摘要: 為揭示不同覆蓋耕作模式對(duì)黑土區(qū)坡耕地土壤侵蝕防治及水分利用效率的影響機(jī)制,設(shè)置順坡免耕碎稈均勻覆蓋(SM)、順坡免耕覆蓋作物(SC)、橫坡免耕碎稈均勻覆蓋(CM)和傳統(tǒng)耕作(CK)4種覆蓋耕作模式,研究分析黑土區(qū)坡耕地土壤水分動(dòng)態(tài)變化規(guī)律,明確不同覆蓋耕作模式的土壤侵蝕特征,分析不同覆蓋耕作模式對(duì)水分利用效率的影響.結(jié)果表明:順坡免耕碎稈均勻覆蓋(SM)、順坡免耕覆蓋作物(SC)和橫坡免耕碎稈均勻覆蓋(CM)均能不同程度地增加土壤水分含量,防治土壤侵蝕和提高水分利用效率.SM處理、SC處理與CM處理較CK處理0~80 cm不同土層土壤含水率分別提高9.34%~18.20%,5.30%~11.54%和9.12%~19.84%;徑流量、侵蝕量、降雨量和最大30 min雨強(qiáng)(I30)均與水分利用效率呈顯著負(fù)相關(guān)性;SM處理、SC處理和CM處理的水分利用效率較CK處理均有提高,其增幅介于1.18%~10.76%.通過對(duì)比分析減流減蝕效果和水分利用效率,發(fā)現(xiàn)在防治土壤侵蝕,蓄水保墑及提高水分利用效率方面,橫坡免耕碎稈均勻覆蓋模式效果更好.
關(guān)鍵詞: 土壤侵蝕;水分利用效率;覆蓋措施;耕作方式;坡耕地
中圖分類號(hào): S278" 文獻(xiàn)標(biāo)志碼: A" 文章編號(hào): 1674-8530(2024)08-0826-09
DOI:10.3969/j.issn.1674-8530.24.0034
收稿日期: 2024-02-25; 修回日期: 2024-03-27; 網(wǎng)絡(luò)出版時(shí)間: 2024-07-13
網(wǎng)絡(luò)出版地址: https://link.cnki.net/urlid/32.1814.TH.20240709.1633.006
基金項(xiàng)目: 國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021YFD1500802-2);國家自然科學(xué)基金資助項(xiàng)目(52079030)
第一作者簡介: 劉繼龍(1981—),男,山東五蓮人,教授,博士生導(dǎo)師(通信作者,liujilong@neau.edu.cn),主要從事農(nóng)業(yè)水土資源高效利用研究.
第二作者簡介: 王志卓(1996—),男,黑龍江茄子河人,碩士研究生(1241994529@qq.com),主要從事農(nóng)業(yè)水土資源高效利用研究.
劉繼龍,王志卓,曹曉強(qiáng),等. 黑土區(qū)坡耕地土壤侵蝕及水分利用效率對(duì)不同覆蓋耕作模式的響應(yīng)[J]. 排灌機(jī)械工程學(xué)報(bào),2024,42(8):826-834.
LIU Jilong, WANG Zhizhuo, CAO Xiaoqiang,et al. Responses of soil erosion and water use efficiency of sloping farmland in black soil region to different mulch tillage modes[J]. Journal of drainage and irrigation machinery engineering(JDIME)," 2024, 42(8): 826-834. (in Chinese)
Responses of soil erosion and water use efficiency of sloping farmland
in black soil region to different mulch tillage modes
LIU Jilong1, 2*, WANG Zhizhuo1, 2, CAO Xiaoqiang1, 2, DONG Ze1, 2, LIU Qianqian1, 2, CAO Ran1, 2
(1. School of Water and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; 2. Key Laboratory of High Effective Utilization of Agricultural Water Resources, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, Heilongjiang 150030, China)
Abstract: To reveal the influence mechanism of different cover cropping modes on soil erosion control and water use efficiency of sloping cropland in the black soil zone, four cover cropping modes were set up, namely, no-till chopped straw uniform cover downhill (SM), no-till cover crop downhill (SC), no-till chopped pole uniform cover across the slope (CM), and conventional tillage (CK). The soil moisture dynamics of sloping arable land in the black soil zone, its water retention and soil fixation capacity as well as its water use efficiency were researched and analyzed. The results show that no-till chopped straw uniform cover downhill (SM), no-till cover crop downhill (SC), and no-till chopped pole uniform cover across the slope (CM) have different degrees of effects on increasing soil moisture content, preventing soil erosion, and improving water utilization efficiency. The average soil water content of 0-80 cm different soil layers increases by 9.34%-18.20%, 5.30%-11.54% and 9.12%-19.84% in SM, SC and CM treatments, respectively, compared with that of CK treatment during the whole crop life. Runoff, erosion, rainfall, and maximum 30 min rainfall intensity altogether significantly negatively correlates with water use efficiency. SM, SC and CM treatments improve water use efficiency by 1.18%-10.76% compared to CK treatment. By setting up four different mulching tillage modes, revealing the changing law of soil moisture under different mulching tillage modes, clarifying the soil erosion characteristics of different mulching tillage modes, and analyzing the effects of different mulching tillage modes on the water use efficiency, it is concluded that the no-till chopped pole uniform cover across the slope mode is the most effective in preventing soil erosion, storing and conserving moisture and improving water use efficiency.
Key words: soil erosion;water use efficiency;cover measures;farming method;sloping farmland
東北黑土區(qū)是中國農(nóng)業(yè)生產(chǎn)集約化程度最高的區(qū)域,具有較高的作物生產(chǎn)力,成為保障國家糧食安全的“穩(wěn)壓器”和“壓艙石”[1].然而,東北黑土區(qū)由于長期掠奪式經(jīng)營、匯水區(qū)面積大以及夏季集中降雨等因素導(dǎo)致土壤侵蝕嚴(yán)重,黑土層平均厚度減少約40 cm[2],該地區(qū)最嚴(yán)重的土壤侵蝕發(fā)生在坡耕地,其面積占黑土區(qū)土壤侵蝕總面積的80.3%[3].土壤侵蝕導(dǎo)致土地資源的枯竭和生態(tài)環(huán)境的退化,嚴(yán)重威脅著中國土壤健康和糧食安全[4].橫坡耕作、免耕、秸稈覆蓋以及種植覆蓋作物作為保護(hù)性覆蓋耕作措施能夠增加地表粗糙度,改善土壤質(zhì)量,提高土壤保水能力,是防治土壤侵蝕的重要措施.因此,明確不同覆蓋耕作模式土壤侵蝕阻控效應(yīng),采取有效的覆蓋及耕作模式,對(duì)東北黑土區(qū)坡耕地土壤侵蝕防治具有重要意義.
東北黑土區(qū)多采用順坡壟作,侵蝕性降雨的發(fā)生加劇了土壤侵蝕,導(dǎo)致黑土層變薄,土壤質(zhì)量退化,生產(chǎn)力降低[5-6].相較于傳統(tǒng)耕作,橫坡耕作通過增加地表粗糙度,有效地減少了坡面產(chǎn)流次數(shù),進(jìn)而減少泥沙剝離和搬運(yùn),增強(qiáng)土壤的抗蝕性,可以有效防治土壤侵蝕.在黑土區(qū)坡耕地,橫坡耕作年徑流量比傳統(tǒng)耕作少96.8%,侵蝕量比傳統(tǒng)耕作少99.2%[7].但是由于橫坡耕作壟丘穩(wěn)定性差,在短時(shí)強(qiáng)降雨條件下,橫坡耕作會(huì)出現(xiàn)斷壟現(xiàn)象,防治土壤侵蝕效果將會(huì)降低,橫坡耕作斷壟前可有效減少徑流量和侵蝕量,而在斷壟后,徑流量和侵蝕量明顯增加[8].通過秸稈覆蓋免耕和覆蓋作物種植可以增加地表覆蓋度,有效提升坡耕地的減流減沙效應(yīng),避免斷壟現(xiàn)象發(fā)生,從而調(diào)控地表徑流[9-10],改善土壤結(jié)構(gòu),增加土壤水分含量,提高作物水分利用效率,對(duì)作物生產(chǎn)有明顯的增產(chǎn)效應(yīng)[11-13].在東北黑土區(qū)平地,相較于傳統(tǒng)耕作,免耕使玉米減產(chǎn)28.4%[14].在玉米與大豆輪作下實(shí)施免耕,可有效改善土壤質(zhì)量進(jìn)而提高作物產(chǎn)量,彌補(bǔ)由于秸稈覆蓋免耕措施和覆蓋作物措施導(dǎo)致作物產(chǎn)量不穩(wěn)定的不足.免耕條件下采取玉米與大豆輪作方式,可顯著提高玉米產(chǎn)量[15].目前,已有許多關(guān)于秸稈覆蓋措施與不同耕作方式組合對(duì)土壤侵蝕影響的研究,而在玉米-大豆輪作體系下秸稈覆蓋、作物覆蓋與耕作方式組合對(duì)土壤侵蝕及水分利用效率的影響機(jī)制還需深入研究.
因此,文中以東北黑土坡耕地玉米-大豆輪作為研究對(duì)象,分析不同覆蓋耕作模式對(duì)土壤水分和水分利用效率的影響,探究不同覆蓋耕作模式下土壤侵蝕阻控效應(yīng),以期揭示不同覆蓋耕作模式對(duì)土壤侵蝕及水分利用效率的影響機(jī)制,為研究黑土區(qū)土壤侵蝕防控提供適宜的覆蓋耕作模式.
1" 材料與方法
1.1" 試驗(yàn)區(qū)概況
試驗(yàn)于2022年和2023年5月初至10月初,在黑龍江省海倫市前進(jìn)鎮(zhèn)光榮村(47°22′38″N, 126°51′4″E)進(jìn)行.該試驗(yàn)區(qū)位于黑龍江省松嫩平原北部,具有坡緩坡長、崗川交錯(cuò)、崗?fù)菹嚅g等特點(diǎn),平均海拔210 m,坡度為0.5°~7.0°,坡耕地占比90%以上.試驗(yàn)區(qū)氣候?qū)儆诤疁貛Т箨懶詺夂?,冬季漫長寒冷,夏季短促溫潤,雨熱同期,年平均氣溫2.5 ℃,年平均降雨量400~650 mm,70%降雨集中在6—9月,年日照時(shí)數(shù)2 600~2 800 h.土壤類型以黑土和草甸土為主,其中黑土占土地總面積的63.4%,黑土層厚度約為30 cm.農(nóng)田主要作物為玉米和大豆.
1.2" 試驗(yàn)設(shè)計(jì)
試驗(yàn)設(shè)置4個(gè)處理,分別為順坡免耕碎稈均勻覆蓋(SM)、橫坡免耕碎稈均勻覆蓋(CM)、順坡免耕覆蓋作物(SC)和傳統(tǒng)耕作(CK),每個(gè)處理3次重復(fù),每個(gè)小區(qū)面積為100 m2(20 m×5 m).覆蓋作物為豆科植物草木樨,于7月份種植,由人工在作物行間撒播,播種密度為100 kg/hm2.SM處理與CM處理為秋收后移走秸稈,次年春季免耕播種后將秸稈粉碎進(jìn)行覆蓋,粉碎后秸稈長15~20 cm,覆蓋量根據(jù)面積比例為前一年研究區(qū)收獲秸稈的100%,即7 500 kg/hm2.試驗(yàn)處理設(shè)計(jì)如表1所示.試驗(yàn)在天然降雨條件下進(jìn)行,作物生育期內(nèi)日平均氣溫T與降雨量P0變化如圖1所示.
試驗(yàn)區(qū)采用玉米-大豆輪作種植模式,供試玉米品種為“迪卡1563”,種植密度為56 700株/hm2,供試大豆品種為“華疆12”,種植密度為34萬株/hm2,雙行播種.結(jié)合當(dāng)?shù)胤N植經(jīng)驗(yàn),且施肥水平、生產(chǎn)管理與當(dāng)?shù)乇3忠恢?,試?yàn)小區(qū)各處理施肥方案相同,施肥量為氮肥125 kg/hm2、磷肥90 kg/hm2和鉀肥120 kg/hm2,在玉米處于拔節(jié)期時(shí)追施氮肥125 kg/hm2(大豆農(nóng)田不追肥).
1.3" 測定項(xiàng)目與方法
土壤含水率測定:分別在玉米和大豆不同生育時(shí)期對(duì)土壤進(jìn)行多次取樣,土壤取樣深度為(0,20] cm,(20, 40] cm,(40, 60] cm,(60, 80] cm,共劃分4層.采用烘干法測定土壤質(zhì)量含水率,并計(jì)算土壤體積含水率.
土壤貯水量計(jì)算式[16]為
W=∑ni=110θiHi,(1)
式中:W為0~80 cm深度的土壤貯水量,mm;i為土層深度編號(hào);n為總土層數(shù);θi為第i層的土壤體積含水率,%;Hi為第i層土壤厚度,cm.
地表徑流量、土壤侵蝕量和降雨特征測定:在每個(gè)小區(qū)底部設(shè)置梯形鋼制導(dǎo)流槽,降雨產(chǎn)生的徑流和泥沙輸送至數(shù)字式高精度土壤侵蝕監(jiān)測系統(tǒng)(LSB-SL1,中國),并測定降雨特征.該系統(tǒng)主要由數(shù)據(jù)采集與存儲(chǔ)主控機(jī)組組成,其中有泥沙含量測量傳感器,徑流傳感器和降雨傳感器.利用該系統(tǒng)的降雨傳感器記錄降雨持續(xù)時(shí)間的變化,降雨結(jié)束后導(dǎo)出徑流傳感器和泥沙含量傳感器中數(shù)據(jù).
利用水量平衡法[17]計(jì)算作物生育期耗水量,計(jì)算式為
ET=ΔW+P0-R,(2)
式中:ET為作物生育期耗水量,mm;ΔW為播種前和收獲后的土壤貯水量變化量,mm;R為地表徑流量,mm.
產(chǎn)量及構(gòu)成要素測定:收獲時(shí)期取各小區(qū)中間2行進(jìn)行測產(chǎn),計(jì)算作物產(chǎn)量.
作物水分利用效率的計(jì)算式[18]為
WUE=Y/ET,(3)
式中:WUE為水分利用效率,kg/m3;Y為作物產(chǎn)量,kg/hm2.
2" 結(jié)果與分析
2.1" 不同覆蓋耕作模式對(duì)土壤含水率的影響
2022年和2023年不同土層土壤含水率θm隨生育期的變化分別如圖2和圖3所示,圖2中SS,JS,TS,GS和MS分別代表玉米苗期、拔節(jié)期、抽雄期、灌漿期和成熟期,圖3中SS,F(xiàn)S,PS,SFS和MS分別代表大豆苗期、開花期、結(jié)莢期、鼓粒期和成熟期.
注: 圖中不同字母表示同一土層不同處理間差異具有統(tǒng)計(jì)學(xué)意義(Plt;0.05),下同
在玉米生育期,與CK處理相比,SM,SC和CM處理的不同土層土壤含水率均增大,其增幅分別介于9.34%~18.20%,5.30%~11.54%和9.12%~19.84%.各處理的土壤含水率隨土層深度的增加呈先增加再減小的變化趨勢,CM處理相比于其他處理能夠明顯提高各土層土壤含水率.不同處理不同土層土壤含水率隨玉米生育時(shí)期的變化未呈現(xiàn)明顯變化規(guī)律,但在玉米抽雄期,不同處理不同土層土壤含水率均降低到最小值,這可能是因?yàn)槌樾燮谟衩咨L旺盛,作物耗水量增加,導(dǎo)致土壤含水率下降.和玉米不同,在大豆生育期不同處理不同土層土壤含水率隨生育時(shí)期的變化呈先增加再減小的變化趨勢.這可能因?yàn)榇蠖股诘慕涤炅渴怯衩椎?倍,降雨量的增加為大豆的生長提供充足水分,并且提高了(0,20] cm土層土壤含水率.與CK處理相比,除大豆苗期外,在大豆其余各生育期內(nèi)SM,SC和CM處理的不同土層的土壤含水率均增大且差異具有統(tǒng)計(jì)學(xué)意義(Plt;0.05),其增幅分別介于9.05%~11.40%,7.57%~10.50%和10.21%~12.31%.在玉米和大豆生育期內(nèi),SM,SC和CM處理均能提高不同土層土壤含水率,這主要因?yàn)樵诿飧鞣绞较赂采w作物和秸稈覆蓋可以避免土壤壓實(shí),提高土壤的水分入滲,減少無效蒸散引起的土壤水分流失[19],并且橫坡耕作在降水較多時(shí)可以蓄積雨水,有利于調(diào)控土壤水分入滲、保蓄土壤水分[20].
2.2" 不同覆蓋耕作模式的土壤侵蝕特征
與CK處理的徑流總量R和侵蝕總量EA相比,SM,SC和CM處理表示減流效果的徑流量減少率(runoff reduction rate, RRR)和表示減蝕效果的侵蝕量減少率(sediment reduction rate, SRR)如表2所示.
不同覆蓋耕作模式中,具有較優(yōu)的減流效果和減蝕效果的耕作模式更能有效防控土壤侵蝕.不同覆蓋耕作模式在2022年和2023年的徑流總量R和侵蝕總量EA從大到小排序均為CK,SC,SM,CM處理.和2022年相比,2023年大豆生育期SC處理的RRR和SRR分別與SM處理和CM處理之間的差異減小,這可能是因?yàn)楦采w作物在2022年和2023年的生長長勢不同.SM處理和CM處理在玉米生育期的RRR和SRR要大于大豆生育期,這可能是因?yàn)橛衩字仓陮?duì)降雨有一定的截留作用,并且減緩了雨滴擊濺地表速度,使得一部分降雨未能參與地面徑流,而大豆植株對(duì)降雨的截流效果不如玉米植株.隨著侵蝕性降雨次數(shù)增多,SM處理和CM處理的防控土壤侵蝕能力有所下降.
對(duì)徑流量與侵蝕量進(jìn)行回歸分析,結(jié)果如表3所示.各處理的回歸方程R2均大于0.800,擬合程度較好;SM,SC與CM處理土壤侵蝕總量隨徑流總量的增加而增加,其增幅均小于CK處理;與CK處理相比,SM,SC和CM處理的回歸系數(shù)分別降低27.00%,6.53%和27.72%,且各處理徑流總量與侵蝕總量的回歸方程均具有統(tǒng)計(jì)學(xué)意義(Plt;0.01).
圖4,5分別為2022年和2023年5—10月累積徑流量R0和累積侵蝕量EA0隨月份的變化趨勢.
由圖4,5可知,SC與CM處理累積徑流量與累積侵蝕量明顯小于CK與SC處理.在7—8月,SM,SC,CM和CK處理的徑流量分別占徑流總量的90.16%,91.87%,95.35%和88.67%;SM,SC,CM和CK處理的侵蝕量分別占侵蝕總量的91.63%,93.17%,99.05%和91.60%,這可能是因?yàn)樵诖穗A段降雨量占作物全生育期降雨量的70.42%,且雨強(qiáng)較大,不同覆蓋耕作模式的地表覆蓋率低,導(dǎo)致徑流量和侵蝕量明顯增加.8月份以后CM處理無徑流產(chǎn)生,SM,SC和CK處理有少量徑流產(chǎn)生,這主要因?yàn)?月份以后,地表覆蓋率增加,作物的葉面積及發(fā)達(dá)根系起到了較好的減流保土作用,同時(shí)隨著降雨的減少,各處理的產(chǎn)流次數(shù)也隨之減少.
不同覆蓋耕作模式的次徑流量Ri和次侵蝕量EAi隨最大30 min雨強(qiáng)I30的變化趨勢如圖6所示.
在2022年和2023年共發(fā)生12場次侵蝕性降雨,降雨特征均符合東北黑土區(qū)侵蝕性降雨標(biāo)準(zhǔn)[21],具有較強(qiáng)的代表性.與CK處理相比,SM,SC和CM處理的減流效果分別介于15.48%~67.71%,2.61%~60.05%和59.89%~100%,減蝕效果分別介于53.71%~98.51%,8.81%~90.97%和71.97%~100.00%.SM,SC和CM處理能夠有效提高土壤侵蝕防治能力.在I30gt;54 mm/h時(shí),CK,SM,SC和CM處理的次徑流量和次侵蝕量均大幅上升,CK處理的上升幅度最為明顯,這是因?yàn)镃K處理較其他處理地表覆蓋度低,降雨直接打擊地面,并且順坡耕作產(chǎn)生的徑流易攜帶泥沙加劇土壤侵蝕.在I30≤54 mm/h時(shí),各處理次徑流量和次侵蝕量總體呈上升趨勢,但波動(dòng)較大,這主要受侵蝕性降雨發(fā)生時(shí)間及作物生長狀況影響.
2.3" 不同覆蓋耕作模式對(duì)水分利用效率的影響
不同覆蓋耕作模式水分利用效率如表4所示,表中W1,W2分別為播種期貯水量和收獲期貯水量.
在玉米生育期,SM處理、SC處理和CM處理的水分利用效率較CK處理分別提高10.76%,5.39%和5.95%,且差異具有統(tǒng)計(jì)學(xué)意義(Plt;0.05).在大豆生育期,SM,SC處理和CM處理的水分利用效率較CK處理分別提高3.16%,7.89%和1.18%.SM和SC處理的水分利用效率與CK處理相比差異具有統(tǒng)計(jì)學(xué)意義(Plt;0.05),而CM處理與CK處理相比差異不具有統(tǒng)計(jì)學(xué)意義(Pgt;0.05).在玉米-大豆輪作體系中,SM,SC和CM處理的水分利用效率均高于CK處理,因?yàn)橄啾扔趥鹘y(tǒng)耕作,不同覆蓋耕作模式可以有效保持土壤水分,降低土壤的無效耗水,從而提高水分利用效率.不同覆蓋耕作模式的水分利用效率受產(chǎn)量和耗水量的共同影響.與CK處理相比,SM,SC和CM處理的玉米產(chǎn)量增產(chǎn)幅度分別為14.77%,4.29%和13.85%,大豆增產(chǎn)幅度分別為7.37%,6.26%和11.42%.故秸稈覆蓋和覆蓋作物能夠有效提高作物產(chǎn)量,從而提高水分利用效率[22].
水分利用效率WUE與徑流量R、侵蝕量EA、降雨量P和最大30 min雨強(qiáng)I30的相關(guān)性分析如表5所示.
水分利用效率與徑流量、侵蝕量、降雨量和I30均呈現(xiàn)顯著負(fù)相關(guān)(Plt;0.01),這是因?yàn)榻涤晔窃斐赏寥狼治g的直接作用力,降雨的雨滴擊濺地表,匯流沖刷表層土壤,導(dǎo)致土壤中營養(yǎng)物質(zhì)隨雨水沖離,降雨量和I30增大會(huì)加劇土壤侵蝕,從而導(dǎo)致作物減產(chǎn),并且土壤侵蝕會(huì)破壞土壤表層結(jié)構(gòu),堵塞土壤孔隙,阻礙土壤水分的入滲,造成水分的無效蒸發(fā),從而降低水分利用效率.
3" 討" 論
文中研究發(fā)現(xiàn)相對(duì)于傳統(tǒng)耕作,其他覆蓋耕作模式均具有較好的土壤侵蝕防控效應(yīng).徐勤學(xué)等[23]研究發(fā)現(xiàn),在中雨強(qiáng)條件下秸稈覆蓋能有效防控土壤侵蝕,而在大雨強(qiáng)條件下秸稈覆蓋加劇土壤侵蝕.這可能是由于在大雨強(qiáng)條件下,降雨在秸稈表面形成徑流,從而增加沖刷侵蝕,加劇土壤侵蝕.文中土壤含水率隨土層深度的變化趨勢與王麗學(xué)等[24]研究結(jié)果不同,這可能是不同覆蓋耕作模式能夠有效攔截雨水,增加土壤水分入滲,秸稈覆蓋和覆蓋作物能有效防止土壤水分蒸發(fā),使得表層土壤含水率增加.此外,土壤水分隨土層深度的垂直動(dòng)態(tài)變化在作物不同生育階段表現(xiàn)不同,并且同一生育階段土壤水分的垂直動(dòng)態(tài)變化會(huì)受降雨特征的影響.相比于傳統(tǒng)耕作,在免耕基礎(chǔ)上進(jìn)行秸稈覆蓋和覆蓋作物有助于形成良好的土壤結(jié)構(gòu)[25],提高土壤入滲水平,增加土壤水分含量[12, 26].在低溫冷涼區(qū),秸稈還田容易導(dǎo)致地溫降低而影響種子出苗[27].然而,魯悅等[28]研究發(fā)現(xiàn),秸稈覆蓋增產(chǎn)效果顯著,這與文中研究結(jié)果一致.這是因?yàn)殡S著生育期的推進(jìn),氣溫不斷升高,免耕秸稈覆蓋處理的作物生長不再受地溫限制,并且作物根系對(duì)土壤水分的吸收率相應(yīng)提高,進(jìn)而促進(jìn)作物生長.不同覆蓋耕作模式的水分利用效率與王暉等[29]研究結(jié)果有所差異,這可能是因?yàn)樵邳S淮海地區(qū),土壤蒸發(fā)強(qiáng)度較大,降雨形成作物用水的比例減小,秸稈覆蓋雖能抑制土壤蒸發(fā),但抑制效果不如東北黑土區(qū),并且東北黑土區(qū)秸稈覆蓋能保障作物對(duì)水分的需求,從而提高作物產(chǎn)量和水分利用效率.
4" 結(jié)" 論
1) 不同覆蓋耕作模式相比于傳統(tǒng)耕作均能提高不同土層土壤含水率,增幅介于5.30%~19.84%.
2) 順坡免耕碎稈均勻覆蓋模式、順坡免耕覆蓋作物模式和橫坡免耕碎稈均勻覆蓋模式的減流效果和減蝕效果分別為5.99%~99.04%和14.72%~99.99%,其中橫坡免耕碎稈均勻覆蓋的減流效果與減蝕效果最明顯.
3) 順坡免耕碎稈均勻覆蓋、順坡免耕覆蓋作物和橫坡免耕碎稈均勻覆蓋相比于傳統(tǒng)耕作可提高水分利用效率,增幅介于1.18%~10.76%.
4) 在玉米-大豆輪作體系中,不同覆蓋耕作模式在玉米生育期對(duì)土壤侵蝕的防控效果要強(qiáng)于大豆生育期,橫坡免耕碎稈均勻覆蓋模式在防控土壤侵蝕和提高水分利用效率方面效果更好.
參考文獻(xiàn)(References)
[1]" 李保國,劉忠,黃峰,等. 鞏固黑土地糧倉 保障國家糧食安全[J].中國科學(xué)院院刊,2021,36(10):1184-1193.
LI Baoguo,LIU Zhong,HUANG Feng,et al. Ensuring national food security by strengthening high-productivity black soil granary in northeast China [J]. Bulletin of Chinese Academy of Sciences,2021,36(10):1184-1193. (in Chinese)
[2]" ZHAO P Z,LI S,WANG E H,et al. Tillage erosion and its effect on spatial variations of soil organic carbon in the black soil region of China[J]. Soil amp; tillage research,2018,178:72-81.
[3]" 陳雪,蔡強(qiáng)國,王學(xué)強(qiáng). 典型黑土區(qū)坡耕地水土保持措施適宜性分析[J].中國水土保持科學(xué),2008,6(5):44-49.
CHEN Xue,CAI Qiangguo,WANG Xueqiang. Suitability of soil and water conservation measures on sloping farmland in typical black soil regions of northeast China[J]. Science of soil and water conservation,2008,6(5):44-49. (in Chinese)
[4]" TANG B Z,JIAO J Y,ZHANG Y F,et al. The magnitude of soil erosion on hillslopes with different land use patterns under an extreme rainstorm on the northern loess plateau, China[J]. Soil amp; tillage research,2020,204:104716.
[5]" XU X M,ZHENG F L,WILSON G V,et al. Comparison of runoff and soil loss in different tillage systems in the Mollisol region of Northeast China[J]. Soil amp; tillage research,2018,177:1-11.
[6]" LIU Q J,ZHANG H Y,AN J,et al. Soil erosion processes on row sideslopes within contour ridging systems[J]. Catena,2014,115:11-18.
[7]" 張少良,張興義,劉曉冰,等. 典型黑土侵蝕區(qū)不同耕作措施的水土保持功效研究[J].水土保持學(xué)報(bào),2009,23(3):11-15.
ZHANG Shaoliang,ZHANG Xingyi,LIU Xiaobing,et al. Tillage effect on soil erosion in typical black soil region[J]. Journal of soil and water conservation,2009,23(3):11-15. (in Chinese)
[8]" 王磊,何超,鄭粉莉,等. 黑土區(qū)坡耕地橫坡壟作措施防治土壤侵蝕的土槽試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2018,34(15):141-148.
WANG Lei,HE Chao,ZHENG Fenli,et al. Soil-bin experiment on effects of contour ridge tillage for controlling hillslope soil erosion in black soil region[J]. Transac-tions of the CSAE,2018,34(15):141-148. (in Chinese)
[9]" WANG Z J,JIAO J Y,RAYBURG S,et al. Soil erosion resistance of ″Grain for Green″ vegetation types under extreme rainfall conditions on the loess plateau, China[J]. Catena,2016,141:109-116.
[10]" 胥子航,王睿,劉育旺,等. 地膜和秸稈覆蓋提高春玉米產(chǎn)量與氮肥利用效率[J].植物營養(yǎng)與肥料學(xué)報(bào),2023,29(11):1991-2003.
XU Zihang,WANG Rui,LIU Yuwang,et al. Plastic film and straw mulching improve yield and nitrogen use efficiency of spring maize[J]. Journal of plant nutrition and fertilizers,2023,29(11):1991-2003. (in Chinese)
[11]" 張興義,李健宇,郭孟潔,等. 連續(xù)14年黑土坡耕地秸稈覆蓋免耕水土保持效應(yīng)[J].水土保持學(xué)報(bào),2022,36(3):44-50.
ZHANG Xingyi,LI Jianyu,GUO Mengjie,et al. Effects of straw mulching and no tillage for continuous 14 years on soil and water conservation in mollisols sloping farmland[J]. Journal of soil and water conservation,2022,36(3):44-50. (in Chinese)
[12]" 吳海梅,逄蕾,路建龍,等.秸稈帶狀覆蓋對(duì)土壤團(tuán)聚體及團(tuán)聚體有機(jī)碳含量的影響[J].江蘇農(nóng)業(yè)科學(xué),2023,51(12):187-195.
WU Haimei, PANG Lei, LU Jianlong, et al.Influences of straw strip mulching on soil aggregates and organic carbon contents[J].Jiangsu agricultural sciences,2023,51(12):187-195.(in Chinese)
[13]" 杜偉嘉,王芙臣,李斐,等. 覆蓋作物對(duì)坡耕地的減流減沙效應(yīng)及玉米產(chǎn)量的影響[J].玉米科學(xué),2023,31(6):100-107.
DU Weijia,WANG Fuchen,LI Fei,et al. Effects of cover crops on sand reduction effects and corn yield on slope arable land[J]. Journal of maize sciences,2023,31(6):100-107. (in Chinese)
[14]" CHEN Y,LIU S,LI H,et al. Effects of conservation tillage on corn and soybean yield in the humid continental climate region of northeast China[J]. Soil amp; tillage research,2011,115-116:56-61.
[15]" 高燕,張延,張旸,等. 耕作方式和種植模式對(duì)黑土碳氮含量及玉米產(chǎn)量年際變化的交互效應(yīng)[J].土壤與作物,2020,9(4):323-334.
GAO Yan,ZHANG Yan,ZHANG Yang,et al. Interactive effects of tillage practices and cropping systems on the interannual variation of soil carbon, nitrogen content and corn yield in Mollisols[J]. Soils and crops,2020,9(4):323-334. (in Chinese)
[16]" 江鑫,董文財(cái),付強(qiáng),等. 橫坡與順坡壟作模式土壤中水及示蹤Br-分布特征[J].水土保持學(xué)報(bào),2023,37(2):253-259.
JIANG Xin,DONG Wencai,F(xiàn)U Qiang,et al. Study on the distribution characteristics of soil moisture and tracer Br-under transverse ridge and along-slope ridge planting modes[J]. Journal of soil and water conservation,2023,37(2):253-259. (in Chinese)
[17]" 孟凱,張興義,隋躍宇,等. 黑土農(nóng)田水肥條件對(duì)作物產(chǎn)量及水分利用效率的影響[J].中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2005,13(2):119-121.
MENG Kai,ZHANG Xingyi,SUI Yueyu,et al. The crop yields and water use efficiencies under different water and fertilizer conditions in the field of black soil[J]. Chinese journal of eco-agriculture,2005,13(2):119-121. (in Chinese)
[18]" 劉江,王潤元,王鶴齡,等.半干旱區(qū)雨養(yǎng)春小麥蒸騰效率的計(jì)算與應(yīng)用[J].江蘇農(nóng)業(yè)學(xué)報(bào),2023,39(7):1501-1509.
LIU Jiang,WANG Runyuan,WANG Heling,et al. Calculation and application of transpiration efficiency of rainfed spring wheat in semi-arid area[J].Jiangsu journal of agricultural sciences,2023,39(7):1501-1509.(in Chinese)
[19]" CAI W J,GU X B,DU Y D,et al. Effects of mulching on water saving, yield increase and emission reduction for maize in China[J]. Agricultural water management,2022,274:107954.
[20]" 沈海鷗,溫磊磊,武佳龍,等. 壟作與壟向區(qū)田技術(shù)對(duì)黑土區(qū)坡耕地土壤侵蝕影響的研究進(jìn)展[J].農(nóng)業(yè)工程學(xué)報(bào),2022,38(22):52-62.
SHEN Haiou,WEN Leilei,WU Jialong,et al. Review on the effects of ridge pattern and ridge-furrow intervals on soil erosion of sloping farmland in the black soil region[J]. Transactions of the CSAE,2022,38(22):52-62. (in Chinese)
[21]" 高峰,詹敏,戰(zhàn)輝. 黑土區(qū)農(nóng)地侵蝕性降雨標(biāo)準(zhǔn)研究[J].中國水土保持,1989(11):19-21.
GAO Feng,ZHAN Min,ZHAN Hui. Study on criteria of erosive rain in farmland of chernozem in Heilongjiang province[J]. Soil and water conservation in China,1989(11):19-21. (in Chinese)
[22]" MBUTHIA L W,ACOSTA-MARTíNEZ V,DEBRYUN J,et al. Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: implications for soil quality[J]. Soil biology amp; biochemistry,2015,89:24-34.
[23]" 徐勤學(xué),朱曉峰,方榮杰,等. 秸稈覆蓋對(duì)巖溶區(qū)坡耕地產(chǎn)流產(chǎn)沙的影響[J].水土保持學(xué)報(bào),2017,31(2):22-26.
XU Qinxue,ZHU Xiaofeng,F(xiàn)ANG Rongjie,et al. The influence of corn straw mulching on the processes of runoff and sediment yield in the sloping farmland of the karst area[J]. Journal of soil and water conservation,2017,31(2):22-26. (in Chinese)
[24]" 王麗學(xué),高園園,屈美琰,等. 玉米秸稈殘茬覆蓋對(duì)大豆田土壤水溫效應(yīng)的影響[J].灌溉排水學(xué)報(bào),2015,34(3):66-69.
WANG Lixue,GAO Yuanyuan,QU Meiyan,et al. Effects of maize straw and stubble mulch on soil moisture and temperature in soybean field[J]. Journal of irrigation and drainage,2015,34(3):66-69. (in Chinese)
[25]" 張京社,陳園園,閻世江.多年秸稈覆蓋對(duì)設(shè)施蔬菜土壤養(yǎng)分及微生物多樣性的影響[J].江蘇農(nóng)業(yè)科學(xué),2023,51(8):217-222.
ZHANG Jingshe, CHEN Yuanyuan, YAN Shijiang. Effects of multi-year straw mulching on soil nutrients and microbial diversity of facility vegetables[J].Jiangsu agricultural sciences,2023,51(8):217-222.(in Chinese)
[26]" 鄭洪兵,羅洋,隋鵬祥,等. 秸稈還田對(duì)東北黑土水分特征及物理性質(zhì)的影響[J].干旱地區(qū)農(nóng)業(yè)研究,2024,42(1):226-236.
ZHENG Hongbing,LUO Yang,SUI Pengxiang,et al. Effects of straw returning on soil water characteristics and physical properties of black soil in northeast China[J]. Agricultural research in the arid areas,2024,42(1):226-236. (in Chinese)
[27]" 張少良,張興義,于同艷,等. 秸稈覆蓋對(duì)農(nóng)田黑土春季地溫的影響[J].干旱區(qū)資源與環(huán)境,2010,24(6):169-173.
ZHANG Shaoliang,ZHANG Xingyi,YU Tongyan,et al. Effect of crop residue mulch on spring soil temperature in black soil[J]. Journal of arid land resources and environment,2010,24(6):169-173. (in Chinese)
[28]" 魯悅,鮑雪蓮,霍海南,等. 免耕條件下不同量秸稈覆蓋還田提高東北黑土區(qū)玉米光合性能和產(chǎn)量的效應(yīng)[J].植物營養(yǎng)與肥料學(xué)報(bào),2023,29(5):840-847.
LU Yue,BAO Xuelian,HUO Hainan,et al. Effects of different amounts of stover mulching on improving photosynthetic characteristics and yield of maize in mollisol of northeast China under long-term no-tillage[J]. Journal of plant nutrition and fertilizers,2023,29(5):840-847. (in Chinese)
[29]" 王暉,劉泉汝,張圣勇,等. 秸稈覆蓋下超高產(chǎn)夏玉米農(nóng)田產(chǎn)量和土壤水分的動(dòng)態(tài)變化[J].水土保持學(xué)報(bào),2011,25(5):261-264.
WANG Hui,LIU Quanru,ZHANG Shengyong,et al. Grain yield and soil water content of super-high-yield summer maize under straw mulching[J]. Journal of soil and water conservation,2011,25(5):261-264. (in Chinese)
(責(zé)任編輯" 黃鑫鑫)