劉鑫 張曉煜 孟君仁 段文宜 孫世航 潘磊 曾文芳 王志強 牛良
摘? ? 要:【目的】探究桃果皮葉綠素降解規(guī)律及葉綠素降解相關(guān)基因的表達情況,以期為桃果實成熟期及底色差異判定確定依據(jù)。【方法】以春美、2-50等不同桃品種/品系為研究對象,測量成熟前桃果實色差、葉綠素含量等指標,用熒光定量PCR檢測葉綠素降解相關(guān)基因的表達情況,通過分析葉綠素與相關(guān)基因表達的關(guān)系,確定影響桃果皮葉綠素降解的關(guān)鍵因素?!窘Y(jié)果】桃果實成熟前30 d葉綠素含量降低與PpCLH2、PpSGRL高表達有關(guān)。PpCLH1基因在桃果實轉(zhuǎn)色時表達量升高。在果實成熟前8~0 d,果皮葉綠素降解,PpSGR基因表達量上調(diào)。PpSGR基因表達情況與春美、2-50、中桃7號的葉綠素含量呈顯著負相關(guān),是導致桃果實成熟時葉綠素降解的關(guān)鍵基因?!窘Y(jié)論】成熟前12~8 d是桃果皮關(guān)鍵轉(zhuǎn)色期,PpSGR可能是桃果實成熟前果皮葉綠素降解的關(guān)鍵基因,這對進一步解析桃果實發(fā)育過程中果皮葉綠素降解機制提供了一種新的思路,也為探索桃果實發(fā)育過程中葉綠素降解的分子機制提供參考。
關(guān)鍵詞:桃;果皮;葉綠素降解;PpCLH1基因;PpSGR基因
中圖分類號:S662.1 文獻標志碼:A 文章編號:1009-9980(2024)06-1054-10
Analysis of chlorophyll degradation and related gene expression in peach peel
LIU Xin1, 2, ZHANG Xiaoyu1, 2, MENG Junren1, 2, DUAN Wenyi1, 2, SUN Shihang1, 2, PAN Lei1, 2, ZENG Wenfang1, 2, WANG Zhiqiang1, 2, NIU Liang1, 2*
(1Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences/National Peach & Grape Improvement Center, Zhengzhou 450009, Henan, China; 2Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453004, Henan, China)
Abstract: 【Objective】 Peach (Prunus persica), is one of the most important deciduous fruit trees in the world. The visual appeal of peach fruits, particularly their color, is a critical factor influencing consumer purchasing decisions. Chlorophyll content is important in determining the skin color and overall appearance of peaches. The precise role of chlorophyll degradation genes within the peach genome needs to fully understand, and their potential effects on chlorophyll breakdown in the peach peel and fruit ripening remain unclear. This study aimed to lay preliminary groundwork for understanding the ripening period and the underlying color differences in peach fruits by examining the color changes in the peach peels during the process of chlorophyll degradation, and the expression patterns of the genes related to the chlorophyll degradation. 【Methods】 Four peach varieties including Chunmei and 2-50 were chosen for this investigation. The color variations in the peach fruits prior to ripening were quantified using a colorimeter, and chlorophyll content was measured with a UV spectrophotometer. Although the primary chlorophyll degradation pathway has been identified, there are only limited researches on gene expression in the fruits. To fill this gap, quantitative transcription analysis was conducted, and the coding sequences (CDS) of relevant genes were sourced from genomic databases. The expression of the chlorophyll degradation-associated genes was quantified using real-time quantitative polymerase chain reaction (qRT-PCR), and the correlation between the chlorophyll degradation and the gene expression was established through statistical analysis. 【Results】 The L* value of the peach fruit color difference index increased gradually from 30 to 16 days before ripening and then decreased as the fruit matured. All the varieties exhibited an S-type a* value trend, with a* experiencing a sharp rise from 23 to 12 days prior to ripening. During the 12 days before ripening, the green hue of the peach fruit faded, and changed to red and showed a continuous increase in the a* value. The a* value shifted from negative to positive or near zero from 12 to 8 days before ripening, signifying the pivotal period for color change. The b* value initially increased from 30 to 16 days before ripening and then decreased, and the yellow-fleshed varieties showed higher values than the white-fleshed ones. The chlorophyll content significantly decreased in all the varieties as the fruit developed, and a steep decline was observed in 30 and 16 days before maturity. From 12 to 8 days before ripening, the chlorophyll levels of the four varieties fell below 8 ?g·g-1, indicating visible coloring, though ripening was still not completed. The high expression levels of the PpCLH2 and the PpSGRL were detected 30 days before maturity when the fruit was entirely green. The expression levels decreased as the fruit ripened, while the PpCLH1 expression peaked during the critical period of incomplete coloring and color transformation, suggesting that it would play a pivotal role in the chlorophyll degradation. The PpPPH, PpPAO and PpRCCR genes showed increased expression from 8 to 0 days before ripening, while the PpSGR was significantly overexpressed as the fruit matured, indicating that it would play a primary role in the chlorophyll degradation. The gene cluster analysis and correlation studies further highlighted the significant and negative correlation between the PpSGR expression and the chlorophyll content, underscoring its key function during peach fruit ripening. 【Conclusion】 This research would provide novel insights into the expression of the genes related to the chlorophyll degradation and their relationship with the color change and the chlorophyll content in the peach peels. We identified that the period approximately 12 to 8 days before ripening would be critical for the color transition in the peach peels, and the PpCLH1 and PpSGR would be the key genes in the pre-ripening chlorophyll degradation process. These findings would not only enhance our understanding of the chlorophyll degradation throughout peach fruit development but also offer a valuable reference for future studies on the molecular mechanisms of the chlorophyll degradation in peaches.
Key words: Peach; Peel; Chlorophyll degradation; PpCLH1 gene; PpSGR gene
隨著消費者購買力和消費觀念的演變,果實大小、色澤、果面光潔度等外在品質(zhì)已成為影響消費者購買決策的主要因素[1],其中果皮底色對果實外觀有顯著影響,桃果實色澤和香味直接影響其感官品質(zhì),也是影響消費者選擇的重要因素[2]。
葉綠素是植物體的重要代謝產(chǎn)物[3],同樣也是決定果皮底色的關(guān)鍵因素。葉綠素降解是植物葉片衰老和果實成熟的一個重要代謝過程,葉綠素由多步驟途徑分解,其降解產(chǎn)生葉片變黃及果皮顏色變化,展現(xiàn)果實成熟的狀態(tài)[4],所以全面、深入地了解葉綠素降解及其關(guān)鍵基因的調(diào)控機制,可以加深對桃果實成熟時色澤變化的理解。近年來,植物中葉綠素的主要降解途徑已有較多的研究[5-6]。葉綠素降解途徑中葉綠素b首先被NYC1和NOL兩種同工酶還原生成7-羥甲基葉綠素a;隨后,7-羥甲基葉綠素a被HCAR還原為葉綠素a[7];進而,葉綠素a被葉綠素酶(CLH)催化形成脫植基葉綠素[8],在金屬螯合物作用下先除去鎂離子生成脫鎂葉綠素,生成的Pheina則在脫鎂葉綠素酶(PPH)作用下除去植基[9];之后PAO能將脫鎂基葉綠酸a(Pheidea)降解為不穩(wěn)定的紅色葉綠素代謝產(chǎn)物(RCC)后,最終在RCCR的催化下形成無色的初生熒光葉綠素代謝產(chǎn)物(pFCC)[10]。
PAO是控制葉綠素降解的重要基因[11-12],PAO催化的卟啉環(huán)氧化開環(huán)是葉綠素降解的關(guān)鍵步驟,因而這條降解途徑被稱為PAO降解途徑。棗中ZjPAO1和ZjPAO2基因在果實不同發(fā)育階段均有表達,并會隨著果實發(fā)育表達量升高[13]。水稻中發(fā)現(xiàn)一個單堿基突變導致PAO編碼蛋白變化,從而導致水稻中活性氧積累和葉綠素降解受阻[14]。SGR和SGRL基因是葉綠素降解調(diào)控途徑中具有里程碑意義的基因。SGR與SGRL基因與葉綠素降解相關(guān),可以通過招募葉綠素降解基因形成復合體,結(jié)合到光系統(tǒng)Ⅱ上,從而導致葉綠素降解。但相比于SGR,SGRL在植物衰老前表達量較高,隨后表達量開始下降[15]。枳砧紅綿蜜柚嫁接黃化苗中凈光合速率、葉綠素含量降低,SGR表達量升高[16]。在小麥中發(fā)現(xiàn)在自然衰老7 d時CLH表達量升高,之后下降[17]。在大白菜中,MeJA處理顯著誘導葉綠素降解相關(guān)基因BrPAO1、BrNYC1、BrPPH1和BrSGR1的表達[18]。在柑橘中發(fā)現(xiàn),宗橙中CsSGRaSTOP喪失了降解葉綠素的功能,導致其果皮呈棕褐色[19]。在香蕉中發(fā)現(xiàn)MaERF012在果肉和果皮中差異表達,并與果實成熟密切相關(guān),MaERF012激活葉綠素降解基因MaSGR的表達從而導致香蕉果皮葉綠素降解[20]。擬南芥在葉片自然衰老過程中,CCGs劇烈上調(diào)表達且CCEs蛋白逐漸累積,導致衰老細胞中葉綠素的大量降解[21]。
桃果皮色澤是影響食用價值和經(jīng)濟價值的重要因素之一,葉綠素降解及相關(guān)基因調(diào)控在部分物種中有一定的研究,但在桃中葉綠素降解及相關(guān)基因的表達規(guī)律尚未見報道[22]。筆者在本研究中通過熒光定量技術(shù)對4個桃品種/品系果皮葉綠素降解基因表達規(guī)律進行研究,并系統(tǒng)分析了葉綠素降解相關(guān)基因表達規(guī)律與葉綠素水平和色差之間的關(guān)系。
1 材料和方法
1.1 試驗材料
以4個不同成熟期的桃品種/品系春美、2-50、中蟠102、中桃7號為研究材料(圖1),其中,春美和2-50在6月中旬成熟,中蟠102和中桃7號分別在7月上旬和8月上旬成熟。供試材料來自中國農(nóng)業(yè)科學院鄭州果樹研究所桃品種圃,株行距為1.0 m×4.0 m,2017年定植,常規(guī)管理。2022年5—8月,于果實成熟前30 d開始,采摘樹體外圍中上部大小均勻、無病蟲害、成熟度一致的果實30個,帶回實驗室使用尼康700d相機于自然光下以黑色植絨布為背景拍照。以10個果實為1個樣本,取樣進行3次重復,取樣間隔7 d,在果實轉(zhuǎn)色期每隔4 d取樣1次,削取表皮進行液氮速凍,保存至-80 ℃冰箱備用。
1.2 色差檢測
用色差儀(美能達CR-400,柯尼卡美能達)評價果皮底色,顏色用CIE a*、b*標尺表示。隨機選取果實赤道區(qū)域的四個不同點取平均值,記錄a*和b*值[23-24]。
1.3 葉綠素含量測定
桃果皮葉綠素含量采用紫外分光光度法測定[25-26]。取去離子水清洗過的桃果皮0.4 g,用研磨機磨碎,放入10 mL離心管中,加入6 mL 95%乙醇溶液,避光提取葉綠素至果皮完全變白。分別測定葉綠素溶液在665 nm和649 nm波長下的吸光度,通過公式1~3計算葉綠素含量(w,后同):
1.4 RNA提取
根據(jù)多糖多酚植物總RNA提取試劑盒(DP441,天根生化科技有限公司,北京,中國)說明書提取桃總RNA。利用1%瓊脂糖凝膠電泳檢測RNA的質(zhì)量和純度,取1 ?L RNA利用微量紫外分光光度計NanoDrop2000(Thermo Scientific,麻?。y定濃度。取1 ng RNA參照FastKing cDNA第一鏈合成試劑盒說明書(天根生化科技有限公司,北京,中國)進行反轉(zhuǎn)錄,放置在-20 ℃冰箱保存進行后續(xù)的實時熒光定量PCR。
1.5 實時熒光定量檢測
從基因組數(shù)據(jù)庫(https://phytozome-next.jgi.doe.gov/)下載相關(guān)基因的CDS(Coding sequence,編碼序列);利用NCBI網(wǎng)站(https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome)設計特異性熒光定量引物,引物長度在20 bp左右,GC含量為40%~60%,引物Tm值為58 ℃~62 ℃,擴增片段大小為80~150 bp;PCR體系為15.1 ?L:cDNA 1 ?L、Mix 7.5 ?L、引物F 0.3 ?L、引物R 0.3 ?L、水6 ?L。PCR程序設置為:95 ℃預變性5 min;95 ℃變性30 s、60 ℃退火30 s、72 ℃延伸30 s,擴增循環(huán)數(shù)為40,設置3次技術(shù)重復。引物序列見表1。實時熒光定量PCR所用的儀器為羅氏480,所用試劑盒為SYBR Real-time PCR Premixtur(eBiotake)。選取Actin(ppa007228mg)為桃內(nèi)參基因[27],最后按照2-ΔΔCT方法進行結(jié)果計算[28]。
1.6 數(shù)據(jù)分析
試驗數(shù)據(jù)用SPSS軟件分析,用Excel 2003軟件制作圖表。
2 結(jié)果與分析
2.1 桃果實發(fā)育后期果皮色差變化規(guī)律
2.1.1 a*值的變化 4個品種/品系a*值(圖2)均呈現(xiàn)為S形,在成熟前23~12 d色差a*上升較快。在果實成熟前12 d,桃果實綠色不斷減弱,果實開始著紅色,色差a*值不斷上升。在成熟前12~8 d,4個品種果實色差a*值均由負轉(zhuǎn)正或接近于0,認為此時是果實重要的轉(zhuǎn)色期。
2.1.2 b*值的變化 中蟠102和中桃7號果實b*值(圖3)在成熟前30~16 d升高,之后隨著果實發(fā)育不斷下降。春美和2-50果實b*值在成熟前30~23 d升高,隨后快速下降。春美、2-50、中桃7號在果實成熟時b*值為20~30。
2.2 果實發(fā)育后期葉綠素含量變化
4個品種/品系的葉綠素含量(圖4)隨著果實的發(fā)育表現(xiàn)出明顯的下降趨勢,葉綠素含量在成熟前30~16 d快速下降。在果實成熟前12~8 d,各品種的葉綠素含量(w)均在8 μg·g-1以下,從圖1可以看到這時各品種有明顯著色,但果實著色還不完全。在果實成熟前8 d至果實成熟,4個桃品種/品系的葉綠素含量下降較為緩慢。中蟠102和2-50在成熟前8 d時葉綠素含量與成熟時的葉綠素含量差異不大。
2.3 果實發(fā)育后期葉綠素降解相關(guān)基因的表達分析
通過實時熒光定量PCR方法,測定了4個桃品種/品系中與葉綠素降解相關(guān)的10個基因(PpNYC1、PpNOL、PpHCAR、PpCLH1、PpCLH2、PpPPH、PpPAO、PpRCCR、PpSGR、PpSGRL)的表達量,并繪制熱圖進行聚類分析。如圖5所示,PpCLH1、PpPPH、PpPAO、PpRCCR、PpSGR、PpSGRL基因在春美材料中高表達,PpNYC1在中蟠102中的表達量較高,PpNOL在中桃7號中表達量最高,PpCLH2則在中蟠102和中桃7號高表達,而PpHCAR在4個桃品種/品系中無明顯表達差異。
不同時間段內(nèi),每個基因的表達量通常會隨著果實發(fā)育不斷變化。PpNYC1在中蟠102中成熟前4 d時有升高,PpNOL在中桃7號中明顯先上調(diào)后下調(diào),PpSGRL在中桃7號成熟前12 d有短暫升高。PpHCAR、PpPPH、PpPAO、PpRCCR隨著果實發(fā)育在成熟前12~4 d表達量上升,在果實成熟時表達量下降,PpHCAR、PpRCCR在3個桃品種/品系中無明顯差異,在2-50中表達模式有所不同。PpPPH和PpPAO在春美中分別在成熟前8 d和成熟前4 d有明顯升高。
由圖5可知,在4個桃品種/品系中,PpCLH1基因在成熟前12~8 d時間段內(nèi)的表達量高于其他基因,在果實成熟時表達量迅速下降,因為此時果實處于轉(zhuǎn)色的關(guān)鍵期,因此推斷PpCLH1基因可能是桃果實轉(zhuǎn)色時的重要調(diào)控基因。隨著果實發(fā)育,果皮葉綠素降解,果實完全成熟,PpSGR基因的表達量顯著升高。進一步推測PpSGR基因有可能也是桃果實成熟前造成4個桃品種/品系葉綠素降解的主要基因。
根據(jù)聚類分析結(jié)果(圖6)在春美和2-50中PpSGR與PpCLH1、PpPPH聚為一類,在中蟠102和中桃7號中PpSGR與PpCLH1、PpRCCR聚為一類。在春美和中蟠102中PpSGRL和PpCLH2聚為一類,在2-50和中桃7號中PpSGRL、PpNYC1和PpCLH2聚為一類。因此PpSGRL、PpNYC1和PpCLH2可能是果實早期葉綠素降解的關(guān)鍵基因,PpSGR與PpCLH1、PpPPH、PpRCCR可能是桃果實成熟前造成不同桃品種/品系葉綠素降解差異的主要基因。
對葉綠素含量與其降解基因進行相關(guān)性分析(表2),發(fā)現(xiàn)PpCLH2基因表達與春美和2-50中葉綠素含量呈顯著正相關(guān),PpSGR與春美、中桃7號的葉綠素含量呈顯著負相關(guān),PpSGRL與春美、2-50、中蟠102的葉綠素含量呈顯著正相關(guān)。
qRT-PCR分析結(jié)果表明,成熟前12~8 d時,PpCLH1、PpPAO基因的表達量顯著。而PpSGR基因在果實成熟時表達量明顯上調(diào),聚類分析顯示在春美和2-50中PpSGR與PpCLH1、PpPPH聚為一類,在中蟠102和中桃7號中PpSGR與PpCLH1、PpRCCR聚為一類。相關(guān)性分析顯示PpSGR與春美、中桃7號的葉綠素含量呈顯著負相關(guān)。初步表明PpCLH1、PpSGR基因是果實成熟前4個桃品種/品系果皮葉綠素降解的關(guān)鍵基因。
3 討 論
長期以來,CLH被認為是參與葉綠素降解的第一種酶,與葉綠素的降解密切相關(guān)。有研究表明,乙烯處理的柑橘果皮中CLH酶活力提高了2.5~4倍,同時果皮明顯褪綠[29]。樊艷燕等[30]發(fā)現(xiàn)BoCLH1(葉綠素酶1)在青花菜初始時檢測到有較高表達,后期表達量很低,試驗結(jié)果表明BoCLH1主要在青花菜初始衰老中起降解葉綠素的作用。胡椒中發(fā)現(xiàn)葉綠素酶活性與葉綠素含量之間存在負相關(guān)關(guān)系,并在收獲后的衰老過程中促進葉綠素的降解[31]。筆者在本試驗中發(fā)現(xiàn),桃PpCLH1在果實成熟過程中表達量先升高后下降,在果實成熟前12~8 d表達量較高,此時也是果實轉(zhuǎn)色的關(guān)鍵時期,因此PpCLH1可能是桃果實轉(zhuǎn)色時葉綠素降解的關(guān)鍵基因。在草地早熟禾葉片衰老時,CLH基因的表達會導致葉綠素降解[32]。在荔枝中成熟過程中LcCLH表達量先升高后下降,LcPAO、LcSGR的表達量隨著果實發(fā)育逐漸升高,相比于葉綠素降解更徹底的糯米滋,妃子笑中LcCLH、LcPAO、LcSGR的表達量明顯更低[33]。
在高等植物中,脫鎂葉綠酸a氧化酶(PAO)基因表達量和酶活性的變化與葉綠素含量降解有關(guān)[12]。此外SGR普遍參與了植物葉片衰老過程中葉綠素分解,也在植物其他器官的生長發(fā)育中有重要作用,如果實成熟和發(fā)育[34]。在大豆成熟前PPH、PAO、SGR三個基因相對表達量顯著提高(p<0.05),并且在褪綠材料科豐14中的表達量遠高于滯綠材料北農(nóng)108中的表達量,因此推測葉綠素降解基因PPH、PAO、SGR表達量低是北農(nóng)108滯綠的重要原因之一[35]。在本試驗中PpPPH和PpPAO在春美中分別在8 DBM和4 DBM有明顯升高,在其他4個品種/品系中也都有明顯升高。雷波臍橙及其早熟單株果實也發(fā)現(xiàn)PAO在果實各發(fā)育時期都有穩(wěn)定表達,CLH、PPH、NYC1、SGR1的表達先上調(diào)后下調(diào)[36]。青甌柑和甌柑的試驗結(jié)果表明在花后210 d、240 d,甌柑中NYC1、CLH、PPH、PAO、SGR的表達量均高于青甌柑,差異顯著,這可能是青甌柑葉綠素降解緩慢的原因[37]。筆者在本研究中通過聚類分析,在春美和2-50中PpSGR與PpCLH1、PpPPH聚為一類,在中蟠102和中桃7號中PpSGR與PpCLH1、PpRCCR聚為一類。這說明在桃中葉綠素降解受多個葉綠素降解基因的影響。
大豆中GmSGR丟失可能導致大豆種子從黃色變?yōu)榫G色[38]。擬南芥在葉片衰老過程中,SGR1正向介導葉綠素降解,而過表達SGRL的擬南芥植物表現(xiàn)出早期葉片黃變[15]。葉綠素降解導致桃果皮褪綠是桃果實成熟最明顯的標志之一。有研究表明SlSGR1在調(diào)節(jié)番茄葉片和果實的葉綠素降解中起著關(guān)鍵作用[39]。與野生型(WT)果實相比,SlSGR1敲除無效系明顯顯示出混濁的棕色,葉綠素水平明顯更高[17],表明SlSGR1影響葉綠素降解。筆者課題組發(fā)現(xiàn)PpSGR基因在果實成熟時表達量較高,并且春美、中桃7號葉綠素含量與PpSGR表達量呈負相關(guān),所以PpSGR是桃果實成熟期葉綠素降解的關(guān)鍵調(diào)控基因。目前在其他物種中葉綠素降解基因的表達規(guī)律與功能的研究已經(jīng)有很多,但在桃中還少見報道。因此,進一步解析桃中葉綠素降解基因調(diào)控果實成熟前葉綠素降解的機制具有重要意義。
4 結(jié) 論
桃果實成熟前12~8 d是桃果實關(guān)鍵的轉(zhuǎn)色期,此時PpCLH1基因相比綠色時有明顯上調(diào)。在果實成熟前8~0 d,隨著果皮葉綠素降解,PpSGR表達量上升,表明PpSGR是桃果實成熟前葉綠素降解的關(guān)鍵基因。本研究為探索桃果實發(fā)育過程中葉綠素降解的分子機制提供了參考。
參考文獻References:
[1] DELGADO C,CRISOSTO G M,HEYMANN H,CRISOSTO C H. Determining the primary drivers of liking to predict consumers acceptance of fresh nectarines and peaches[J]. Journal of Food Science,2013,78(4):S605-S614.
[2] KELLEY K M,PRIMROSE R,CRASSWELLER R,HAYES J E,MARINI R. Consumer peach preferences and purchasing behavior:A mixed methods study[J]. Journal of the Science of Food and Agriculture,2016,96(7):2451-2461.
[3] TANAKA A,TANAKA R. Chlorophyll metabolism[J]. Current Opinion in Plant Biology,2006,9(3):248-255.
[4] ECKHARDT U,GRIMM B,H?RTENSTEINER S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants[J]. Plant Molecular Biology,2004,56(1):1-14.
[5] H?RTENSTEINER S,KR?UTLER B. Chlorophyll breakdown in higher plants[J]. Biochimica et Biophysica Acta-Bioenergetics,2011,1807(8):977-988.
[6] M?LLER T,MOSER S,ONGANIA K H,PRUZINSKA A,H?RTENSTEINER S,KR?UTLER B. A divergent path of chlorophyll breakdown in the model plant Arabidopsis thaliana[J]. Chembiochem,2006,7(1):40-42.
[7] SATO Y,MORITA R,NISHIMURA M,YAMAGUCHI H,KUSABA M. Mendels green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(35):14169-14174.
[8] KUNIEDA T,AMANO T,SHIOI Y. Search for chlorophyll degradation enzyme,Mg-dechelatase,from extracts of Chenopodium album with native and artificial substrates[J]. Plant Science,2005,169(1):177-183.
[9] SCHELBERT S,AUBRY S,BURLA B,AGNE B,KESSLER F,KRUPINSKA K,H?RTENSTEINER S. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis[J]. The Plant Cell,2009,21(3):767-785.
[10] FUKASAWA A,SUZUKI Y,TERAI H,YAMAUCHI N. Effects of postharvest ethanol vapor treatment on activities and gene expression of chlorophyll catabolic enzymes in broccoli florets[J]. Postharvest Biology and Technology,2010,55(2):97-102.
[11] H?RTENSTEINER S. Update on the biochemistry of chlorophyll breakdown[J]. Plant Molecular Biology,2013,82(6):505-517.
[12] KUAI B K,CHEN J Y,H?RTENSTEINER S. The biochemistry and molecular biology of chlorophyll breakdown[J]. Journal of Experimental Botany,2018,69(4):751-767.
[13] 李麗莉,樊丁宇,楊磊,靳娟,郝慶. 棗PAO基因的鑒定及在果實發(fā)育和貯藏過程中的表達分析[J]. 山東農(nóng)業(yè)科學,2023,55(12):9-16.
LI Lili,F(xiàn)AN Dingyu,YANG Lei,JIN Juan,HAO Qing. Identification and expression analysis of PAO gene during fruit development and storage of Ziziphus jujuba[J]. Shandong Agricultural Sciences,2023,55(12):9-16.
[14] SHEN J,GUO M J,WANG Y G,YUAN X Y,WEN Y Y,SONG X,DONG S Q,GUO P Y. Humic acid improves the physiological and photosynthetic characteristics of millet seedlings under drought stress[J]. Plant Signaling & Behavior,2020,15(8):1774212.
[15] SAKURABA Y,PARK S Y,KIM Y S,WANG S H,YOO S C,H?RTENSTEINER S,PAEK N C. Arabidopsis STAY-GREEN2 is a negative regulator of chlorophyll degradation during leaf senescence[J]. Molecular Plant,2014,7(8):1288-1302.
[16] 何文,王燕,陳清,徐世榮,湯浩茹,潘東明,王小蓉. 枳砧紅綿蜜柚嫁接黃化苗的光合特性及其CgSGR基因克隆與表達分析[J]. 西北植物學報,2018,38(5):808-815.
HE Wen,WANG Yan,CHEN Qing,XU Shirong,TANG Haoru,PAN Dongming,WANG Xiaorong. Photosynthetic characteristics of etiolated seedling of Citrus grandis (L.) Osbeck. cv. ‘Hongmian Miyou grafted to Poncirus trifoliata and expression of CgSGR[J]. Acta Botanica Boreali-Occidentalia Sinica,2018,38(5):808-815.
[17] 晉秀娟,孫麗麗,趙鍇,ASHRAFUL I M,盧娟,王曙光,孫黛珍. 小麥葉綠素酶基因家族的鑒定及其葉綠素降解過程中的功能預測[J]. 激光生物學報,2022,31(1):50-60.
JIN Xiujuan,SUN Lili,ZHAO Kai,ASHRAFUL I M,LU Juan,WANG Shuguang,SUN Daizhen. Identification of CLH gene family and functional prediction of chlorophyll degradation in wheat[J]. Acta Laser Biology Sinica,2022,31(1):50-60.
[18] LIU W,LI Q W,WANG Y,WU T,YANG Y F,ZHANG X Z,HAN Z H,XU X F. Ethylene response factor AtERF72 negatively regulates Arabidopsis thaliana response to iron deficiency[J]. Biochemical and Biophysical Research Communications,2017,491(3):862-868.
[19] ZHU K J,ZHENG X J,YE J L,HUANG Y,CHEN H Y,MEI X H,XIE Z Z,CAO L X,ZENG Y L,LARKIN R M,XU Q,PEREZ-ROMAN E,TAL?N M,ZUMAJO-CARDONA C,WURTZEL E T,DENG X X. Regulation of carotenoid and chlorophyll pools in hesperidia,anatomically unique fruits found only in Citrus[J]. Plant Physiology,2021,187(2):829-845.
[20] CHEN H C,LAI X H,WANG L H,LI X P,CHEN W X,ZHU X Y,SONG Z Y. Ethylene response factor MaERF012 modulates fruit ripening by regulating chlorophyll degradation and softening in banana[J]. Foods,2022,11(23):3882.
[21] 竇錦慧,陳俊毅,魯凡,吳聲棟,蒯本科,張鼎宇. 擬南芥葉片衰老前后葉綠素降解代謝基因表達和酶積累的模式及其影響因素分析[J]. 復旦學報(自然科學版),2023,62(5):565-574.
DOU Jinhui,CHEN Junyi,LU Fan,WU Shengdong,KUAI Benke,ZHANG Dingyu. A preliminary study in the expression/accumulation pattern and regulation of chlorophyll catabolic genes/enzymes during leaf development in Arabidopsis thaliana[J]. Journal of Fudan University (Natural Science),2023,62(5):565-574.
[22] 李靖雯,鄒東方,黃瑩瑩,葉霞,馮建燦,李志謙. ERF調(diào)控果蔬成熟過程顏色變化的研究進展[J]. 分子植物育種,2022,20(18):6236-6243.
LI Jingwen,ZOU Dongfang,HUANG Yingying,YE Xia,F(xiàn)ENG Jiancan,LI Zhiqian. Research progress of ERF in regulation of color variation in fruits and vegetables during maturation[J]. Molecular Plant Breeding,2022,20(18):6236-6243.
[23] 李桂祥,馬瑞娟,張斌斌,俞明亮,倪林箭. 套袋對霞暉6號桃果實發(fā)育過程中果皮色素含量和色差的影響[J]. 江蘇農(nóng)業(yè)學報,2012,28(6):1418-1423.
LI Guixiang,MA Ruijuan,ZHANG Binbin,YU Mingliang,NI Linjian. Effect of bagging on peel pigment content and fruit chromatism of peach cultivar Xiahui 6[J]. Jiangsu Journal of Agricultural Sciences,2012,28(6):1418-1423.
[24] 郭東花,白紅,石佩,楊艷青,李高潮,范崇輝. 不同時期套袋對“瑞光19號” 油桃果實揮發(fā)性成分及著色的影響[J]. 食品科學,2016,37(8):242-247.
GUO Donghua,BAI Hong,SHI Pei,YANG Yanqing,LI Gaochao,F(xiàn)AN Chonghui. Effects of bagging at different stages on volatiles and color of “Ruiguang No. 19” nectarine fruits[J]. Food Science,2016,37(8):242-247.
[25] 項倩,吳磊,徐若涵,楊再強. 不同溫度下染病番茄葉片SPAD和葉綠素含量的相關(guān)性[J]. 北方園藝,2022(18):8-15.
XIANG Qian,WU Lei,XU Ruohan,YANG Zaiqiang. Correlation between SPAD and chlorophyll content in infected tomato leaves at different temperatures[J]. Northern Horticulture,2022(18):8-15.
[26] 劉建新,丁華僑,田丹青,王煒勇,劉慧春. 擎天鳳梨苞片葉綠素代謝關(guān)鍵基因的分離及褪綠的分子機理[J]. 中國農(nóng)業(yè)科學,2016,49(13):2593-2602.
LIU Jianxin,DING Huaqiao,TIAN Danqing,WANG Weiyong,LIU Huichun. Isolation of chlorophyll metabolism key genes and molecular mechanism of green fade in Guzmania bracts discoloration process[J]. Scientia Agricultura Sinica,2016,49(13):2593-2602.
[27] BRANDI F,BAR E,MOURGUES F,HORV?TH G,TURCSI E,GIULIANO G,LIVERANI A,TARTARINI S,LEWINSOHN E,ROSATI C. Study of ‘Redhaven peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism[J]. BMC Plant Biology,2011,11:24.
[28] SCHMITTGEN T D,LIVAK K J. Analyzing real-time PCR data by the comparative CT method[J]. Nature Protocols,2008,3:1101-1108.
[29] YAMAUCHI N,AKIYAMA Y,KAKO S,HASHINAGA F. Chlorophyll degradation in Wase satsuma mandarin (Citrus unshiu Marc.) fruit with on-tree maturation and ethylene treatment[J]. Scientia Horticulturae,1997,71(1/2):35-42.
[30] 樊艷燕,劉玉梅,李占省,方智遠,楊麗梅,莊木,張揚勇,孫培田. 青花菜衰老過程中葉綠素降解相關(guān)基因的表達分析[J]. 園藝學報,2015,42(7):1338-1346.
FAN Yanyan,LIU Yumei,LI Zhansheng,F(xiàn)ANG Zhiyuan,YANG Limei,ZHUANG Mu,ZHANG Yangyong,SUN Peitian. Analysis of the expression of chlorophyll degrading genes during senescence of broccoli[J]. Acta Horticulturae Sinica,2015,42(7):1338-1346.
[31] GUPTA S,GUPTA S M,SANE A P,KUMAR N. Chlorophyllase in Piper betle L. has a role in chlorophyll homeostasis and senescence dependent chlorophyll breakdown[J]. Molecular Biology Reports,2012,39(6):7133-7142.
[32] 張?zhí)m,滕珂,尹淑霞. 草地早熟禾葉綠素酶1基因PpCHL1的克隆和表達分析[J]. 中國草地學報,2016,38(4):1-7.
ZHANG Lan,TENG Ke,YIN Shuxia. Cloning and expression analysis of chlorophyllase 1 gene PpCHL1 from Poa pratensis L.[J]. Chinese Journal of Grassland,2016,38(4):1-7.
[33] ZOU S C,ZHUO M G,ABBAS F,HU G B,WANG H C,HUANG X M. Transcription factor LcNAC002 coregulates chlorophyll degradation and anthocyanin biosynthesis in litchi[J]. Plant Physiology,2023,192(3):1913-1927.
[34] 張巧麗,陳笛,宋艷萍,朱鴻亮,羅云波,曲桂芹. 番茄果實葉綠素代謝轉(zhuǎn)錄調(diào)控網(wǎng)絡研究進展[J]. 園藝學報,2023,50(9):2031-2047.
ZHANG Qiaoli,CHEN Di,SONG Yanping,ZHU Hongliang,LUO Yunbo,QU Guiqin. Review on transcriptional regulation of chlorophyll metabolism network in tomato fruits[J]. Acta Horticulturae Sinica,2023,50(9):2031-2047.
[35] 張鑫,莫翱偉,許鵬昊,張卿,王程,謝皓. 持綠大豆葉片中葉綠素降解途徑關(guān)鍵酶基因的表達分析[J]. 分子植物育種,2020,18(15):4871-4877.
ZHANG Xin,MO Aowei,XU Penghao,ZHANG Qing,WANG Cheng,XIE Hao. Expression analysis of key enzyme gene in chlorophyll degradation pathway in stay green soybean leaves[J]. Molecular Plant Breeding,2020,18(15):4871-4877.
[36] 王小佳. 雷波臍橙及其早熟單株果實脫綠期的葉綠素降解代謝關(guān)鍵基因表達分析[D]. 雅安:四川農(nóng)業(yè)大學,2020.
WANG Xiaojia. Differential expression analysis of key genes for chlorophyll degradation and metabolism of Leibo navel orange and its early-ripening fruit mutation[D]. Yaan:Sichuan Agricultural University,2020.
[37] 鄭麗. 青甌柑PAO基因的克隆及分析[D]. 武漢:華中農(nóng)業(yè)大學,2013.
ZHENG Li. Cloning and analysis PAO gene in the stay-green mutant of ougan mandarine (Citrus suavissima)[D]. Wuhan:Huazhong Agricultural University,2013.
[38] WANG C,GAO L,LI R Z,WANG Y,LIU Y Y,ZHANG X,XIE H. High-throughput sequencing reveals the molecular mechanisms determining the stay-green characteristic in soybeans[J]. Journal of Biosciences,2020,45(1):103.
[39] LUO Z D,ZHANG J H,LI J H,YANG C X,WANG T T,OUYANG B,LI H X,GIOVANNONI J,YE Z B. A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato[J]. The New Phytologist,2013,198(2):442-452.
收稿日期:2024-01-04 接受日期:2024-03-25
基金項目:國家桃產(chǎn)業(yè)技術(shù)體系(CARS-30);中國農(nóng)業(yè)科學院科技創(chuàng)新工程專項經(jīng)費項目(CAAS-ASTIP-2023-ZFRI);河南省重大公益科技專項(201300110500)
作者簡介:劉鑫,男,在讀碩士研究生,研究方向為果樹遺傳育種。E-mail:82101212241@caas.cn
*通信作者 Author for correspondence. E-mail:niuliang@caas.cn