存在差異。各施氮處理第1次N2O排放均在施入基肥后第2 d開始起峰,并在第6 d達(dá)峰值,依次為S2gt;S3gt;S1gt;CK,S1和S3處理的峰值分別較S2處理低62.27%和39.69%,各處理從起峰至結(jié)束大約持續(xù)21 d。各施氮處理第2次和第3次N2O排放峰值均在小喇叭口期和大喇叭口期追肥后的第2 d后出現(xiàn),S3處理的第2次排放峰值最高,為101.65 μg(/ m2·h),在第3次排放峰值中,S2和S3處理均高于CK,而S1處理則低于CK,各處理在抽穗期追肥后峰值不明顯。
由圖3可看出,各施氮處理土壤N2O累積排放量均顯著高于CK,且以S2處理最高;S1和S3處理土壤N2O累積排放量分別較S2處理顯著降低54.46%和54.33%,且二者無顯著差異。
2. 5 不同施氮方式土壤礦質(zhì)氮含量變化
由圖4可看出,各處理土壤的HN4+-N含量在大喇叭口期至采收期有1次明顯的峰值,且均在5月28日出現(xiàn),S1處理的峰值為82.54 mg/kg,明顯高于其他處理,S1處理從開始起峰至結(jié)束持續(xù)11 d,較S2和S3處理延長(zhǎng)6 d,且起峰時(shí)間提前3 d。
由圖5可看出,各處理的土壤NO3--N含量峰值出現(xiàn)時(shí)間存在差異。S1處理于5月26日出現(xiàn)峰值,其他處理則為5月28日,此時(shí)S2處理為大喇叭口期追肥后第9 d,S3處理為抽雄期追肥后第2 d,各施氮處理峰值排序?yàn)镾2處理(155.00 mg/kg)gt;S1處理(108.41 mg/kg)gt;S3處理(6.54 mg/kg)。CK和S3處理的土壤NO3--N含量一直處于較低水平。
2. 6 N2O排放通量與環(huán)境因子的相關(guān)性
由表4可知,玉米種植期間土壤N2O排放受環(huán)境因子的影響。N2O排放通量與NO3--N含量和土壤含水量呈極顯著正相關(guān)(Plt;0.01,下同),而與5 cm土壤溫度呈極顯著負(fù)相關(guān);土壤NH4+-N含量與N2O排放通量相關(guān)性不顯著。
3 討論
施入土壤中的尿素可在脲酶催化下迅速水解成NH4+-N,隨后被硝化微生物轉(zhuǎn)化為NO3--N(王峰等,2015),而硝化抑制劑能抑制NH4+-N氧化為NO3--N,延長(zhǎng)或調(diào)整氮供應(yīng)時(shí)間(Trenkel,1997),有利于NH4+-N在土壤中累積。本研究發(fā)現(xiàn),從大喇叭口期至采收期,各處理土壤NH+-N峰值以S1處理最高,4
S1處理從開始起峰至結(jié)束持續(xù)11 d,較其他處理延長(zhǎng)6 d,且起峰時(shí)間提前3 d,各施氮處理NO3--N峰值排序?yàn)镾2處理gt;S1處理gt;S3處理。與符佩嬌等(2021)的研究結(jié)果相似,即氮肥添加硝化抑制劑處
理的土壤NH4+-N含量高于未添加硝化抑制劑處理。
玉米為喜氮作物,其產(chǎn)量增加需投入較多的氮肥,在需肥期及時(shí)施用氮肥可保證玉米植株正常生長(zhǎng)和產(chǎn)量提高,也能促進(jìn)氮肥的吸收利用(夏來坤等,2011;Abbasi et al.,2013;王帥麗等,2023)。氮肥能促進(jìn)玉米穗粒數(shù)增加,提高籽粒飽滿度(鄭惠玲等,2007),大喇叭口期到籽粒建成期是氮素吸收的關(guān)鍵期(譚金芳,2003;郭慶法等,2004)。本研究發(fā)現(xiàn),各施氮處理玉米穗粒數(shù)、穗粒重、植株生物量和產(chǎn)量均顯著高于CK,其中S1處理的穗粒數(shù)、穗粒重、單穗重、產(chǎn)量及植株生物量均為最高,氮肥利用率也最高。該結(jié)果與孫愛文等(2005)研究指出尿素配合硝化抑制劑DCD施用使玉米產(chǎn)量提高15%~20%的結(jié)果相似,可能是因?yàn)橄趸种苿〥CD能延長(zhǎng)肥效時(shí)間,使玉米在不同生育期對(duì)氮素的需求量與肥料供應(yīng)量相同步(Abalos et al.,2014;Fu et al.,2020;Cui et al.,2021),提高了玉米對(duì)氮素的吸收利用,從而促進(jìn)玉米生長(zhǎng)和產(chǎn)量提高。本研究還發(fā)現(xiàn),S3處理土壤全氮含量最高,S2處理次之,S1處理最低,而氮肥利用率則呈相反趨勢(shì)。這可能是S1處理的玉米吸收了土壤中大量的氮素,導(dǎo)致土壤氮含量減少,因此S1處理土壤中氮含量最低。此外,土壤中有效磷和速效鉀含量也與氮肥的吸收利用有關(guān)。本研究中,S1處理土壤有效磷含量顯著高于S2和S3處理,而速效鉀含量卻顯著降低??赡苁堑侍砑覦CD促進(jìn)玉米對(duì)氮素吸收的同時(shí)也增加了對(duì)鉀的需求量(李強(qiáng)等,2018),而氮鉀需求量增加反而抑制了玉米對(duì)磷的吸收。
硝化和反硝化作用是農(nóng)田土壤中N2O產(chǎn)生的主要途徑(Grassmann et al.,2022),氮肥在脲酶的催化作用下迅速水解成NH4+-N,隨著土壤NH4+-N含量的升高,硝化微生物將NH4+-N氧化為 NO3--N,而硝化作用產(chǎn)生的NO--N又成為反硝化微生物反硝化作3
用底物,兩種作用共同促進(jìn)了N2O排放(Fujimura et al.,2020),N2O排放量隨著氮肥施用量的增加而增加(Mosier et al.,1997)。本研究發(fā)現(xiàn),各施氮處理第1次N2O排放峰值排序?yàn)镾2處理gt;S3處理gt;S1處理,而氮肥施入量則為S1處理gt;S2處理gt;S3處理,在土壤N2O累積排放量中,S1和S3處理較S2處理顯著降低,且S1處理玉米植株累積氮含量和氮肥利用率均較S2和S3處理顯著提高。研究表明,DCD主要通過對(duì)硝化作用的抑制,延緩NH4+-N氧化為NO3--N,降低NO3--N含量,以減少N2O排放(Snyder et al.,2009),而植物生長(zhǎng)過程中對(duì)氮的吸收利用也會(huì)減少硝化或反硝化作用所需氮源,從而降低N O排放(2楊蘭芳和蔡祖聰,2005)。因此S1處理N O排放量2低于S2處理。與此同時(shí),添加硝化抑制劑增加土壤中NH+-N濃度的同時(shí),也可能會(huì)造成NH揮發(fā)(魯艷43紅等,2018),使得N2O排放減少,而這一現(xiàn)象更容易在堿性土壤中出現(xiàn)(Mahmood et al.,2011)。張琳等(2015)、廖歡等(2020)研究發(fā)現(xiàn),施用DCD分別使溫室黃瓜和棉田土壤NH3揮發(fā)提高34.3%~40.4%和21.30%。但也有不同觀點(diǎn),聶文靜等(2012)、尹興等(2018)的研究發(fā)現(xiàn)施用DCD分別使棚室黃瓜和溫室番茄土壤NH揮發(fā)降低43.7%~66.5%和21.9%3。DCD對(duì)土壤NH揮發(fā)的影響與使用濃度、作物體3系和土壤理化性質(zhì)有關(guān),需根據(jù)實(shí)際使用情況而定。本研究中的試驗(yàn)土壤為弱酸性,作物為玉米,DCD在此環(huán)境中對(duì)NH3揮發(fā)的影響還有待進(jìn)一步研究。
DCD的應(yīng)用效果受土壤類型、土壤環(huán)境和降水量等多種因素影響。研究表明,粗質(zhì)地土壤中配施DCD能避免氮肥流失,保持肥效(Di et al.,2007),而高有機(jī)質(zhì)含量土壤會(huì)顯著降低DCD的抑制效果(史云峰等,2011),同時(shí)硝化抑制劑的抑制效果和持續(xù)作用時(shí)間隨溫度升高而降低(Guiraud and Marol,1992;史云峰等,2011)。年降水量和土壤含水量也會(huì)對(duì)DCD的作用效果產(chǎn)生影響,當(dāng)年降水量為1140和2280 mm時(shí),不同類型土壤中DCD流失率為12%~46%(Shepherd et al.,2012),土壤含水量由12%增加到24%時(shí),抑制作用持續(xù)時(shí)間從90 d降低至60 d(史云峰等,2011)。本研究中,土壤類型為潛育型水稻土,質(zhì)地為黏壤土,保水保肥效果較好,DCD不易流失,同時(shí)試驗(yàn)土壤的弱酸性和低有機(jī)質(zhì)含量較有利于DCD發(fā)揮硝化抑制作用。在試驗(yàn)過程中無明顯強(qiáng)降雨天氣,且在施肥后較長(zhǎng)一段時(shí)間才出現(xiàn)降雨,施肥方式為DCD與氮肥配施并旋入土壤中,受外界環(huán)境因素影響較小,因此能確保DCD的作用效果和持續(xù)作用時(shí)間。
本研究的相關(guān)分析結(jié)果表明,N2O排放通量與5 cm土壤溫度呈極顯著負(fù)相關(guān),與土壤NO3--N含量及含水量呈極顯著正相關(guān)。在高溫環(huán)境中,土壤孔隙逐漸充滿氧氣,促進(jìn)了N2O通過完全反硝化過程轉(zhuǎn)化為N,使得N O含量減少,因此土壤N O排放222通量與5 cm土壤溫度呈極顯著負(fù)相關(guān)。此外,海南常年高溫高濕,有利于土壤硝化和反硝化微生物生長(zhǎng),施入土壤中的氮在硝化微生物作用下生成NO--N,3
并經(jīng)硝化和反硝化微生物共同作用形成N2O排放,且NO3--N是N2O形成的主要來源,因此N2O排放通量與NO3--N含量呈極顯著正相關(guān)。研究表明,當(dāng)土壤濕度達(dá)90%~100%田間持水量或77%~86%土壤充水孔隙度(WFPS)時(shí),土壤N2O排放量最高(Lou‐ren?o et al.,2018),也有研究表明,當(dāng)土壤含水量為WFPS的45%~75%時(shí),也會(huì)產(chǎn)生較多的N O(Shaa2‐ban et al.,2018)。N O排放通量與土壤含水量呈2極顯著正相關(guān),可能是由于土壤中NH4+-N和NO3--N的分布及微生物活性受土壤含水量影響,從而影響硝化和反硝化作用。
4 結(jié)論
與分次施氮相比,氮肥配合硝化抑制劑一次性基施可促進(jìn)海南鮮食玉米生長(zhǎng),提高玉米產(chǎn)量和氮肥利用率,同時(shí)降低N2O排放,可作為海南鮮食玉米種植的推薦施肥模式。
參考文獻(xiàn)((References)):
方雅各,解鈺,王麗華,楊霖,趙伶茹,賴倩倩,田偉,孟磊. 2018. 等氮量下不同分施次數(shù)對(duì)燥紅壤N2O排放的影響[J]. 土壤,50(2):347-352.[ Fang Y G,Xie Y,Wang L H,Yang L,Zhao L R,Lai Q Q,Tian W,Meng L. 2018. Effects of different nitrogen application times on N2O emission in dry red soi[l J]. Soils,50(2):347-352.] doi:10.13758/j.cnki.tr.2018.02.018.
符佩嬌,吉恒寬,何秋香,湯水榮,王鴻浩,伍延正,孟磊. 2021. 氮肥分施次數(shù)及硝化抑制劑對(duì)盆栽玉米N2O排放的影響[J]. 環(huán)境科學(xué),42(9):4538-4547.[ Fu P J,Ji H K,He Q X,Tang S R,Wang H H,Wu Y Z,Meng L. 2021. Effects of nitrogen fertilizer application times and nitrifica‐tion inhibitor on N2O emission from potted maize[J]. En-vironmental Science,42(9):4538-4547.] doi:10.13227/j.hjkx.202101003.
葛均筑,展茗,趙明,李建鴿,李淑婭,田少陽. 2013. 一次性施肥對(duì)長(zhǎng)江中游春玉米產(chǎn)量及養(yǎng)分利用效率的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),19(5):1073-1082.[ Ge J Z,Zhan M,Zhao M,Li J G,Li S Y,Tian S Y. 2013. Effects of single basal fertilization on yield and nutrient use efficiencies of spring maize in the middle reaches of Yangtze River[J]. Journal of Plant Nutrition and Fertilizers,19(5):1073-1082.] doi:10.11674/zwyf.2013.0506.
郭慶法,王慶成,汪黎明. 2004. 中國(guó)玉米栽培學(xué)[M]. 上海:上??茖W(xué)技術(shù)出版社.[ Guo Q F,Wang Q C,Wang L M. 2004. China corn cultivation[M]. Shanghai:Shanghai Scien-ce and Technology Press.]
胡玉麟,湯水榮,陶凱,何秋香,田偉,秦興華,伍延正,孟磊. 2019. 優(yōu)化施肥模式對(duì)我國(guó)熱帶地區(qū)水稻—豇豆輪作系統(tǒng)N2O和CH4排放的影響[J]. 環(huán)境科學(xué),40(11):5182-5190.[ Hu Y L,Tang S R,Tao K,He Q X,Tian W,Qin X H,Wu Y Z,Meng L. 2019. Effects of optmizing fertiliza‐tion on N2O and CH4 emission in a paddy-cowpa rotation system in the tropical region of China[J]. Environmental Science,40(11):5182-5190.] doi:10.13227/j.hjkx.20190 5095.
李強(qiáng),孔凡磊,袁繼超. 2018. 氮肥運(yùn)籌對(duì)不同氮效率玉米品種干物質(zhì)生產(chǎn)及產(chǎn)量的影響[J]. 華北農(nóng)學(xué)報(bào),33(6):174-182. [Li Q,Kong F L,Yuan J C. 2018. Effects of nitrogen fertilizer operation on dry matter production and yield of maize cultivars with contrasting nitrogen effi‐ciency[J]. Acta Agriculturae Boreali-Sinica,33(6):174-182.] doi:10.7668 /hbnxb.2018.06.024.
廖歡,王方斌,劉凱,殷星,候振安. 2020. 不同施氮措施配合硝化抑制劑對(duì)滴灌棉田土壤NH3揮發(fā)和N2O排放的影響[J]. 西北農(nóng)業(yè)學(xué)報(bào),29(9):1378-1388.[ Liao H,Wang F B,Liu K,Yin X,Hou Z A. 2020. Effects of nitrogen appli‐cation combined with nirification inhibitors on NH3 volati-lization and N2O emission in drip-irrigated cotton field[J]. Acta Agriculturae Boreali-Occidentalis Sinica,29(9):1378-1388.] doi:10.7606/j.issn.1004-1389.2020.09.011.
魯艷紅,聶軍,廖育林,周興,王宇,湯文光. 2018. 氮素抑制劑對(duì)雙季稻產(chǎn)量、氮素利用效率及土壤氮平衡的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),24(1):95-104.[ Lu Y H,Nie J,Liao Y L,Zhou X,Wang Y,Tang W G. 2018. Effects of urease and nitrification inhibititors on yield,nitrogen effi‐ciency and soil nitrogen balance under double-rice crop‐ping system[J]. Journal of Plant Nutrition and Fertilizer,24(1):95-104.] doi:10.11674/zwyf.17072.
聶文靜,李博文,郭艷杰,王小敏,韓曉莉. 2012. 氮肥與DCD配施對(duì)棚室黃瓜土壤NH3揮發(fā)損失及N2O排放的影響[J]. 環(huán)境科學(xué)學(xué)報(bào),32(10):2500-2508.[ Nie W J,Li B W,Guo Y J,Wang X M,Han X L. 2012. Effects of nitro‐gen fertilizer and DCD application on ammonia volatiliza‐tion and nitrous oxide emission from soil with cucumber growing in greenhouse[J]. Acta Scientiae Circumstantiae,32(10):2500-2508.] doi:10.13671/j.hjkxxb.2012.10.027.
史云峰,趙牧秋,張麗莉. 2011. 雙氰胺(DCD)在磚紅壤中硝化抑制效果的影響因素研究[J]. 安徽農(nóng)業(yè)科學(xué),39(33):20437-20440. [Shi Y F,Zhao M Q,Zhang L L. 2011. Research on the factors affecting nitrification inhibition of dicyandiamide(DCD)in latoso[l J]. Journal of Anhui Agri‐cultural Sciences,39(33):20437-20440.] doi:10.13989/j.cnki.0517-6611.2011.33.160.
孫愛文,石元亮,朱志鋒,尹宏斌. 2005. 硫脲及抑制劑組合對(duì)土壤尿素氮轉(zhuǎn)化和玉米產(chǎn)量的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),11(4):481-486.[ Sun A W,Shi Y L,Zhu Z F,Yin H B. 2005. Effect of combination of thiourea and inhibitors on soil urea-ntransformation and corn yield[J]. Journal of Plant Nutrition and Fertilizers,11(4):481-486.] doi:10. 3321/j.issn:1008-505X.2005.04.009.
譚金芳. 2003. 作物施肥原理與技術(shù)[M]. 北京:中國(guó)農(nóng)業(yè)大學(xué)出版社. [Tan J F. 2003. Principles and techniques of crop fertilization[M]. Beijing:China Agricultural Univer‐sity Press.]
田偉,伍延正,湯水榮,胡玉麟,賴倩倩,文冬妮,孟磊,吳川德. 2019. 不同施肥模式對(duì)熱區(qū)晚稻水田CH4和N2O排放的影響[J]. 環(huán)境科學(xué),40(5):2426-2434.[ Tian W,Wu Y Z,Tang S R,Hu Y L,Lai Q Q,Wen D N,Meng L,Wu C D. 2019. Effects of different fertilization modes on greenhouse gas emission characteristics of paddy fields in hot areas[J]. Environmental Science,40(5):2426-2434.] doi:10.13227/j.hjkx.201808221.
王春虎,楊文平. 2011. 不同施肥方式對(duì)夏玉米植株及產(chǎn)量性狀的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào),27(9):305-308.[ Wang C H,Yang W P. 2011. Character studying in maize plants and yield impact about different fertilization methods[J]. Chi‐nese Agricultural Science Bulletin,27(9):305-308.]
王峰,陳玉真,尤志明,吳志丹,江福英,張文錦,翁伯琦. 2015. 不同施氮量對(duì)兩種茶園土壤硝化作用和pH值的影響[J]. 茶葉科學(xué),35(1):82-90.[ Wang F,Chen Y Z,You Z M,Wu Z D,Jiang F Y,Zhang W J,Weng B Q. 2015. Effects of different nitrogen application rates on nitrification and pH of two tea garden soi[l J]. Journal of Tea Science,35(1):82-90.] doi:10.13305/j.cnki.jts.2015. 01.016.
王帥麗,穆心愿,楊豫龍,徐佳敏,劉天學(xué),溫濤,付景,鄭玉珍,趙亞麗,李鴻萍,張改平,趙霞. 2023. 供氮水平對(duì)不同氮效率玉米品種氮素吸收、干物質(zhì)形成及產(chǎn)量的影響[J]. 玉米科學(xué),31(4):118-130.[ Wang S L,Mu X Y,Yang Y L,Xu J M,Liu T X,Wen T,F(xiàn)u J,Zheng Y Z,Zhao Y L,Li H P,Zhang G P,Zhao X. 2023. Effects of nitrogen supply levels on nitrogen uptake,dry matter production and yield of maize varieties with different nitrogen effi‐ciency[J]. Journal of Maize Sciences,31(4):118-130.]
doi:10.13597/j.cnki.maize.science.20230415.
夏來坤,陶洪斌,王璞,許學(xué)斌,魯來清,王潤(rùn)正. 2011. 施氮期對(duì)夏玉米氮素積累運(yùn)轉(zhuǎn)及氮肥利用的影響[J]. 玉米科學(xué),19(1):112-116.[ Xia L K,Tao H B,Wang P,Xu X B,Lu L Q,Wang R Z. 2011. Effects of nitrogen application period on nitrogen accumulation,translocation and nitro‐gen use efficiency of summer maize[J]. Journal of Maize Sciences,19(1):112-116.] doi:10.13597/j.cnki.maize.science.2011.01.031.
楊蘭芳,蔡祖聰. 2005. 施氮和玉米生長(zhǎng)對(duì)土壤氧化亞氮排放的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),16(1):100-104.[ Yang L F,Cai Z C. 2005. Effects of N application and maize growth on N2O emission from soi[l J]. Chinese Journal of Applied Ecology,16(1):100-104.] doi:10.13287/j.1001-9332.2005. 0395.
尹興,張麗娟,李博文,劉文菊,郭艷杰,李玉濤. 2018. 氮肥與雙氰胺配施對(duì)溫室番茄生產(chǎn)及活性氮排放的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),51(9):1725-1734.[ Yin X,Zhang L J,Li B W,Liu W J,Guo Y J,Li Y T. 2018. Effects of nitrogen fer‐tilizer and dicyandiamide application on tomato growth and reactive nitrogen emissions in greenhouse[J]. Scientia Agricultura Sinica,51(9):1725-1734.] doi:10.3864/j.issn. 0578-1752.2018.09.010.
曾子豪,袁靜超,張水梅,程松,張暢,梁堯,劉松濤,任軍,劉劍釗,蔡紅光. 2021. 氮肥一次性基施與分次施用對(duì)春玉米氮素利用的差異[J]. 玉米科學(xué),29(5):151-157.[ Zeng Z H,Yuan J C,Zhang S M,Cheng S,Zhang C,Liang Y,Liu S T,Ren J,Liu J Z,Cai H G. 2021. Effects of different nitrogen fertilization application methods on nitrogen utili‐zation of spring maize[J]. Journal of Maize Sciences,29(5):151-157.] doi:10.13597/j.cnki.maize.science.20210520.
張林,武文明,陳歡,陳洪儉,彭晨,王世濟(jì),曹承富. 2021. 氮肥運(yùn)籌方式對(duì)土壤無機(jī)氮變化、玉米產(chǎn)量和氮素吸收利用的影響[J]. 中國(guó)土壤與肥料,(4):126-134.[ Zhang L,Wu W M,Chen H,Chen H J,Peng C,Wang S J,Cao C F. 2021. Effect of nitrogen management on dynamic changes of soil inorganic nitrogen,yield,nitrogen uptake and utili‐zation of maize[J]. Soil and Fertilizer Sciences in China,(4):126-134.] doi:10.11838/sfsc.1673-6257.20285.
張琳,孫卓玲,馬理,吉艷芝,巨曉棠,張麗娟. 2015. 不同水氮條件下雙氰胺(DCD)對(duì)溫室黃瓜土壤氮素?fù)p失的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),21(1):128-137.[ Zhang L,Sun Z L,Ma L,Ji Y Z,Ju X T,Zhang L J. 2015. Effects of dicyandiamide on nitrogen loss from cucumber planting soil in intensive greenhouse under different irrigation and nitrogen conditions[J]. Journal of Plant Nutrition and Fer‐tilizer,21(1):128-137.] doi:10.11674/zwyf.2015.0114.
鄭惠玲,姬變英,武繼承,史福剛. 2007. 氮肥分期施用對(duì)夏玉米生長(zhǎng)發(fā)育和產(chǎn)量的影響[J]. 河南農(nóng)業(yè)科學(xué),(10):67-69.[ Zheng H L,Ji B Y,Wu J C,Shi F G. 2007. Effects of nitrogen fertilizer application on terms on the growth development and yield of corn[J]. Journal of Henan Agri‐cultural Sciences,(10):67-69.] doi:10.15933/j.cnki.1004-3268.2007.10.019.
張俊,王小昌,崔曉路,李澳旗,趙璐,胡田田. 2024. 灌溉量和氮肥增效劑對(duì)夏玉米產(chǎn)量及水肥利用的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,42(1):123-132.[ Zhang J,Wang X C,Cui X L,Li A Q,Zhao L,Hu T T. 2024. Effects of irrigation amount and nitrogen synergists on yield and utilization of water and fertilizer of summer maize[J]. Agricultural Research in the Arid Areas,42(1):123-132.] dio:10.7606/j.issn.1000-7601.2024.01.12.
朱永昶,李玉娥,秦曉波,段智源,萬運(yùn)帆,周偉平,王斌,何佳男. 2016. 控釋肥和硝化抑制劑對(duì)華北春玉米N2O排放的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),35(7):1421-1428.[ Zhu Y C,Li Y E,Qin X B,Duan Z Y,Wan Y F,Zhou W P,Wang B,He J N. 2016. Effects of controlled release ferti-lizer and nitrification inhibitor additions on nittrous oxide emissions from spring maize field in Northern China[J]. Journal of Agro-Environment Science,35(7):1421-1428.] doi:10.11654/jaes.2016.07.027.
Abalos D,Jeffery S,Sanz-Cobena A,Guardia G,Vallejo A. 2014. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency[J]. Agriculture,Ecosystems and Environment,189:136-144. doi:10.1016/j.agee.2014.03.036.
Abbasi M K,Tahir M M,Rahim N. 2013. Effect of N fertilizer source and timing on yield and N use efficiency of rainfed maize( Zea mays L.)in Kashmir-Pakistan[J]. Geoderma,195:87-93. doi:10.1016/j.geoderma.2012.11.013.
Cui L,Li D P,Wu Z J,Xue Y,Xiao F R,Zhang L L,Song Y C,Li Y H,Zheng Y,Zhang J M,Cui Y K. 2021. Effects of nitrification inhibitors on soil nitrification and ammonia volatilization in three soils with different pH[J]. Agro-nomy,11(8):1674. doi:10.3390/agronomy11081674.
Dawar K,Sardar K,Zaman M,Müller C,Sanz-cobena A,Khan A,Borzouei A,Pérez-castillo A G. 2021. Effects of the nitrification inhibitor nitrapyrin and the plant growth regulator gibberellic acid on yield-scale nitrous oxide emis‐sion in maize fields under hot climatic conditions[J]. Pe-dosphere,31(2):323-331. doi:10.1016/S1002-0160(20)60076-5.
De Antoni Migliorati M,Parton W J,Bell M J,Wang W J,Grace P R. 2020. Soybean fallow and nitrification inhibi‐tors:Strategies to reduce N2O emission intensities and N losses in Australian sugarcane cropping systems[J]. Agri‐culture,Ecosystems amp; Environment,306:107150. doi:10. 1016/j.agee.2020.107150.
Di H J,Cameron K C,Sherlock R R. 2007. Comparison of the effectiveness of a nitrification inhibitor,dicyandiamide,in reducing nitrous oxide emissions in four different soils under different climatic and management conditions[J]. Soil Use and Management,23(1):1-9. doi:10.1111/j.1475-
2743.2006.00057.x.
Dong G,Xiao D,Zhang C H. 2021. The effect of nitrification inhibitors on nitrogen cycle:A comprehensive review[J]. IOP Conference Series:Earth and Environmental Science,690:012012. doi:10.1088/1755-1315/690/1/012012.
Dong D,Yang W C,Sun H,Kong S,Xu H. 2022. Effects of ani‐mal manure and nitrification inhibitor on N2O emissions and soil carbon stocks of a maize cropping system in Northeast China[J]. Scientific Reports,12(1):15202. doi:10.1038/s41598-022-19592-9.
Fu Q L,Abadie M,Blaud A,Carswell A,Misselbrook T H,Clar I M,Hirsch P R. 2020. Effects of urease and nitrifica‐tion inhibitors on soil N,nitrifier abundance and activity in a sandy loam soi[l J]. Biology and Fertility of Soils,56(2):185-194. doi:10.1007/s00374-019-01411-5.
Fujimura R,Azegami Y,Wei W,Kakuta H,Shiratori Y,Ohte N,Senoo K,Otsuka S,Isobe K. 2020. Distinct community composition of previously uncharacterized denitrifying bacteria and fungi across different land-use types[J]. Mi-crobes and environments,35(1):ME19064. doi:10.1264/jsme2.ME19064.
Grassmann C S,Mariano E,Diniz P P,Borges B M F,Borges C D,Tsai S M,Rosolem C A. 2022. Functional N-cycle genes in soil and N2O emissions in tropical grass-maize intercropping systems[J]. Soil Biology and Biochemistry,169:108655. doi:10.1016/j.soilbio.2022.108655.
Guiraud G,Marol C. 1992. Influence of temperature on miner‐alization kinetics with a nitrification inhibitor(mixture of dicyandiamide and ammonium thiosulphate)[J]. Biology and Fertility of Soils,13(1):1-5. doi:10.1007/BF00337229.
Louren?o K S,Dimitrov M R,Pijl A,Soares J R,do Carmo J B,van Veen J A,Cantarella H,Kuramae E E. 2018. Domi‐nance of bacterial ammonium oxidizers and fungal denitri‐fiers in the complex nitrogen cycle pathways related to nitrous oxide emission[J]. Global Change Biology Bioe-nergy,10(9):645-660. doi:10.1111/gcbb.12519.
Mahmood T,Ali R,Latif Z,Ishaque W. 2011. Dicyandiamide in creases the fertilizer N loss from an alkaline calcareous soil treated with 15N-labelled urea under warm climate and under different crop[s J]. Biology and Fertility of Soils,47:619-631. doi:10.1007/s00374-011-0559-z.
Meng Y L,Wang J,Wei Z,Dodla S,F(xiàn)ultz L,Gaston L,Xiao R,Park J H,Scaglia G. 2021. Nitrification inhibitors reduce nitrogen losses and improve soil health in a subtropical pastureland[J]. Geoderma,388:114947. doi:10.1016/j.geoderma.2021.114947.
Mosier A R,Parton W J,Valentine D W,Ojima D S,Schimel D S,Heinemeyer O. 1997. CH4 and N2O fluxes in the Colo‐rado shortgrass steppe:2. long-term impact of land use change[J]. Global Biogeochemical Cycles,11(1):29-42. doi:10.1029/96GB03612.
Mukhtar H,Lin Y P. 2019. Soil nitrification potential influences the performance of nitrification inhibitors DCD and DMPP in cropped and non-cropped soils[J]. Agronomy,9(10):599. doi:10.3390/agronomy9100599.
Shaaban M,Wu Y P,Khalid M S,Peng Q A,Xu X Y,Wu L,Younas A,Bashir S,Mo Y L,Lin S,Zafar-ul-Hye M,Abid M,Hu R G. 2018. Reduction in soil N O emissions by pH2 manipulation and enhanced nosZ gene transcription under different water regimes[J]. Environmental Pollution,235:625-631. doi:10.1016/j.envpol.2017.12.066.
Shepherd M,Wyatt J,Welten B. 2012. Effect of soil type and rainfall on dicyandiamide concentrations in drainage from lysimeters[J]. Soil Research,50(1):67-75.
Shi W,F(xiàn)ang Y R,Chang Y,Xie G H. 2023. Toward sustainable utilization of crop straw:Greenhouse gas emissions and their reduction potential from 1950 to 2021 in China[J]. Resources,Conservation and Recycling,190:106824. doi:10.1016/j.resconrec.2022.106824.
Snyder C S,Bruulsema T W,Jensen T L,F(xiàn)ixen P E. 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects[J]. Agriculture,Ecosystems and Environment,133(3-4):247-266. doi:10. 1016/j.agee.2009.04.021.
Trenkel M E. 1997. Controlled-release and stabilized fertilizer‐sin agriculture[M]. Paris:International Fertilizer Industry Association.
Wu D,Zhang YX,Dong G,Du Z L,Wu W L,Chadwick D,Bol R. 2020. The importance of ammonia volatilization in esti‐mating the efficacy of nitrification inhibitors to reduce N2O emissions:A global meta-analysis[J]. Environmental
Pollution,271:116365. doi:10.1016/j.envpol.2020.116365.Xu J Z,Wei Q,Yang S H,Liao L X,Qi Z M,Wang W G. 2018. Soil degassing during watering:An overlooked soil N2O emission process[J]. Environmental Pollution,242:257-263. doi:10.1016/j.envpol.2018.06.103.
(責(zé)任編輯 王暉)