周琴 鄭晴 嚴(yán)芳英 柯瑩
Research progress on thermal comfort evaluation methods of the bedding system
摘要:
為了對(duì)睡眠人體熱舒適進(jìn)行準(zhǔn)確評(píng)估,提高睡眠質(zhì)量,文章研究了被服系統(tǒng)熱舒適性的測(cè)評(píng)方法。首先總結(jié)和分析了被服系統(tǒng)的熱阻測(cè)量方法,包括熱平板法、暖體假人測(cè)試法和數(shù)值模型預(yù)測(cè)法。其次,探討了基于人體熱反應(yīng)的熱舒適性測(cè)評(píng)方法,包括主觀熱評(píng)價(jià)、熱生理評(píng)價(jià)和睡眠姿勢(shì)監(jiān)測(cè)評(píng)價(jià),闡述了目前用于被服系統(tǒng)熱舒適預(yù)測(cè)的數(shù)學(xué)模型。最后,剖析當(dāng)前研究的不足,提出未來(lái)被服系統(tǒng)熱舒適性測(cè)評(píng)方法的研究應(yīng)從被服系統(tǒng)熱阻的測(cè)定、非接觸式的睡眠熱舒適評(píng)價(jià)、機(jī)器學(xué)習(xí)算法的應(yīng)用3個(gè)方面展開(kāi)。
關(guān)鍵詞:
被服系統(tǒng);熱舒適性;測(cè)評(píng)方法;熱阻;人體熱生理
中圖分類(lèi)號(hào):
TS941.17
文獻(xiàn)標(biāo)志碼:
A
文章編號(hào): 1001-7003(2024)06-0059-10
DOI: 10.3969/j.issn.1001-7003.2024.06-.007
收稿日期:
20231004;
修回日期:
20240429
基金項(xiàng)目:
教育部人文社會(huì)科學(xué)研究青年基金項(xiàng)目(20YJCZH063);江蘇省第六期“333”人才培養(yǎng)支持資助優(yōu)秀青年人才項(xiàng)目(蘇人才辦〔2022〕21號(hào))
作者簡(jiǎn)介:
周琴(2000),女,碩士研究生,研究方向?yàn)榧徔椘窡崾孢m性。通信作者:柯瑩,副教授,keying0312@163.com。
睡眠與人體身心健康密切相關(guān)[1],睡眠不足會(huì)增加患心血管疾?。?]、冠心?。?]、肥胖及2型糖尿病[4]的風(fēng)險(xiǎn),還會(huì)損害情緒調(diào)節(jié)[5]及認(rèn)知能力[6]。因此,有必要采取合理有效的手段改善人的睡眠質(zhì)量。
被服系統(tǒng)是指人體睡眠時(shí)所需的寢具及服裝,一般包含床、床墊、床單、枕頭、覆蓋物(如被子和毯子)與睡衣等,它們共同構(gòu)成被下微環(huán)境,影響人體與室內(nèi)環(huán)境的熱交換[7]。以往研究大多強(qiáng)調(diào)室內(nèi)環(huán)境對(duì)睡眠質(zhì)量的影響[8],然而被服系統(tǒng)對(duì)睡眠人體的睡眠質(zhì)量有著更顯著的作用[9-10]。被服系統(tǒng)建筑圍欄式的結(jié)構(gòu)使得睡眠人體的熱舒適在很大程度上由被服系統(tǒng)決定。被服系統(tǒng)熱舒適對(duì)睡眠人體的總睡眠時(shí)長(zhǎng)、入睡潛伏期、深度睡眠時(shí)長(zhǎng)、睡眠覺(jué)醒、睡眠效率及主觀睡眠質(zhì)量均有重要影響。研究表明,高溫環(huán)境下,通過(guò)局部冷卻提高被服系統(tǒng)熱舒適性可以使總睡眠時(shí)間增加52 min,入睡潛伏期減少17 min,睡眠覺(jué)醒時(shí)間減少37 min,深度睡眠時(shí)間增加26 min,睡眠效率提高10.7%,主觀睡眠質(zhì)量也得到顯著改善[11]。低溫環(huán)境下,床墊加熱和被子加熱可以使總睡眠時(shí)間增加35 min,入睡潛伏期減少18 min,入睡后的覺(jué)醒時(shí)間減少28 min,睡眠效率提高5%[12-13]。同時(shí),也有學(xué)者對(duì)被下微環(huán)境熱中性溫度展開(kāi)研究,但由于各地氣候條件、被服系統(tǒng)和睡眠習(xí)慣的差異,該中性溫度并未形成統(tǒng)一標(biāo)準(zhǔn)[9,14-16]。由此可見(jiàn),被服系統(tǒng)熱舒適性仍有待深入研究。
然而,目前對(duì)被服系統(tǒng)熱舒適的研究中,測(cè)試評(píng)價(jià)方法不盡相同,且還未有相關(guān)標(biāo)準(zhǔn)可供參考。因此,本文對(duì)國(guó)內(nèi)外相關(guān)文獻(xiàn)進(jìn)行了綜述,從被服系統(tǒng)熱阻測(cè)量和睡眠人體熱舒適評(píng)價(jià)兩個(gè)方面,總結(jié)分析了被服系統(tǒng)熱舒適性測(cè)評(píng)方法,以期為被服系統(tǒng)熱舒適性研究選擇最適用的評(píng)價(jià)方法提供參考。
1? 被服系統(tǒng)的熱阻測(cè)定
被服系統(tǒng)熱阻直接反映了被服系統(tǒng)的隔熱性能,影響著睡眠人體與外界環(huán)境的熱交換,從而影響睡眠人體的熱舒適。被服系統(tǒng)的熱阻與最佳睡眠空氣溫度密切相關(guān)。有研究表明,被服系統(tǒng)熱阻越大,最佳空氣溫度越低,被服系統(tǒng)熱阻每增加1 clo,最佳空氣溫度降低5.3 ℃[17-18]。室內(nèi)空氣溫度過(guò)低時(shí),如果被服系統(tǒng)熱阻也過(guò)低,則此時(shí)被服系統(tǒng)熱舒適性較差。而被服系統(tǒng)熱阻過(guò)高同樣也會(huì)降低被服系統(tǒng)熱舒適性,從而對(duì)人體健康造成不利影響,如過(guò)多的覆蓋可能會(huì)造成睡眠人體熱應(yīng)激。由此可見(jiàn),選擇合適的被服系統(tǒng)熱阻對(duì)被服系統(tǒng)熱舒適性具有重要作用。然而,受床墊、被子、睡衣及覆蓋率等因素的影響,不同組合的被服系統(tǒng)熱阻差異較大[19],且目前沒(méi)有針對(duì)被服系統(tǒng)熱阻的測(cè)定標(biāo)準(zhǔn)和完整數(shù)據(jù)庫(kù)。因此,對(duì)被服系統(tǒng)熱阻測(cè)定方法進(jìn)行總結(jié)分析有利于被服系統(tǒng)熱舒適性的研究。被服系統(tǒng)熱阻測(cè)定方法通常分為三類(lèi):熱平板法、暖體假人測(cè)試法和數(shù)值模型預(yù)測(cè)法。
1.1? 熱平板法
熱平板法可用于測(cè)量被服系統(tǒng)內(nèi)各種紡織品材料的熱阻,如睡衣、床墊及其他纖維集合體材料。ISO 11092—2014《紡織品生理效應(yīng)穩(wěn)態(tài)條件下耐熱和耐水蒸氣性能的測(cè)量(防護(hù)熱板排汗試驗(yàn))》和GB/T 11048—2018《紡織品生理舒適性穩(wěn)態(tài)條件下熱阻和濕阻的測(cè)定(蒸發(fā)熱板法)》均對(duì)用熱平板測(cè)量紡織品熱阻的方法進(jìn)行了規(guī)定:在相對(duì)濕度65%、氣流速度為1 m/s時(shí),熱阻計(jì)算公式如下。
Rct=(Tm-Ta)×AH-ΔHc-Rct0(1)
式中:Rct為熱阻,m2·K/W;Tm為測(cè)試板表面溫度,35 ℃;Ta為氣候室空氣溫度,20 ℃;A為測(cè)試板面積,m2;H為提供給測(cè)試板的加熱功率,W;ΔHc為熱阻測(cè)定中加熱功率的修正量;Rct0為儀器常數(shù),m2·K/W。
上述紡織品熱阻測(cè)量標(biāo)準(zhǔn)中通常采用小型的熱平板儀,無(wú)法直接對(duì)整個(gè)被子的熱阻進(jìn)行測(cè)量。英國(guó)標(biāo)準(zhǔn)BS 5335-1—1991《被子第1部分:被子規(guī)范》和BS 5335-2—2006《被子第2部分:被子熱阻測(cè)定》中提出了用兩種大尺寸平板儀(圖1)測(cè)量被子熱阻的方法。當(dāng)測(cè)量?jī)x器位于相對(duì)濕度65%±5%、空氣溫度(20±2) ℃的房間內(nèi),且儀器遠(yuǎn)離外部熱源、通風(fēng)設(shè)備時(shí),被子熱阻可用以下公式計(jì)算。
1) 若使用比較儀測(cè)量被子熱阻,則被子熱阻計(jì)算公式如下。
Rt=T1T2×Rcb(2)
式中:Rt為被子熱阻,m2·K/W;T1為熱板上表面與被上空氣
層溫差,℃;T2為熱板下表面與熱板上表面溫差,℃;Rcb為校準(zhǔn)板熱阻,m2·K/W。
2) 若使用熱平板儀測(cè)量被子熱阻,則被子熱阻計(jì)算公式如下。
Rt=A×T1H(3)
式中:Rt為被子熱阻,m2·K/W;A為中心加熱區(qū)面積,m2;T1為熱板上表面與被上空氣層溫差,℃;H為中心加熱區(qū)提供給熱板的加熱功率,W。
通過(guò)熱平板儀測(cè)量被服系統(tǒng)中各種紡織品熱阻的方法簡(jiǎn)單易操作,但無(wú)法直接反映被服系統(tǒng)整體熱阻。此外,影響被服系統(tǒng)熱阻的因素繁多,各種紡織品熱阻與被服系統(tǒng)整體熱阻的關(guān)系尚不明確。
1.2? 暖體假人測(cè)試法
利用暖體假人測(cè)量被服系統(tǒng)熱阻是目前最常用的方法。雖然還沒(méi)有關(guān)于使用暖體假人測(cè)量被服系統(tǒng)熱阻的標(biāo)準(zhǔn),但許多相關(guān)標(biāo)準(zhǔn)都為其提供了參考,如ASTM F1291《利用暖體假人測(cè)量服裝隔熱性能的標(biāo)準(zhǔn)試驗(yàn)方法》與ISO 15831《服裝生理效應(yīng)用暖體假人測(cè)量隔熱性》規(guī)定了使用暖體假人測(cè)量服裝熱阻的測(cè)試方法,ISO 9920《熱環(huán)境的人類(lèi)工效學(xué)服裝隔熱性和蒸發(fā)阻力評(píng)估》提供了服裝整體熱阻的估算方法,以及ISO 23537《睡袋要求》和GB/T 38426《睡袋的熱阻和使用溫度的測(cè)定方法》規(guī)定了使用暖體假人測(cè)定睡袋熱阻的方法。
Lin等[19]利用暖體假人測(cè)量了亞熱帶地區(qū)常用被服系統(tǒng)的熱阻,建立了亞熱帶地區(qū)常見(jiàn)被服系統(tǒng)總熱阻的小規(guī)模數(shù)據(jù)庫(kù),如圖2所示,該數(shù)據(jù)庫(kù)目前已被許多研究者用于進(jìn)一步研究;Zhang等[7]利用暖體假人測(cè)量了64組被服系統(tǒng)的熱阻(圖3),并根據(jù)測(cè)量數(shù)據(jù)建立了被服系統(tǒng)熱阻評(píng)估模型,進(jìn)一步豐富了被服系統(tǒng)總熱阻數(shù)據(jù)庫(kù)。此外,也有研究者開(kāi)展了被服系統(tǒng)熱阻影響因素的研究。Lu等[20]使用暖體假人研究了填充材料和人體姿勢(shì)對(duì)被服系統(tǒng)總熱阻和局部熱阻的影響(圖4),發(fā)現(xiàn)羽絨、羊毛和蠶絲被對(duì)被服系統(tǒng)總熱阻的影響存在顯著性差異,并建立了以被子填充物質(zhì)量為自變量的被服系統(tǒng)總熱阻預(yù)測(cè)方程,而不同人體姿勢(shì)下被服系統(tǒng)的局部熱阻也存在顯著差異,為被服系統(tǒng)的設(shè)計(jì)與選擇提供了參考。
目前,使用暖體假人測(cè)量的被服系統(tǒng)總熱阻,能較為直接地評(píng)估被服系統(tǒng)的熱舒適性,且具有較強(qiáng)的可重復(fù)性。然而,暖體假人使用成本較高,測(cè)量條件苛刻,大量企業(yè)不具備使用暖體假人的條件,因此該方法的推廣使用存在局限性。
所測(cè)被服系統(tǒng)總熱阻(clo)
不同被服系統(tǒng)23.3%48.0%59.0%67.0%79.9%88.0%94.1%100%
M1+Q1+S1
M1+Q2+S1
M1+B+S11.57
2.152.722.883.273.994.564.77
1.842.242.412.813.323.734.06
1.822.082.182.222.412.562.65
M1+Q1+S2
M1+Q2+S2
M1+B+S21.38
1.652.152.623.183.794.344.60
1.531.932.202.683.263.553.92
1.431.761.802.072.362.402.58
M1+Q1
M1+Q2
M1+B0.98
1.161.431.902.443.684.034.47
1.141.421.691.982.953.033.62
1.071.241.451.651.982.112.23
M2+Q1+S1
M2+Q2+S1
M2+B+S11.31
1.631.972.322.573.083.323.64
1.611.932.192.422.662.973.12
1.551.741.811.922.122.212.31
M2+Q1+S2
M2+Q2+S2
M2+B+S21.18
1.511.902.202.532.913.263.60
1.501.731.992.282.612.833.04
1.461.621.641.872.022.102.19
M2+Q1
M2+Q2
M2+B0.90
1.091.351.832.062.673.003.26
1.071.271.581.812.342.502.76
1.041.181.301.451.741.841.90
M1+Q3+S11.572.392.863.083.534.154.664.89
注:M1為傳統(tǒng)床墊,M2為棕綁床墊;S1為長(zhǎng)袖睡衣,S2為半袖睡衣;B為毯子,Q1為夏季被1,Q2為夏季被2,Q3為多功能被。
所測(cè)被服系統(tǒng)總熱阻(clo)
不同被服系統(tǒng)94.1%85.9%70.6%54.4%
P12.742.141.751.53
P23.302.552.021.70
P34.093.012.231.75
P44.393.062.401.78
D13.352.451.981.74
D23.952.762.281.80
D34.493.142.371.85
C13.702.802.211.71
C24.593.392.451.82
C34.893.472.571.85
P1+QC2.81——1.56
P2+QC3.51——1.77
P3+QC4.24——1.83
P4+QC4.55——1.94
P1+QC+S13.10——1.61
P2+QC+S13.71——1.80
P3+QC+S14.43——1.92
P4+QC+S14.61——1.99
P1+QC+S23.11——1.70
P2+QC+S23.73——1.92
P3+QC+S24.44——2.15
P4+QC+S24.65——2.23
注:P1、P2、P3、P4為滌綸被,質(zhì)量分別為0.996、1.544、2.372、2.774 kg;D1、D2、D3為羽絨被,質(zhì)量分別為1.495、1.904、2.946 kg;C1、C2、C3為棉被,質(zhì)量分別為1.940、2.894、3.988 kg;S1為半袖睡衣,S2為長(zhǎng)袖睡衣;QC為被套。
所測(cè)被服系統(tǒng)總熱阻(clo)
填充材料方程
羽絨Rt=0.731lnw-0.442
蠶絲Rt=0.725lnw-1.152
羊毛Rt=0.392lnw-1.083
所測(cè)被服系統(tǒng)總熱阻(clo)
人體姿勢(shì)方程
ARt=0.731lnw-0.442
BRt=0.666lnw-0.030
CRt=0.798lnw-0.440
DRt=0.273lnw-0.648
1.3? 數(shù)值模型預(yù)測(cè)法
考慮到暖體假人測(cè)試法的局限性,Pan等[21]提出用數(shù)值模型預(yù)測(cè)被服系統(tǒng)總熱阻。如圖5所示,模型假設(shè)被服系統(tǒng)截面為梯形,人體截面為矩形,睡衣熱阻忽略不計(jì),人體皮膚表面溫度均勻。該模型包含了被服系統(tǒng)覆蓋人體面積、床墊及被子類(lèi)型等影響被服系統(tǒng)總熱阻的因素,并利用前人實(shí)驗(yàn)結(jié)果[19]對(duì)模型預(yù)測(cè)結(jié)果進(jìn)行驗(yàn)證,結(jié)果表明該數(shù)學(xué)模型誤差小于10%;Zheng等[22]基于三維虛擬試衣技術(shù)構(gòu)建了更符合實(shí)際的被服系統(tǒng)幾何模型,從而進(jìn)一步構(gòu)建了被服系統(tǒng)總熱阻和局部熱阻的預(yù)測(cè)模型。
數(shù)值模型預(yù)測(cè)法使被服系統(tǒng)熱阻的評(píng)估更加簡(jiǎn)便,但其
對(duì)被服系統(tǒng)的限制導(dǎo)致其應(yīng)用范圍有限。
2? 睡眠人體熱反應(yīng)測(cè)評(píng)
熱舒適受物理、生理和心理等因素的影響[23]。因此,除了被服系統(tǒng)熱阻,被服系統(tǒng)的熱舒適性評(píng)價(jià)還需要基于睡眠人體的生理和心理進(jìn)行。大量研究表明,睡眠期的平均皮膚溫度比清醒狀態(tài)高1℃左右,熱舒適投票高0.6左右,熱感覺(jué)投票也較清醒時(shí)高[24-25]。因此,睡眠人體熱反應(yīng)測(cè)評(píng)方法對(duì)被服系統(tǒng)熱舒適性評(píng)價(jià)十分重要。睡眠人體熱反應(yīng)測(cè)評(píng)的常用方法有通過(guò)填寫(xiě)主觀問(wèn)卷的主觀熱評(píng)價(jià)、通過(guò)評(píng)估睡眠人體皮膚溫度和核心溫度的熱生理評(píng)價(jià),以及近年來(lái)隨著計(jì)算機(jī)技術(shù)的發(fā)展,結(jié)合主觀問(wèn)卷開(kāi)發(fā)出的睡眠人體睡眠姿勢(shì)監(jiān)測(cè)評(píng)價(jià)、考慮主觀評(píng)價(jià)及客觀溫度的熱舒適模型。
2.1? 主觀熱評(píng)價(jià)
主觀熱評(píng)價(jià)通常采用問(wèn)卷的形式,測(cè)試受試者的熱狀態(tài)。美國(guó)采暖、制冷與空調(diào)工程師學(xué)會(huì)(ASHRAE)提出熱感覺(jué)、熱舒適、熱偏好與熱滿(mǎn)意度評(píng)價(jià)量表以評(píng)估人體熱舒適(圖6),已得到廣泛使用[26]。
目前針對(duì)主觀睡眠熱舒適性的研究一般是通過(guò)收集受試者睡前及第二天早上醒來(lái)后根據(jù)對(duì)前一晚睡眠的回憶填寫(xiě)的主觀熱評(píng)價(jià)量表。但通過(guò)回憶進(jìn)行主觀熱評(píng)價(jià)的可靠性仍有
待考證。Song等[13]利用主觀熱評(píng)價(jià)方法研究睡眠熱舒適與睡眠質(zhì)量的關(guān)系,發(fā)現(xiàn)入睡潛伏期與熱感覺(jué)呈線(xiàn)性相關(guān),稍暖的感覺(jué)有助于入睡;Lan等[27]發(fā)現(xiàn),在睡眠狀態(tài)中,人體舒適時(shí)的熱感覺(jué)比睡眠前高。另外,在被服系統(tǒng)局部熱舒適性的研究中,Song等[28]發(fā)現(xiàn)人體各部位的熱感覺(jué)有所不同,胸部、背部、臀部和大腿的熱感覺(jué)高于面部,而背部、面部、大腿是與被覆蓋身體熱感覺(jué)相關(guān)性最高的三個(gè)部位,這一發(fā)現(xiàn)將有利于進(jìn)一步開(kāi)展用局部熱感覺(jué)評(píng)估睡眠人體整體熱感覺(jué)的研究。
主觀熱評(píng)價(jià)方法簡(jiǎn)單便捷,然而受身體狀況、心理狀態(tài)和年齡等因素的影響,其結(jié)果受個(gè)體影響較大,易產(chǎn)生誤差。其次,量表很難應(yīng)用于實(shí)時(shí)熱舒適預(yù)測(cè)。因此,有必要與其他熱舒適測(cè)評(píng)方法相結(jié)合,綜合評(píng)估睡眠人體熱舒適性。
2.2? 熱生理評(píng)價(jià)
與主觀評(píng)價(jià)相比,采用熱生理評(píng)價(jià)可持續(xù)監(jiān)測(cè)睡眠人體熱狀態(tài),并實(shí)現(xiàn)熱感覺(jué)實(shí)時(shí)預(yù)測(cè),從而評(píng)估人體瞬時(shí)熱舒適狀態(tài)。皮膚溫度、核心溫度等是評(píng)估睡眠人體熱舒適的主要熱生理指標(biāo)[29],表1列出了近幾年被服系統(tǒng)熱舒適性研究中使用的評(píng)價(jià)方法。
2.2.1? 皮膚溫度
皮膚溫度作為反映人體對(duì)環(huán)境冷熱刺激反應(yīng)的重要生理參數(shù),是評(píng)價(jià)熱舒適性的重要生理指標(biāo)之一[37]。在睡眠熱舒適性的研究中,常用平均皮膚溫度(MST)作為評(píng)價(jià)指標(biāo)。MST采用局部皮膚溫度的加權(quán)平均值進(jìn)行計(jì)算,包括3點(diǎn)、4點(diǎn)、7點(diǎn)、10點(diǎn)、15點(diǎn)等計(jì)算方法,使用不同的計(jì)算方法會(huì)得出不同的結(jié)果。為了探索最適合用于人體熱舒適性研究的MST計(jì)算方法,Liu等[38]通過(guò)可靠性、靈敏度及測(cè)量點(diǎn)數(shù)量3個(gè)指標(biāo),評(píng)估了用于計(jì)算MST的不同公式,并表明最佳MST計(jì)算公式為10點(diǎn)加權(quán)公式。然而,Liu等的評(píng)估是基于清醒人體實(shí)驗(yàn)數(shù)據(jù)進(jìn)行的,在實(shí)際睡眠中,測(cè)量10個(gè)局部皮膚溫度會(huì)對(duì)人體睡眠造成較大干擾,因而在睡眠實(shí)驗(yàn)中使用較多的是Hardy等的7點(diǎn)法[39]。基于7點(diǎn)法,Lan等[33]提出了一種用于睡眠人體熱舒適評(píng)價(jià)的3點(diǎn)MST計(jì)算方法,該方法簡(jiǎn)單方便,并具有一定的可靠性。表2列出了睡眠人體熱舒適評(píng)價(jià)中常用的MST計(jì)算公式。
注:Tsk為平均皮膚溫度,℃;tforehead為前額溫度,℃;tupperarm為上臂溫度,℃;tforearm為前臂溫度,℃;thand手部溫度,℃;tback為背部溫度,℃;tchest為胸部溫度,℃;tabdomen為腹部溫度,℃;tthigh大腿溫度,℃;tcalf小腿溫度,℃;tfoot腳部溫度,℃;l表示左,r表示右。
睡眠人體的皮膚溫度與睡眠質(zhì)量存在顯著相關(guān)性。大量研究表明皮膚溫度升高能使人更快地進(jìn)入睡眠狀態(tài)[40]。睡眠期間,皮膚溫度也會(huì)隨著睡眠階段的不同而變化。在快速眼動(dòng)階段(REM),皮膚溫度升高,升高的幅度取決于環(huán)境溫度,一般在0.5~2 ℃,[41]。此外,睡眠期間的皮膚溫度變化會(huì)對(duì)睡眠質(zhì)量產(chǎn)生影響,Candas等[42]發(fā)現(xiàn)快速眼動(dòng)期皮膚溫度的變化可能會(huì)導(dǎo)致睡眠中斷,且過(guò)低的皮膚溫度比過(guò)高的皮膚溫度更容易導(dǎo)致睡眠中斷。
通過(guò)在不同環(huán)境溫度下對(duì)主觀熱感覺(jué)和MST進(jìn)行研究,許多學(xué)者發(fā)現(xiàn)MST與熱感覺(jué)呈正相關(guān),并得出當(dāng)睡眠環(huán)境溫度處于16~21 ℃時(shí),最佳MST為34.6 ℃[13,33];當(dāng)睡眠環(huán)境溫度處于21~29 ℃時(shí),最佳MST為32.6~33.7 ℃[30]。此外,還有學(xué)者對(duì)睡眠期間的局部皮膚溫度進(jìn)行了研究,Xu等[34]計(jì)算了前額、手、前臂、小腿、大腿、腳與胸部之間的溫度梯度,發(fā)現(xiàn)入睡前四肢與胸部之間的皮膚溫度梯度逐漸升高,前額與胸部的皮膚溫度梯度逐漸降低,睡眠期間各部位與胸部的皮膚溫度梯度相對(duì)穩(wěn)定,醒后逐漸降低。由此可見(jiàn),皮膚溫度梯度在睡眠熱舒適研究中也有重要作用。
2.2.2? 核心溫度
核心溫度反映了人體內(nèi)部的溫度[43]。根據(jù)測(cè)量部位的不同,目前可用于表示核心溫度的有口腔溫度、鼓膜(或耳蝸)溫度、直腸溫度、胃腸溫度、膀胱溫度、食道溫度、肺動(dòng)脈溫度等[44-45]。
研究發(fā)現(xiàn),睡眠常伴隨著核心溫度的降低[46]。睡眠的開(kāi)始與核心溫度下降密切相關(guān),在進(jìn)入睡眠狀態(tài)后,核心溫度也會(huì)繼續(xù)下降以延續(xù)睡眠時(shí)長(zhǎng),到達(dá)最低點(diǎn)后開(kāi)始上升,幾個(gè)小時(shí)后人會(huì)醒來(lái)。睡眠期間的核心溫度一般總是維持在36.2~36.8 ℃[41]。此外,Song等[13]的研究表明,在0.1~0.4 ℃,核心溫度下降越多,睡眠熱舒適性越好,睡眠效率越高,慢波睡眠(SWS)時(shí)間更長(zhǎng)。這與Krauchi[47]的研究結(jié)果相同,即核心溫度下降越快,深度睡眠時(shí)間越長(zhǎng),主觀睡眠質(zhì)量越好。
2.3 ?睡眠姿勢(shì)監(jiān)測(cè)
目前睡眠熱舒適性檢測(cè)主要使用可穿戴設(shè)備測(cè)量生理參數(shù)進(jìn)行接觸式檢測(cè),然而這種方法會(huì)加劇個(gè)人睡眠障礙[48]。由于睡眠時(shí)的熱舒適也與睡眠姿勢(shì)密切相關(guān)[49],有研究者采用睡眠姿勢(shì)評(píng)價(jià)研究睡眠熱舒適性,并基于視覺(jué)感知開(kāi)發(fā)了熱舒適檢測(cè)算法。
Cheng等[50]通過(guò)身體姿勢(shì)、身體覆蓋面積和手臂與被子的關(guān)系定義了10種熱不適時(shí)的睡眠姿勢(shì),并利用骨骼關(guān)鍵點(diǎn)建立了人體姿勢(shì)估計(jì)算法以評(píng)估睡眠人體的熱舒適,該算法的平均準(zhǔn)確率達(dá)到91.15%。
但目前這種基于睡眠姿勢(shì)的熱舒適性檢測(cè)算法所定義的熱不適姿勢(shì)有限,因此,在未來(lái)研究中可以擴(kuò)充數(shù)據(jù)集,定義更多睡眠熱不適時(shí)的睡眠姿勢(shì)。
2.4? 熱舒適模型
傳統(tǒng)熱舒適模型一般基于數(shù)學(xué)方程或?qū)嶒?yàn)數(shù)據(jù)建立。近年來(lái),隨著機(jī)器學(xué)習(xí)技術(shù)的發(fā)展,也有部分機(jī)器學(xué)習(xí)算法用于熱舒適模型研究[51]?;跈C(jī)器學(xué)習(xí)算法的熱舒適模型不同于傳統(tǒng)模型,它具有個(gè)性化、動(dòng)態(tài)預(yù)測(cè)和高準(zhǔn)確率等特點(diǎn)。如Chaudhuri等[52]通過(guò)測(cè)量手部皮膚溫度、脈搏率及環(huán)境溫度,基于支持向量機(jī)算法,提出個(gè)人熱舒適預(yù)測(cè)方法(ePTS),ePTS模型準(zhǔn)確率超過(guò)97%;Shan等[53]將機(jī)器學(xué)習(xí)算法與腦電結(jié)合,進(jìn)行個(gè)人實(shí)時(shí)熱舒適狀態(tài)預(yù)測(cè),并比較了線(xiàn)性判別分析、樸素貝葉斯和K-最鄰近算法的預(yù)測(cè)性能,發(fā)現(xiàn)各算法的準(zhǔn)確率均在90%以上。但上述熱舒適模型主要針對(duì)清醒人體,目前用于被服系統(tǒng)熱舒適評(píng)價(jià)的模型仍以傳統(tǒng)熱舒適模型為主,分為兩類(lèi):一類(lèi)是基于PMV模型進(jìn)行修正的模型,另一類(lèi)是基于Gagge雙節(jié)點(diǎn)模型進(jìn)行改進(jìn)的人體熱調(diào)節(jié)模型,如圖7所示。
PMV模型主要用于評(píng)估均勻和穩(wěn)態(tài)的熱環(huán)境下人體的熱舒適性[54]。Lin等[17]對(duì)Fanger的PMV模型進(jìn)行修改,開(kāi)發(fā)了適用于睡眠環(huán)境的PMV-PPD熱舒適模型;Liu等[30]采用馬氏距離判別法建立了基于MST評(píng)估個(gè)人熱舒適的PMV模型;Song等[55]考慮局部熱感覺(jué),建立了睡眠熱舒適的局部熱感覺(jué)和整體不滿(mǎn)意率模型(PTS-WPD模型);Lan等[56]基于被服系統(tǒng)兩部分模型開(kāi)發(fā)了預(yù)測(cè)睡眠人體熱中性的模型。然而,在不同空氣流速下使用Lin和Lan的模型預(yù)測(cè)睡眠期間人體熱舒適性時(shí)存在顯著偏差,因此Du等[35]考慮氣流速度,建立了PMVs模型,該模型對(duì)不同氣流速度條件下睡眠人體的熱舒適性具有良好的預(yù)測(cè)性。
與清醒人體不同,睡眠人體的體溫調(diào)節(jié)依賴(lài)于睡眠階段[57],因此需要開(kāi)發(fā)適用于睡眠人體的熱調(diào)節(jié)模型。Pan等[58]在Gagge雙節(jié)點(diǎn)模型的基礎(chǔ)上,開(kāi)發(fā)了用于預(yù)測(cè)睡眠人體熱生理反應(yīng)的四節(jié)點(diǎn)熱調(diào)節(jié)模型,通過(guò)預(yù)測(cè)的核心溫度及皮膚溫度可以評(píng)估人體熱舒適。Yan等[36]將Gagge雙節(jié)點(diǎn)模型的相應(yīng)參數(shù)替換為仰臥睡眠人體對(duì)應(yīng)的值,使其更適應(yīng)睡眠環(huán)境和睡眠人體生理參數(shù)的變化,并發(fā)現(xiàn)在17~30 ℃的熱環(huán)境中該模型對(duì)睡眠人體熱舒適性具有較好的預(yù)測(cè)效果。
3? 研究展望
目前,關(guān)于被服系統(tǒng)的熱舒適性,已有一些學(xué)者展開(kāi)了研究,并提供了多種被服系統(tǒng)熱舒適性測(cè)評(píng)方法,為未來(lái)進(jìn)一步研究提供了較多選擇和參考。本文基于上述分析,提出以下展望。
3.1? 被服系統(tǒng)熱阻測(cè)定方法的研究
當(dāng)前被服系統(tǒng)熱阻的測(cè)定主要采用暖體假人,但在實(shí)際操作中,環(huán)境條件、假人睡眠姿勢(shì)、被子覆蓋人體面積比例、被服系統(tǒng)構(gòu)成等細(xì)節(jié)的設(shè)定不盡相同,缺乏統(tǒng)一標(biāo)準(zhǔn),導(dǎo)致相關(guān)研究之間無(wú)法直接比較,未來(lái)可建立基于暖體假人的被服系統(tǒng)熱阻測(cè)試標(biāo)準(zhǔn)。此外,利用預(yù)測(cè)模型測(cè)定被服系統(tǒng)熱阻較為簡(jiǎn)便,但現(xiàn)有模型主要考慮被子、床墊、被子覆蓋人體面積等影響因素,無(wú)法反映所有影響被服系統(tǒng)熱阻的因素,也無(wú)法覆蓋所有類(lèi)型的被服系統(tǒng),準(zhǔn)確度和應(yīng)用范圍有待進(jìn)一步提高。
熱與濕是相互影響的,除了被服系統(tǒng)熱阻,被服系統(tǒng)濕阻也是一個(gè)重要的客觀指標(biāo)[59]。然而,目前對(duì)于濕阻的測(cè)定主要針對(duì)被服系統(tǒng)內(nèi)各紡織品,而對(duì)被服系統(tǒng)整體濕阻的測(cè)定方法較為缺乏。因此,未來(lái)可研究被服系統(tǒng)濕阻的測(cè)定方法,以探討濕阻對(duì)被服系統(tǒng)熱舒適性的影響。
3.2? 非接觸式的睡眠熱舒適評(píng)價(jià)
非接觸式的睡眠熱舒適評(píng)價(jià)方法,如睡眠姿勢(shì)監(jiān)測(cè),對(duì)人體干擾小,極具推廣應(yīng)用潛力。但目前關(guān)于睡眠姿勢(shì)和熱舒適的研究仍處于探索階段,準(zhǔn)確度有待進(jìn)一步提高,需要擴(kuò)大所研究的被服系統(tǒng)和人群范圍。同時(shí),未來(lái)可將非接觸睡眠熱舒適評(píng)價(jià)系統(tǒng)與調(diào)溫設(shè)備結(jié)合,從而更合理地調(diào)控室內(nèi)溫度,以提高睡眠質(zhì)量和睡眠熱滿(mǎn)意度,降低建筑能耗。
3.3? 機(jī)器學(xué)習(xí)算法的應(yīng)用
與傳統(tǒng)熱舒適模型相比,基于機(jī)器學(xué)習(xí)算法的熱舒適模型不僅準(zhǔn)確率高,還在個(gè)性化熱舒適預(yù)測(cè)中展現(xiàn)出極大優(yōu)越性。在未來(lái)研究中,可開(kāi)發(fā)基于機(jī)器學(xué)習(xí)算法的被服系統(tǒng)個(gè)性化熱舒適模型,從而更好地預(yù)測(cè)個(gè)人睡眠熱舒適。此外,還可以將其嵌入軟件系統(tǒng)中,通過(guò)各類(lèi)硬件設(shè)備的作用,研發(fā)個(gè)性化智能調(diào)溫的被服系統(tǒng),實(shí)時(shí)調(diào)控被服微環(huán)境,提高個(gè)人睡眠熱舒適性。
4? 結(jié)? 語(yǔ)
鑒于被服系統(tǒng)熱舒適性對(duì)睡眠的重要性,本文對(duì)被服系統(tǒng)熱舒適性測(cè)評(píng)方法進(jìn)行了歸納總結(jié)和分析,并進(jìn)行了研究展望。首先,總結(jié)了影響被服系統(tǒng)熱舒適性的物理因素,即被服系統(tǒng)熱阻測(cè)定方法,包括熱平板法、暖體假人法和模型預(yù)測(cè)法,表明現(xiàn)有熱阻預(yù)測(cè)模型的準(zhǔn)確度和應(yīng)用范圍有待提高;其次,系統(tǒng)性地總結(jié)了被服系統(tǒng)熱舒適性的心理和生理測(cè)評(píng)方法,并總結(jié)了目前國(guó)內(nèi)外學(xué)者取得的研究進(jìn)展,表明基于視覺(jué)的非接觸式測(cè)評(píng)方法是未來(lái)研究重點(diǎn),以及機(jī)器學(xué)習(xí)算法在熱舒適模型中的應(yīng)用潛力。盡管被服系統(tǒng)熱舒適性測(cè)評(píng)方法已取得一些發(fā)展,但仍面臨測(cè)試評(píng)價(jià)標(biāo)準(zhǔn)不統(tǒng)一等挑戰(zhàn),未來(lái)需要建立統(tǒng)一的被服系統(tǒng)熱阻測(cè)試標(biāo)準(zhǔn)和被服系統(tǒng)熱舒適性評(píng)價(jià)標(biāo)準(zhǔn)。
參考文獻(xiàn):
[1]SHIMIZU Y, YAMAMURA R, YOKOI Y, et al. Shorter sleep time relates to lower human defensin 5 secretion and compositional disturbance of the intestinal microbiota accompanied by decreased short-chain fatty acid production[J]. Gut Microbes, 2023, 15(1): 2190306.
[2]NARANG I, MANLHIOT C, DAVIES-SHAW J, et al. Sleep disturbance and cardiovascular risk in adolescents[J]. Canadian Medical Association Journal, 2012, 184(17): E913-E920.
[3]MILLER M, CAPPUCCIO F. Biomarkers of cardiovascular risk in sleep-deprived people[J]. Journal of Human Hypertension, 2013, 27(10): 583-588.
[4]BECCUTI G, PANNAIN S. Sleep and obesity[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14(4): 402-412.
[5]GOLDSTEIN A, WALKER M. The role of sleep in emotional brain function[J]. Annual Review of Clinical Psychology, 2014, 10: 679-708.
[6]DE BRUIN E, RUN C, STAAKS J, et al. Effects of sleep manipulation on cognitive functioning of adolescents: A systematic review[J]. Sleep Medicine Reviews, 2017, 32: 45-57.
[7]ZHANG N, CAO B, ZHU Y. An effective method to determine bedding system insulation based on measured data[J]. Building Simulation, 2023, 16(1): 121-132.
[8]CADDICK Z, GREGORY K, ARSINTESCU L, et al. A review of the environmental parameters necessary for an optimal sleep environment[J]. Building and Environment, 2018, 132: 11-20.
[9]WANG Y, LIU Y, SONG C, et al. Appropriate indoor operative temperature and bedding micro climate temperature that satisfies the requirements of sleep thermal comfort[J]. Building and Environment, 2015, 92: 20-29.
[10]BISCHOF W, MADSEN T L, CLAUSEN J, et al. Sleep and the temperature-field of the bed[J]. Journal of Thermal Biology, 1993, 18(5/ 6): 393-398.
[11]LAN L, QIAN X, LIAN Z, et al. Local body cooling to improve sleep quality and thermal comfort in a hot environment[J]. Indoor Air, 2017, 28(1): 135-145.
[12]XIA L, LAN L, TANG J, et al. Bed heating improves the sleep quality and health of the elderly who adapted to no heating in a cold environment[J]. Energy and Buildings, 2020, 210: 109687.
[13]SONG C, ZHAO T, SONG Z, et al. Effects of phased sleeping thermal environment regulation on human thermal comfort and sleep quality[J]. Building and Environment, 2020, 181: 107108.
[14]李凈, 劉艷峰, 宋聰, 等. 西北民居冬季睡眠被褥微氣候研究[J]. 建筑科學(xué), 2016, 32(2): 65-69.
LI J, LIU Y F, SONG C, et al. Winter bedding microclimate in rural houses in northwest China[J]. Building Science, 2016, 32(2): 65-69.
[15]ZHANG N, CAO B, WANG Z, et al. Effects of bedding insulation and indoor temperature on bed microclimate and thermal comfort[J]. Energy and Buildings, 2020, 223: 110097.
[16]ZHANG H Y, SHEN L M. Effect of gender and body part differences on skin temperature and bed micro-environment during sleep in a moderate temperature environment[J]. Energy and Buildings, 2023, 297: 113459.
[17]LIN Z, DENG S. A study on the thermal comfort in sleeping environments in the subtropics: Developing a thermal comfort model for sleeping environments[J]. Building and Environment, 2008, 43(1): 70-81.
[18]PAN D, CHAN M, DENG S, et al. Numerical studies on the microclimate around a sleeping person and the related thermal neutrality issues[J]. Ergonomics, 2011, 54(11): 1088-1100.
[19]LIN Z, DENG S. A study on the thermal comfort in sleeping environments in the subtropics: Measuring the total insulation values for the bedding systems commonly used in the subtropics[J]. Building and Environment, 2008, 43(5): 905-916.
[20]LU Y, NIU M, SONG W, et al. Investigation on the total and local thermal insulation of the bedding system: Effects of filling materials, weights and body postures[J]. Building and Environment, 2021, 204: 108161.
[21]PAN D, LIN Z, DENG S. A mathematical model for predicting the total insulation value of a bedding system[J]. Building and Environment, 2010, 45(8): 1866-1872.
[22]ZHENG Q, WANG H, KE Y. Prediction of the local and total thermal insulations of a bedding system based on the 3D virtual simulation technology[J]. Building Simulation, 2023, 16(8): 1467-1480.
[23]DJONGYANG N, TCHINDA R, NJOMO D. Thermal comfort: A review paper[J]. Renewable & Sustainable Energy Reviews, 2010, 14(9): 2626-2640.
[24]YAN F, ZHENG Q, KE Y. Effect of quilt thermal resistance on bedding system and sleep thermal comfort[J]. Journal of Thermal Biology, 2023, 117: 103713.
[25]ZHENG Q, YAN F, WANG H, et al. Effects of quilts on comfortable indoor temperatures and human thermal responses during sleep[J]. Indoor Air, 2022, 32(9): 13122.
[26]曲鑫璐, 鄧輝, 師云龍, 等. 著裝人體局部熱舒適性研究與發(fā)展現(xiàn)狀[J]. 絲綢, 2020, 57(12): 55-62.
QU X L, DENG H, SHI Y L, et al. Research and development of local thermal comfort of human body under clothing conditions[J]. Journal of Silk, 2020, 57(12): 55-62.
[27]LAN L, PAN L, LIAN Z, et al. Experimental study on thermal comfort of sleeping people at different air temperatures[J]. Building and Environment, 2014, 73: 24-31.
[28]SONG C, LIU Y, ZHOU X, et al. Identification of local thermal conditions for sleeping comfort improvement in neutral to cold indoor thermal environments[J]. Journal of Thermal Biology, 2020, 87: 102480.
[29]WU Y, LIU H, LI B, et al. Individual thermal comfort prediction using classification tree model based on physiological parameters and thermal history in winter[J]. Building Simulation, 2021, 14(6): 1651-1665.
[30]LIU W, LIAN Z, DENG Q. Use of mean skin temperature in evaluation of individual thermal comfort for a person in a sleeping posture under steady thermal environment[J]. Indoor and Built Environment, 2015, 24(4): 489-499.
[31]SONG C, LIU Y, ZHOU X, et al. Temperature field of bed climate and thermal comfort assessment based on local thermal sensations[J]. Building and Environment, 2016, 95: 381-390.
[32]HE M, LIAN Z, CHEN P. Evaluation on the performance of quilts based on young peoples sleep quality and thermal comfort in winter[J]. Energy and Buildings, 2019, 183: 174-183.
[33]LAN L, XIA L, TANG J, et al. Mean skin temperature estimated from 3 measuring points can predict sleeping thermal sensation[J]. Building and Environment, 2019, 162: 106292.
[34]XU X, ZHU J, CHEN C, et al. Application potential of skin temperature for sleep-wake classification[J]. Energy and Buildings, 2022, 266: 112137.
[35]DU C Q, LIN X, YAN K, et al. A model developed for predicting thermal comfort during sleep in response to appropriate air velocity in warm environments[J]. Building and Environment, 2022, 223: 109478.
[36]YAN S J, XIONG J, KIM J, et al. Adapting the two-node model to evaluate sleeping thermal environments[J]. Building and Environment, 2022, 222: 109417.
[37]HUIZENGA C, ZHANG H, ARENS E, et al. Skin and core temperature response to partial- and whole-body heating and cooling[J]. Journal of Thermal Biology, 2004, 29(7/8): 549-558.
[38]LIU W, LIAN Z, DENG Q, et al. Evaluation of calculation methods of mean skin temperature for use in thermal comfort study[J]. Building and Environment, 2011, 46(2): 478-488.
[39]HARDY J, BOIS E, SODERSTORM G. The technic of measuring radiation and convection[J]. The Journal of Nutrition, 1938, 15(5): 461-475.
[40]RAYMANN R, SWAAB D, VAN SOMEREN E. Cutaneous warming promotes sleep onset[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2005, 288(6): R1589-R1597.
[41]TROYNIKOV O, WATSON C, NAWAZ N. Sleep environments and sleep physiology: A review[J]. Journal of Thermal Biology, 2018, 78: 192-203.
[42]CANDAS V, LIBERT J, MUZET A. Heating and cooling stimulations during SWS and REM sleep in man[J]. Journal of Thermal Biology, 1982, 7(3): 155-158.
[43]劉博, 唐曉英, 劉偉峰, 等. 人體核心溫度的測(cè)量方法研究進(jìn)展[J]. 中國(guó)生物醫(yī)學(xué)工程學(xué)報(bào), 2017, 36(5): 608-614.
LIU B, TANG X Y, LIU W F, et al. Review on human core body temoerature measurement method[J]. Chinese Journal of Biomedical Engineering, 2017, 36(5): 608-614.
[44]HYMCZAK H, GOLAB A, MENDRALA K, et al. Core temperature measurement-principles of correct measurement, problems, and complications[J]. International Journal of Environmental Research and Public Health, 2021, 18(20): 10606.
[45]MORAN D, MENDAL L. Core temperature measurement: Methods and current insights[J]. Sports Med, 2002, 32(14): 879-885.
[46]KR UCHI K. The human sleep-wake cycle reconsidered from a thermoregulatory point of view[J]. Physiology & Behavior, 2007, 90(2/3): 236-245.
[47]KRAUCHI K, FATTORI E, GIORDANO A, et al. Sleep on a high heat capacity mattress increases conductive body heat loss and slow wave sleep[J]. Physiol & Behavior, 2018, 185: 23-30.
[48]MOHAMMADI S, ENSHAEIFAR S, HILTON A, et al. Transfer learning for clinical sleep pose detection using a single 2D IR camera[J]. Ieee Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 290-299.
[49]SU L, XU M. Sleep comfort analysis using a part-based mixture model with nighttime infrared video[J]. Neurocomputing, 2017, 259: 66-75.
[50]CHENG X, HU F, YANG B, et al. Contactless sleep posture measurements for demand-controlled sleep thermal comfort: A pilot study[J]. Indoor Air, 2022, 32(12): e13175.
[51]王中昱, 蘇云, 王云儀. 機(jī)器學(xué)習(xí)建立的個(gè)體熱舒適模型及其在服裝領(lǐng)域的應(yīng)用展望[J]. 紡織學(xué)報(bào), 2023, 44(5): 228-236.
WANG Z Y, SU Y, WANG Y Y. Development of personal comfort models based on machine learning and their application prospect in clothing engineering[J]. Journal of Textile Research, 2023, 44(5): 228-236.
[52]CHAUDHURI T, SOH Y, LI H, et al. Machine learning driven personal comfort prediction by wearable sensing of pulse rate and skin temperature[J]. Building and Environment, 2020, 170: 106615.
[53]SHAN X, YANG E-H. Supervised machine learning of thermal comfort under different indoor temperatures using EEG measurements[J]. Energy and Buildings, 2020, 225: 110305.
[54]ZHAO Q, LIAN Z, LAI D. Thermal comfort models and their developments: A review[J]. Energy and Built Environment, 2021, 2(1): 21-33.
[55]SONG C, LIU Y, LIU J. The sleeping thermal comfort model based on local thermal requirements in winter[J]. Energy and Buildings, 2018, 173: 163-175.
[56]LAN L, ZHAI Z Q, LIAN Z. A two-part model for evaluation of thermal neutrality for sleeping people[J]. Building and Environment, 2018, 132: 319-326.
[57]BACH V, TELLIEZ F, LIBERT J P. The interaction between sleep and thermoregulation in adults and neonates[J]. Sleep Medicine Reviews, 2002, 6(6): 481-492.
[58]PAN D, CHAN M, DENG S, et al. A four-node thermoregulation model for predicting the thermal physiological responses of a sleeping person[J]. Building and Environment, 2012, 52: 88-97.
[59]NAYLOR G, WILSON C, LAING R. Thermal and water vapor transport properties of selected lofty nonwoven products[J]. Textile Research Journal, 2017, 87(12): 1413-1424.
Research progress on thermal comfort evaluation methods of the bedding system
ZHANG Chi, WANG Xiangrong
ZHOU Qina, ZHENG Qinga, YAN Fangyinga, KE Yingb
(a.College of Textile Science and Engineering; b.School of Design, Jiangnan University, Wuxi 214122, China)
Abstract:
Sleep is vital to human health, and lack of sleep increases the risk of diseases such as cardiovascular disease and coronary heart disease, as well as impairs emotional regulation and cognitive abilities. As one of the important factors affecting sleep quality, the thermal comfort of a bedding system has been studied by numerous researchers. However, there are no standards to evaluate the thermal comfort of the bedding system, and many studies have chosen different test and evaluation methods. To provide the most applicable method and reference for the research of thermal comfort of the bedding system, the thermal comfort evaluation methods of the bedding system were summarized and analyzed from two angles: the measurement of thermal resistance of the bedding system and the evaluation of thermal comfort of the sleeping human body.
First, the measurement methods of thermal resistance of the bedding system and the advantages and disadvantages of each measurement method were presented. The hot plate method is simple and easy to operate, and can measure the thermal resistance of each textile within the bedding system, but cannot directly measure the total thermal resistance of the bedding system. The thermal manikin method can measure the bedding systems total thermal resistance and analyze its thermal comfort in a direct manner, and a small-scale database of total thermal resistance has been established. However, the use of thermal manikins is expensive, the measuring conditions are harsh, and a large number of companies do not have the conditions to use thermal manikins, so there are restrictions in promoting the use of this method. The numerical model prediction method is based on mathematical methods to establish the prediction equations for the total and local thermal resistance of the bedding system; however, the method is restricted to specific bedding systems and has a limited scope of application.
Second, methods for evaluating sleep human thermal comfort were summarized and analyzed from the psychological and physiological levels, including subjective thermal evaluation, thermophysiological evaluation, and sleep posture monitoring evaluation developed by subjective questionnaires. Subjective thermal evaluations are mainly conducted by filling out the thermal sensation, thermal comfort, thermal preference, and thermal satisfaction scales proposed by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), and published research shows that thermal sensation is usually higher in sleeping humans than in waking humans. The subjective thermal evaluation method is simple and convenient; however, the results are influenced by individual factors such as physical condition, psychological state and age. Thermophysiological evaluation is mostly conducted by measuring skin temperature (average skin temperature) and core temperature. The mean skin temperature is commonly calculated by using the 3-point, 7-point, and 10-point methods. The results obtained from various calculation methods may differ, so it is vital to choose an appropriate calculation method based on the purpose of the experiment. Due to the expensive cost of core temperature measurements, few core temperatures are measured in thermal comfort studies of bedding systems. In general, core temperatures are usually maintained between 36.2 and 36.8 ℃ during sleep. Sleep posture monitoring evaluation is based on defining sleep thermal discomfort positions through a subjective questionnaire and then developing thermal comfort algorithms based on visual perception. This method has high accuracy, but it contains limited thermal discomfort sleep positions. The thermal comfort models used for evaluating thermal comfort of the bedding system are mainly divided into two categories: one is a modified model based on the PMV model, and the other is an improved human thermal regulation model based on the Gagge two-node model. These models are generally established based on mathematical equations or experimental data, but they are deficient in personalization, dynamic prediction, and accuracy.
Finally, based on the above analysis, the development outlook was proposed. The future thermal comfort measurement method of the bedding system should be developed from three aspects: the determination of thermal resistance of the bedding system, the non-contact sleep thermal comfort evaluation, and the application of machine learning algorithms.
Key words:
bedding system; thermal comfort; evaluation methods; thermal resistance; human thermophysiology