摘要: 為探明陜北地區(qū)山地蘋果優(yōu)質(zhì)高效生產(chǎn)的涌泉根灌灌溉模式,選擇7年生山地蘋果(寒富)為試材,以全生育期充分灌水為對(duì)照組CK,其灌水上、下限分別為100%Qf和85%Qf(Qf為田間持水率).在萌芽展葉期(Ⅰ期)和果實(shí)膨大期(Ⅲ期)分別設(shè)置4個(gè)灌水水平(輕度調(diào)虧灌水DIL、中度調(diào)虧灌水DIM1、偏重度調(diào)虧灌水DIM2和重度調(diào)虧灌水DIS,其灌水上、下限分別為對(duì)照組的90%,75%,60%和45%),采用完全隨機(jī)區(qū)組設(shè)計(jì),分析了陜北山地蘋果光合、產(chǎn)量、品質(zhì)和水分利用效率對(duì)調(diào)虧灌溉(regulated deficit irrigation, RDI)的響應(yīng)規(guī)律.結(jié)果表明:蘋果樹Ⅲ期的葉片光合特性比Ⅰ期的強(qiáng),且在同一物候期,與CK處理相比,DIL處理的光合能力差異不具有統(tǒng)計(jì)學(xué)意義(Pgt;0.05),其余處理有所減弱;與CK相比,Ⅰ-DIL和Ⅲ-DIL處理的產(chǎn)量、灌溉水利用效率和耗水利用效率差異不具有統(tǒng)計(jì)學(xué)意義(Pgt;0.05),但其余處理均有所降低;其中Ⅲ-DIL處理的產(chǎn)量最大(31 358 kg/hm2),其次是Ⅰ-DIL處理(31 239 kg/hm2);DIL與CK處理的綜合品質(zhì)較優(yōu)且差異不具有統(tǒng)計(jì)學(xué)意義(Pgt;0.05).因此,在山地蘋果萌芽展葉期輕度調(diào)虧灌水(Ⅰ-DIL處理)和果實(shí)膨大期輕度調(diào)虧灌水(Ⅲ-DIL處理),可提高蘋果的產(chǎn)量和品質(zhì).
關(guān)鍵詞: 山地蘋果;涌泉根灌;調(diào)虧灌溉;光合特性;產(chǎn)量;品質(zhì)
中圖分類號(hào): S661.1; S275.9" 文獻(xiàn)標(biāo)志碼: A" 文章編號(hào): 1674-8530(2024)08-0835-08
DOI:10.3969/j.issn.1674-8530.23.0216
收稿日期: 2023-10-26; 修回日期: 2023-11-16; 網(wǎng)絡(luò)出版時(shí)間: 2024-01-16
網(wǎng)絡(luò)出版地址: https://link.cnki.net/urlid/32.1814.TH.20240116.1045.002
基金項(xiàng)目: 國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFC0400204);國(guó)家自然科學(xué)基金資助項(xiàng)目(52079105)
第一作者簡(jiǎn)介: 汪精云(1984—),男,甘肅景泰人,高級(jí)工程師(773994705@qq.com),主要從事水資源高效利用研究.
通信作者簡(jiǎn)介: 費(fèi)良軍(1963—),男,陜西藍(lán)田人,教授(feiliangjun1963@163.com),主要從事節(jié)水灌溉理論和農(nóng)業(yè)水資源利用研究.
汪精云,費(fèi)良軍,李中杰,等. 輕度調(diào)虧涌泉根灌提高山地蘋果產(chǎn)量、品質(zhì)及水分利用效率[J]. 排灌機(jī)械工程學(xué)報(bào),2024,42(8):835-842.
WANG Jingyun, FEI Liangjun, LI Zhongjie,et al. Light regulated deficit surge-root irrigation improvement of yield, quality and water use efficiency of mountain apple[J]. Journal of drainage and irrigation machinery engineering(JDIME)," 2024, 42(8): 835-842. (in Chinese)
Light regulated deficit surge-root irrigation improvement of yield,
quality and water use efficiency of mountain apple
WANG Jingyun1, FEI Liangjun2*, LI Zhongjie1,2, HAO Kun2,3, LIU Teng4
(1. Gansu Provincial Water Conservancy and Hydropower Survey Design and Research Institute Co., Ltd., Lanzhou, Gansu 730000, China; 2. State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi′an University of Technology, Xi′an, Shaanxi 710048, China; 3. College of Hydraulic amp; Environmental Engineering, China Three Gorges University, Yichang, Hubei 443002, China; 4. Rural Revitalization Planning and Development Guidance Centre of Yulin, Yulin, Shaanxi 719000, China)
Abstract: Aim to explore a high-efficient production surge-root irrigation system for mountain apples in northern Shaanxi, a 7-year-old mountain apple (Hanfu) was chosen as the test material. Full irrigation was selected as the control group (CK) in the full growth stage in which 100%Qf and 85%Qf were defined as upper and lower irrigation limit value. Four RDI (regulated deficit irrigation) levels namely light deficit irrigation (DIL), moderate 1 deficit irrigation (DIM1), moderate 2 deficit irrigation (DIM2) and severe deficit irrigation (DIS) were designed in the sprout leaves stage (stage I) and fruit expansion stage (stage Ⅲ), respectively. The irrigation limits of them are 90%, 75%,60% and 45% of control group, respectively. A randomized block design was used to analyze the responses of apple photosynthesis, yield, quality, and water use efficiency of regulated deficit irrigation in mountainous areas of northern Shaanxi.The results show that the photosynthetic characteristics of apple leaves in stage Ⅲ are stronger than those in stage I. In the same phenological period, there is no significant difference in photosynthetic capacity between DIL and CK (Pgt;0.05), and the other treatments are weakened. Compared with CK, the yield, irrigation water use efficiency (IWUE) and consumption water use efficiency (CWUE) of Ⅰ-DIL and Ⅲ-DIL treatments do not see significant increase (Pgt;0.05), while the other treatments encounter a decrease. The yield of Ⅲ-DIL treatment is the highest (31 358 kg/hm2), followed by Ⅰ-DIL treatment (31 239 kg/hm2). The comprehensive quality of DIL and CK is better and has no significant difference (Pgt;0.05). Therefore, the apple yield and quality encounter significant improvement owing to the activity of the light RDI in the sprout leaves stage (Ⅰ-DIL treatment) and light RDI in the fruit expansion stage (Ⅲ-DIL treatment).
Key words: mountain apple;surge-root irrigation;deficit irrigation;photosynthetic characteristics;yield;quality
2022年陜西省蘋果年產(chǎn)量為1.30×1010 kg,畝均產(chǎn)量為1 696 kg,畝均經(jīng)濟(jì)收益為5 189.41元,年增長(zhǎng)速率分別為4.9%,3.2%和25.6%[1].目前,陜北地區(qū)正逐步發(fā)展成為中國(guó)栽培規(guī)模最大的山地蘋果產(chǎn)區(qū),但該區(qū)水資源短缺嚴(yán)重且降雨時(shí)空分布極不均勻,季節(jié)性干旱尤為明顯,導(dǎo)致山地蘋果規(guī)?;a(chǎn)業(yè)化發(fā)展受限,因此,如何利用有限水資源提升山地果園的生產(chǎn)力是當(dāng)下亟須解決的問題.
為科學(xué)高效利用水資源,相關(guān)學(xué)者提出了如滴灌、噴灌、涌泉根灌等近年來逐步發(fā)展起來并有一定應(yīng)用前景的灌溉技術(shù)[2-4],并將這些技術(shù)結(jié)合調(diào)虧灌溉做了大量研究[5-6].其中,涌泉根灌作為一種新型地下滲灌技術(shù),通過微管把灌溉水直接運(yùn)送到作物根區(qū),進(jìn)行地下局部灌溉,減小蒸發(fā)損失、抑制雜草生長(zhǎng)及灌溉水在地表的積聚[7],實(shí)現(xiàn)了節(jié)水及提高作物產(chǎn)量和水分利用效率的目標(biāo),特別適宜于精量灌溉[8-9].相關(guān)研究顯示,涌泉根灌下輕、中度的水分脅迫可以平衡果樹的營(yíng)養(yǎng)生長(zhǎng)和生殖生長(zhǎng),抑制過度生長(zhǎng)且不會(huì)影響產(chǎn)量[10].DAI等[11]研究表明,涌泉根灌在棗樹生育期進(jìn)行適度水分調(diào)虧可提高棗的產(chǎn)量和水分利用效率.強(qiáng)敏敏等[12]研究表明,調(diào)虧灌溉顯著影響棗樹的最終產(chǎn)量,與充分灌溉相比,輕度調(diào)虧的棗樹最終產(chǎn)量提高了22.1%.何岸镕等[13]研究發(fā)現(xiàn),葡萄的橫縱徑增長(zhǎng)速率在受到輕度水分脅迫時(shí)顯著提高,果實(shí)內(nèi)的脯氨酸含量在輕度脅迫下增量明顯.另有研究表明,過度的水分調(diào)虧會(huì)抑制作物的生長(zhǎng),降低作物的光合特性、根系活力和水分利用效率,從而導(dǎo)致減產(chǎn)[14].趙先飛等[15]研究發(fā)現(xiàn),減少灌水量會(huì)降低蘋果新梢生長(zhǎng)長(zhǎng)度,并顯著影響蘋果產(chǎn)量和灌溉水利用效率.鐘韻等[16]研究發(fā)現(xiàn),在特定物候期調(diào)節(jié)果樹的灌溉水量,在一定程度上可以促進(jìn)果樹生理代謝,并改善果實(shí)品質(zhì).因此,確定適宜的調(diào)虧灌溉控制范圍并實(shí)施精量灌溉有利于改善果實(shí)產(chǎn)量和品質(zhì).
然而,目前鮮有關(guān)于不同物候期下涌泉根灌對(duì)山地蘋果精準(zhǔn)節(jié)水灌溉效果的對(duì)比研究.為此,文中在涌泉根灌方式下選擇陜北山地蘋果萌芽展葉期(Ⅰ期)和果實(shí)膨大期(Ⅲ期)進(jìn)行適度調(diào)虧灌溉,以充分灌水為對(duì)照,設(shè)置4個(gè)不同灌水水平,分析陜北山地蘋果光合、產(chǎn)量、品質(zhì)和水分利用效率的響應(yīng)規(guī)律,以明確涌泉根灌下陜北山地蘋果在不同物候期的灌溉制度,為陜北山地蘋果的灌溉節(jié)水管理提供理論參考.
1" 材料與方法
1.1" 試驗(yàn)區(qū)概況
試驗(yàn)于2020年4—10月在陜西省榆林市子洲縣清水溝現(xiàn)代生態(tài)農(nóng)業(yè)示范園區(qū)進(jìn)行,該示范區(qū)經(jīng)緯度為37°27′N,110°2′E,海拔為1 020 m,屬典型的黃土溝壑區(qū)腹地.暖溫帶和溫帶半干旱大陸性季風(fēng)氣候,多年平均降水量為427.5 mm;多年平均氣溫為9.2 ℃;年日照時(shí)數(shù)為2 632.9 h;日照百分率為59%;太陽總輻射量為6 873 MJ/m2,光能資源豐富;無霜期為170 d.試驗(yàn)區(qū)0~100 cm土壤質(zhì)地為砂壤土,土壤容重為1.41 g/cm3;田間持水率為21.4%;pH為8.3,偏堿性;有效N,P,K質(zhì)量比分別為22.60,11.10和62.30 mg/kg;有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)為0.81%.
1.2" 供試作物
選擇供試作物品種為“寒富”蘋果樹,樹齡7 a,試驗(yàn)樹均為南北向種植,其中株高為290~315 cm,莖粗為9.5~10.6 cm,樹間行間距按2 m×3 m控制.根據(jù)試驗(yàn)?zāi)旯麡渖L(zhǎng)情況,蘋果實(shí)際物候期可劃分為萌芽展葉期(Ⅰ期,4月4日—4月24日)、開花坐果期(Ⅱ期,4月25日—5月18日)、果實(shí)膨大期(Ⅲ期,5月19日—9月21日)和果實(shí)成熟期(Ⅳ期,9月22日—10月10日).
1.3" 試驗(yàn)設(shè)計(jì)及方法
試驗(yàn)以充分灌水為對(duì)照組CK,其灌水上、下限分別為100%Qf和85%Qf(Qf為田間持水率).分別在Ⅰ期和Ⅲ期設(shè)置輕度調(diào)虧灌水DIL、中度調(diào)虧灌水DIM1、偏重度調(diào)虧灌水DIM2、重度調(diào)虧灌水DIS,灌水上、下限分別為對(duì)照組的90%,75%,60%和45%,其余物候期均為充分灌水;采用涌泉根灌,灌水器設(shè)在距樹基部水平距離0.40 m,埋深0.35 m處,樹兩側(cè)對(duì)稱布置,出水量3 L/h,工作壓力0.1 MPa,灌水量由水表計(jì)量控制,具體試驗(yàn)方案見表1,表中r為設(shè)計(jì)灌水比例.
灌水條件為試驗(yàn)小區(qū)土壤質(zhì)量含水率達(dá)到或接近試驗(yàn)設(shè)置下限時(shí)進(jìn)行灌水.灌水定額計(jì)算公式為
m=0.1γzpS(θmax-θmin)/η,(1)
式中:m為灌水定額,L;γ為土壤的容重,為1.41 g/cm3;z為土壤計(jì)劃濕潤(rùn)層深度,為0.9 m;p為濕潤(rùn)比,取0.25[5,10];S為單株蘋果樹計(jì)算面積,為6 m2;θmax,θmin分別為土壤質(zhì)量含水率上、下限;η為灌溉水利用系數(shù),取0.95[17].
各處理固定施N(施肥量400 kg/hm2)、P2O5(施肥量240 kg/hm2)和K2O(施肥量460 kg/hm2),氮肥、磷肥和鉀肥分別選用尿素(N的質(zhì)量分?jǐn)?shù)為46%)、過磷酸鈣(P2O5的質(zhì)量分?jǐn)?shù)為12%)和硫酸鉀(K2O的質(zhì)量分?jǐn)?shù)為52%).將磷肥(質(zhì)量分?jǐn)?shù)為100%)、氮肥(質(zhì)量分?jǐn)?shù)為50%)和鉀肥(質(zhì)量分?jǐn)?shù)為33%)作為基肥在蘋果樹萌芽前(3月26日)施入,在Ⅰ期(4月7日)、Ⅱ期(5月16日)各施加氮肥(質(zhì)量分?jǐn)?shù)為15%),在Ⅲ期(9月10日)施加氮肥(質(zhì)量分?jǐn)?shù)為20%)、鉀肥(質(zhì)量分?jǐn)?shù)為67%),施肥方式為距試驗(yàn)樹主干40 cm處以穴施加入.采用完全隨機(jī)區(qū)組設(shè)計(jì),共設(shè)置9個(gè)處理,各處理均有3次重復(fù).各試驗(yàn)小區(qū)均長(zhǎng)10 m、寬3 m,面積30 m2,試驗(yàn)區(qū)總面積810 m2,小區(qū)間采用1.5 m隔水板進(jìn)行防滲隔離.果園除水肥管理外,病蟲害防治、整枝修剪等其他栽培管理措施與園區(qū)管理完全相同.
1.4" 測(cè)定項(xiàng)目及方法
分別于萌芽展葉期(Ⅰ期)、果實(shí)膨大期(Ⅲ期)調(diào)虧灌水后第4 d(2020年4月16日和9月5日,天氣晴朗)選擇長(zhǎng)勢(shì)良好的同一片功能葉,用便攜式光合儀器(LI-6400)測(cè)定葉片光合指標(biāo),如葉片凈光合速率(Pn)、胞間CO2濃度(Ci)和蒸騰速率(Tr)等,9:00—17:00每隔2 h在自然光條件下測(cè)定1次.每處理3個(gè)重復(fù),每個(gè)重復(fù)測(cè)定3次,取均值進(jìn)行分析.葉片瞬時(shí)水分利用效率(LWUE)為凈光合速率與蒸騰速率的比值.
土壤含水率采用便攜式土壤水分測(cè)量?jī)x(Diviner 2000,Sentek Pty Ltd)觀測(cè).每個(gè)重復(fù)在距樹基部水平距離0.40 m的圓環(huán)處安裝3根測(cè)管,測(cè)管的安裝深度為2.0 m.每次灌溉前觀測(cè)1次剖面土壤質(zhì)量含水率.
2020年10月7日—10日,分批采收成熟的蘋果,測(cè)定其質(zhì)量(折算公頃產(chǎn)量).每株樹隨機(jī)選取15個(gè)蘋果,測(cè)定果實(shí)的品質(zhì).品質(zhì)指標(biāo)中維生素C采用2,6-二氯酚靛酚鈉滴定法測(cè)定[18];可溶性糖采用3,5-二硝基水楊酸法測(cè)定;可滴定酸采用NaOH滴定法測(cè)定;硬度采用FHR-5型果實(shí)硬度計(jì)測(cè)定;著色指數(shù)采用SP60色差儀測(cè)定;糖酸比為可溶性糖與可滴定酸的比值[19].
耗水量采用水量平衡法計(jì)算,即
ETi=Ii+Pr-Rf-D+U+W0-Wf,(2)
式中:ETi為時(shí)段內(nèi)果樹耗水量,mm;Ii為時(shí)段內(nèi)灌水量,mm;Pr為有效降雨量,mm;Rf為地表徑流量,mm;D為深層滲漏量,mm;U為時(shí)段內(nèi)地下水補(bǔ)給量,mm;W0和Wf分別為時(shí)段初和時(shí)段末的土壤儲(chǔ)水量,mm.
在生產(chǎn)實(shí)踐中,有效降雨量Pr可通過降雨量P與降水有效利用系數(shù)σ的乘積簡(jiǎn)化計(jì)算[11],即
Pr=σP,(3)
式中:當(dāng)Plt;5 mm時(shí),σ=0;當(dāng)5≤Plt;50 mm時(shí),σ=1.00;當(dāng)P≥50 mm時(shí),σ=0.75.
因?yàn)橛咳喙嗨鞒鏊髁枯^小,且灌水定額較低,故由灌水引起的地表徑流和深層滲漏可忽略不計(jì),即Rf =0,D=0;試驗(yàn)區(qū)地下水位在地表25 m以下,故不考慮地下水補(bǔ)給量,即U=0.因此,式(2)可以簡(jiǎn)化為
ETi=Ii+σP+W0-Wf.(4)
灌溉水利用效率(irrigation water use efficiency,IWUE,kg/m3)為產(chǎn)量與總灌水量的比值,即
IWUE=0.1Y/I,(5)
式中:Y為產(chǎn)量,kg/hm2;I為總灌水量,mm.
耗水利用效率(consumption water use efficiency,CWUE,kg/m3)為產(chǎn)量與總耗水量的比值,即
CWUE=0.1Y/∑ETi.(6)
1.5" 數(shù)據(jù)處理
采用Microsoft Excel 2010軟件進(jìn)行數(shù)據(jù)處理計(jì)算和繪圖,用IBM SPSS Statistics 21統(tǒng)計(jì)分析軟件進(jìn)行方差分析(ANOVA);采用Duncan法(α=0.05)進(jìn)行組間兩兩比較.
2" 結(jié)果與分析
2.1" 調(diào)虧灌溉對(duì)陜北山地蘋果葉片光合特性的影響
表2為調(diào)虧灌溉對(duì)陜北山地蘋果光合特性的影響.由表可看出,調(diào)虧灌溉對(duì)蘋果樹葉片凈光合速率(Pn)、蒸騰速率(Tr)和胞間CO2濃度(Ci)影響具有統(tǒng)計(jì)學(xué)意義(Plt;0.05),對(duì)葉片瞬時(shí)水分利用效率(LWUE)影響不具有統(tǒng)計(jì)學(xué)意義(Pgt;0.05).輕度調(diào)虧灌水與充分灌水的光合特性差異不具有統(tǒng)計(jì)學(xué)意義(Pgt;0.05).
在Ⅰ期,Pn,Tr和LWUE隨灌水量的增加而增大,Ci隨灌水量的增加而減??;與CK處理相比,Ⅰ-DIL,Ⅰ-DIM1,Ⅰ-DIM2和Ⅰ-DIS處理的Pn下降幅度為1.19%~11.87%,Tr下降幅度為0.82%~7.40%,LWUE下降幅度為1.45%~4.35%,Ci增加幅度為1.26%~5.01%.在Ⅲ期,除Ⅲ-DIL處理的Pn比CK處理略大,Ⅲ-DIM1,Ⅲ-DIL處理的LWUE比CK處理略大以外,其余處理的Pn,Tr,Ci和LWUE的變化與Ⅰ期相似;與CK處理相比,Ⅲ-DIL,Ⅲ-DIM1,Ⅲ-DIM2和Ⅲ-DIS處理的Pn下降幅度為2.75%~7.60%,Tr下降幅度為0.96%~6.71%,LWUE下降幅度為0.39%~0.78%,Ci增加幅度為1.57%~6.59%.
2.2" 調(diào)虧灌溉對(duì)陜北山地蘋果產(chǎn)量的影響
圖1為調(diào)虧灌溉對(duì)陜北山地蘋果產(chǎn)量的影響.由圖可知,調(diào)虧灌溉對(duì)陜北山地蘋果產(chǎn)量的影響具有統(tǒng)計(jì)學(xué)意義(Plt;0.05).在Ⅰ期和Ⅲ期,蘋果產(chǎn)量均隨灌水量的增加而增大.產(chǎn)量介于22 281~31 358 kg/hm2,其中Ⅲ-DIL處理的產(chǎn)量最大(31 358 kg/hm2),其次是Ⅰ-DIL處理(31 239 kg/hm2),Ⅲ-DIs處理的產(chǎn)量最低(22 281 kg/hm2).與CK處理相比,Ⅰ-DIL,Ⅰ-DIM1,Ⅰ-DIM2和Ⅲ-DIL處理的產(chǎn)量差異不具有統(tǒng)計(jì)學(xué)意義(Pgt;0.05),Ⅰ-DIS,Ⅲ-DIM1,Ⅲ-DIM2和Ⅲ-DIS處理的產(chǎn)量分別減少15.38%,11.99%,22.57%和27.08%.
2.3" 調(diào)虧灌溉對(duì)陜北山地蘋果水分利用效率的影響
圖2為調(diào)虧灌溉對(duì)陜北山地蘋果水分利用效率WUE的影響.
由圖2可知,調(diào)虧灌溉對(duì)蘋果灌溉水利用效率IWUE和耗水利用效率CWUE的影響具有統(tǒng)計(jì)學(xué)意義(Plt;0.05).不同調(diào)虧處理的IWUE與對(duì)照CK相比差異均不具有統(tǒng)計(jì)學(xué)意義(Pgt;0.05).其中,Ⅲ-DIL處理的IWUE最高為23.64 kg/m3,其次是Ⅰ-DIL處理的22.73 kg/m3,這2個(gè)處理與IWUE最低的Ⅰ-DIS處理(19.48 kg/m3)相比差異具有統(tǒng)計(jì)學(xué)意義(Plt;0.05),與Ⅲ-DIL處理相比,其余處理IWUE降低3.85%~17.60%.與CK處理相比,Ⅰ-DIS,Ⅲ-DIM2和Ⅲ-DIS處理的CWUE與CK處理相比差異具有統(tǒng)計(jì)學(xué)意義(Plt;0.05),其余處理與CK相比差異不具有統(tǒng)計(jì)學(xué)意義(Pgt;0.05),其中Ⅲ-DIL處理的CWUE最高為6.46 kg/m3,其次是Ⅰ-DIL處理(6.37 kg/m3),而Ⅲ-DIS處理的CWUE最低(4.85 kg/m3),與Ⅲ-DIL處理相比,其余處理CWUE降低1.39%~24.92%.
2.4" 調(diào)虧灌溉對(duì)陜北山地蘋果品質(zhì)的影響
表3為調(diào)虧灌溉對(duì)陜北山地蘋果品質(zhì)的影響.表中Ws為可溶性糖質(zhì)量分?jǐn)?shù);Wvc為維生素C質(zhì)量比;Wa為可滴定酸質(zhì)量分?jǐn)?shù);Rsa為糖酸比;H為硬度;Ic為著色指數(shù);ms為單果質(zhì)量.
由表可知,不同物候期內(nèi)進(jìn)行調(diào)虧灌溉對(duì)蘋果品質(zhì)的影響效果具有統(tǒng)計(jì)學(xué)意義(Plt;0.05).Ⅰ期和Ⅲ期各處理下,DIL處理的可溶性糖質(zhì)量分?jǐn)?shù)、維生素C質(zhì)量比、糖酸比和著色指數(shù)均最高,其余處理的指標(biāo)值隨灌水量的減少呈下降趨勢(shì);DIL處理的可滴定酸質(zhì)量分?jǐn)?shù)和硬度值最小,其余處理的指標(biāo)值隨灌水量的減少呈上升趨勢(shì).
全處理中,與CK相比,Ⅰ-DIL處理的蘋果品質(zhì)差異不具有統(tǒng)計(jì)學(xué)意義(Plt;0.05),Ⅲ-DIL處理的可溶性糖質(zhì)量分?jǐn)?shù)和維生素C質(zhì)量比顯著增加,著色指數(shù)顯著減小,與Ⅲ-DIL相比,其余處理可溶性糖質(zhì)量分?jǐn)?shù)和維生素C質(zhì)量比下降幅度分別為 1.31%~11.41%,0.34%~3.70%;Ⅰ-DIL處理的糖酸比和單果質(zhì)量最大,與之相比,其余處理糖酸比和單果質(zhì)量下降幅度分別為1.68%~28.10%,1.04%~28.38%;CK處理的著色指數(shù)最大,Ⅰ-DIL處理次之,與Ⅰ-DIL處理相比,其余處理著色指數(shù)下降幅度為1.42%~23.17%;Ⅰ-DIL處理的可滴定酸質(zhì)量分?jǐn)?shù)最低,硬度指標(biāo)僅高于CK處理,與Ⅰ-DIL處理相比,其余處理可滴定酸質(zhì)量分?jǐn)?shù)和硬度上升幅度分別為2.04%~26.53%,0.38%~9.11%.綜上所述,Ⅰ-DIL處理和Ⅲ-DIL處理的山地蘋果綜合品質(zhì)較優(yōu).
3" 討" 論
農(nóng)業(yè)生產(chǎn)中,合理的灌溉能夠協(xié)調(diào)作物營(yíng)養(yǎng)物質(zhì)的分配,促進(jìn)光合產(chǎn)物的合成,提高作物產(chǎn)量[20].本研究表明,蘋果樹Ⅲ期的葉片光合特性明顯比Ⅰ期的強(qiáng),原因可能是蘋果樹萌芽展葉期葉片相對(duì)果實(shí)膨大期來說比較幼嫩,捕光能力還不夠強(qiáng),致使光合能力相對(duì)較弱[21].而同一生育期間,輕度調(diào)虧灌水與充分灌水的灌水量相差不大,且基本能滿足蘋果樹光合作用所需耗水,因此DIL處理的光合能力與CK處理相比差異不具有統(tǒng)計(jì)學(xué)意義(Plt;0.05).Ⅲ期的LWUE明顯比Ⅰ期的大,原因是Ⅲ期的Pn和Tr與Ⅰ期相比,Pn的增量比Tr增量大所致.與CK處理相比,DIS處理的光合能力顯著減弱,這可能是由于蘋果樹遭受重度水分調(diào)虧后,葉片出現(xiàn)葉綠體膨脹、排列紊亂,光合器官的部分超微結(jié)構(gòu)遭到破壞[22],而樹體為了保持水分,自主調(diào)節(jié)氣孔閉合來減弱水分的損失和水勢(shì)的下降[23];另外,樹體缺水達(dá)到一定程度后會(huì)降低體內(nèi)可溶性蛋白含量以及弱化光合酶類的合成,降低葉片光合能力[24].
作物在不同生育期進(jìn)行調(diào)虧灌溉對(duì)產(chǎn)量和水分利用效率的影響不同[25].文中研究表明,輕度水分調(diào)虧可提高陜北山地蘋果的產(chǎn)量,而重度水分調(diào)虧顯著降低陜北山地蘋果的產(chǎn)量.這可能是因?yàn)榘l(fā)生輕度水分脅迫時(shí),果實(shí)對(duì)水分的吸收效果更強(qiáng),從而抑制枝條生長(zhǎng),促進(jìn)果實(shí)產(chǎn)量增加;而重度水分脅迫發(fā)生時(shí),蘋果樹生殖生長(zhǎng)和營(yíng)養(yǎng)生長(zhǎng)均會(huì)受到抑制,且光合產(chǎn)物會(huì)更多地向生殖器官轉(zhuǎn)移,導(dǎo)致產(chǎn)量降低[26].文中研究還表明,與CK處理相比,其余處理的IWUE差異不具有統(tǒng)計(jì)學(xué)意義(Pgt;0.05),但Ⅲ-DIL和Ⅰ-DIL處理的IWUE比CK處理的大,同時(shí)Ⅲ-DIL和Ⅰ-DIL處理的CWUE也比CK處理的大,且顯著大于Ⅰ-DIS和Ⅲ-DIS處理.該結(jié)果表明輕度水分調(diào)虧可提高陜北山地蘋果的水分利用效率,過度水分脅迫會(huì)降低蘋果的水分利用效率.
水分是改善果實(shí)品質(zhì)的媒體和介質(zhì),在作物不同生育期進(jìn)行適當(dāng)?shù)乃置{迫,可調(diào)控植株代謝,促進(jìn)光合產(chǎn)物的累積,改善果實(shí)品質(zhì)[27].文中研究表明Ⅲ-DIL處理的維生素C質(zhì)量比高于CK處理的,這可能由于充分灌水對(duì)維生素C累積產(chǎn)生了“稀釋效應(yīng)”[28].果實(shí)硬度隨水分調(diào)虧程度的加劇而增大,這是由于干旱脅迫改變了果實(shí)軟化的生理機(jī)制,限制了果肉細(xì)胞的擴(kuò)大和分裂,增大了果肉細(xì)胞排列密度.蘋果的單果質(zhì)量隨水分調(diào)虧程度的加劇而減小,且Ⅲ期比Ⅰ期的變化更加明顯,這是由于Ⅲ期是蘋果樹生長(zhǎng)和果實(shí)生長(zhǎng)最旺盛的時(shí)期,日耗水強(qiáng)度較大,供水不足降低了植株體內(nèi)生理代謝以及無機(jī)物和有機(jī)物的吸收、運(yùn)輸和轉(zhuǎn)化,阻礙了果肉細(xì)胞的膨大[29].文中發(fā)現(xiàn)可溶性糖質(zhì)量分?jǐn)?shù)隨灌水量的增大而增大,可滴定酸質(zhì)量分?jǐn)?shù)則相反,可能是因?yàn)椴煌┧畻l件改變了植株源-庫關(guān)系的變化,使得果實(shí)中儲(chǔ)藏的蛋白質(zhì)、淀粉、脂肪等水解程度不同[30].
4" 結(jié)" 論
1) 輕度調(diào)虧灌水與充分灌水的光合特性差異不具有統(tǒng)計(jì)學(xué)意義(Pgt;0.05).在Ⅰ期和Ⅲ期虧水處理后,凈光合速率和蒸騰速率隨水分調(diào)虧程度的加劇而降低,胞間CO2濃度隨水分調(diào)虧程度的加劇而增大.
2) 與CK相比,Ⅲ-DIL和Ⅰ-DIL處理的蘋果產(chǎn)量、灌溉水利用效率和耗水利用效率均有所增加,但增加均不具有統(tǒng)計(jì)學(xué)意義(Pgt;0.05),其余處理有所減小.其中,Ⅲ-DIL處理的產(chǎn)量最大(31 358 kg/hm2),其次是Ⅰ-DIL處理(31 239 kg/hm2).
3) 調(diào)虧灌溉對(duì)蘋果品質(zhì)的影響具有統(tǒng)計(jì)學(xué)意義(Plt;0.05).與CK處理相比,Ⅰ-DIL處理的蘋果品質(zhì)差異不具有統(tǒng)計(jì)學(xué)意義(Plt;0.05),Ⅲ-DIL處理的維生素C和可溶性糖質(zhì)量分?jǐn)?shù)顯著增加,著色指數(shù)顯著減小.
4) 建議陜北山地蘋果在萌芽展葉期和果實(shí)膨大期均進(jìn)行輕度調(diào)虧灌水,該研究結(jié)果可為陜北山地蘋果的灌溉管理提供理論依據(jù).
參考文獻(xiàn)(References)
[1]" 國(guó)家統(tǒng)計(jì)局. 2022年中國(guó)統(tǒng)計(jì)年鑒[M]. 北京: 中國(guó)統(tǒng)計(jì)出版社, 2022.
[2]" WANG L L, WU W Y, XIAO J, et al. Effects of diffe-rent drip irrigation modes on water use efficiency of pear trees in Northern China[J]. Agricultural water management, 2021, 245:106660.
[3]" 張洋, 馬英杰. 干旱綠洲區(qū)微噴灌棗園蒸散量時(shí)空尺度轉(zhuǎn)換研究[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2022, 40(2): 102-110.
ZHANG Yang, MA Yingjie. Temporal and spatial scale transformation of evapotranspiration of jujube orchard under micro sprinkler irrigation in arid oasis[J]. Agricultural research in the arid areas, 2022, 40(2): 102-110. (in Chinese)
[4]" FU Y L, CAO Y B, WANG H F, et al. The effects of different fertilizer rates on water and nitrogen transport characteristics in the wetted body of bubbled-root irrigation[J]. Arabian journal of geosciences, 2021, 14:1876.
[5]" 胡宏遠(yuǎn),王靜,李紅英,等.調(diào)虧灌溉對(duì)賀蘭山東麓赤霞珠葡萄主干莖流規(guī)律及品質(zhì)的影響[J].江蘇農(nóng)業(yè)學(xué)報(bào),2023,39(3):798-806.
HU Hongyuan,WANG Jing,LI Hongying,et al. Effects of regulated deficit irrigation on stem flow and quality of Cabernet Sauvignon grape in eastern foot of Helan Mountain[J].Jiangsu journal of agricultural sciences,2023,39(3):798-806.(in Chinese)
[6]" LIAO Y, CAO H X, XUE W K, et al. Effects of the combination of mulching and defcit irrigation on the soil water and heat, growth and productivity of apples[J]. Agricultural water management, 2021, 243:106482.
[7]" 李哲, 費(fèi)良軍, 尹永樂, 等.涌泉根灌下陜北山地蘋果作物系數(shù)確定與蒸散量估算[J]. 水資源與水工程學(xué)報(bào), 2022, 33(2): 209-215.
LI Zhe,F(xiàn)EI Liangjun, YIN Yongle, et al. Crop coeffi-cient and evapotranspiration estimation of apple in nor-thern Shaanxi under surge-root irrigation[J]. Journal of water resources and water engineering, 2022, 33(2): 209-215. (in Chinese)
[8]" HAO K, FEI L J, LIU L H, et al. Comprehensive eva-luation on yield, quality and water-nitrogen use efficiency of mountain apple under surge-root irrigation in the loess plateau based on the improved TOPSIS method[J]. Frontiers in plant science, 2022, 13: 853546.
[9]" LI Z J, FEI L J, HAO K, et al. Effects of arrangement of surge-root irrigation emitters on growth, yield and water use efficiency of apple trees[J]. Journal of drainage and irrigation machinery engineering, 2020, 38(7): 713-719.
[10]" ZHONG Y, FEI L J, LI Y B, et al. Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the loess plateau of China[J]. Agricultural water management, 2019, 222: 221-230.
[11]" DAI Z G, FEI L J, HUANG D L, et al. Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region[J]. Agricultural water management, 2019, 213: 146-154.
[12]" 強(qiáng)敏敏, 費(fèi)良軍, 劉揚(yáng). 調(diào)虧灌溉促進(jìn)涌泉根灌棗樹生長(zhǎng)提高產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2015, 31(19): 91-96.
QIANG Minmin, FEI Liangjun, LIU Yang. Regulated deficit irrigation promoting growth and increasing fruit yield of jujube trees[J]. Transactions of the CSAE, 2015, 31(19): 91-96. (in Chinese)
[13]" 何岸镕, 安進(jìn)強(qiáng), 張芮, 等. 不同生育期水分調(diào)虧對(duì)設(shè)施延后栽培葡萄葉片保護(hù)系統(tǒng)及產(chǎn)量品質(zhì)的影響[J]. 水土保持學(xué)報(bào), 2016, 30(3): 196-201.
HE Anrong, AN Jinqiang, ZHANG Rui, et al. Effects of water deficit on leaf protecting system and quality yield of delayed grape cultivation during different growth stage [J]. Journal of soil and water conservation, 2016, 30(3): 196-201. (in Chinese)
[14]" LIU X G, QI Y T, LI F S, et al. Impacts of regulated deficit irrigation on yield, quality and water use efficiency of Arabica coffee under different shading levels in dry and hot regions of southwest China[J]. Agricultural water management, 2018, 204(4): 292-300.
[15]" 趙先飛,張馨予,于國(guó)康,等.短枝富士蘋果不同負(fù)載和灌水量對(duì)新梢生長(zhǎng)、產(chǎn)量和灌水利用效率的影響[J].果樹學(xué)報(bào),2023,40(9):1860-1870.
ZHAO Xianfei, ZHANG Xinyu, YU Guokang, et al. Effect of different fruit loads and irrigation amounts on new shoot growth, yield and irrigation water use efficiency in spur-type Fuji apples[J]. Journal of fruit science, 2023, 40(9):1860-1870.(in Chinese)
[16]" 鐘韻, 朱士江, 費(fèi)良軍, 等. 幼果期調(diào)虧對(duì)不同覆膜柑橘產(chǎn)量品質(zhì)及水分利用效率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2023, 39(1): 81-91.
ZHONG Yun, ZHU Shijiang, FEI Liangjun, et al. Effects of regulating deficit at young fruit stage on yield, quality, and water use efficiency of citrus with different plastic film materials[J]. Transactions of the CSAE, 2023, 39(1): 81-91. (in Chinese)
[17]" 李中杰, 費(fèi)良軍, 郝琨, 等. 涌泉根灌下水氮耦合對(duì)陜北山地蘋果光合特性、產(chǎn)量和水氮利用的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2021, 32(3): 967-975.
LI Zhongjie, FEI Liangjun, HAO Kun, et al. Effects of water-nitrogen coupling on photosynthetic characteri-stics, yield, waterand nitrogen use efficiency for apple trees under surge-root irrigation in northern Shaanxi mountain area of China[J]. Chinese journal of applied ecology, 2021, 32(3): 967-975. (in Chinese)
[18]" SUN G Z, HU T T, LIU X G, et al. Optimizing irrigation and fertilization at various growth stages to improve mango yield, fruit quality and water-fertilizer use efficiency in xerothermic regions[J]. Agricultural water management, 2022, 260: 107296.
[19]" LIU X G, PENG Y L, YANG Q L, et al. Determining optimal deficit irrigation and fertilization to increase mango yield, quality and WUE in a dry hot environment based on TOPSIS[J]. Agricultural water management, 2021, 245: 106650.
[20]" 彭有亮, 劉小剛, 張巖, 等. 微潤(rùn)灌溉施肥對(duì)干熱區(qū)芒果光合特性、產(chǎn)量和水肥利用的影響[J]. 水土保持學(xué)報(bào), 2020, 34(1): 350-357.
PENG Youliang, LIU Xiaogang, ZHANG Yan, et al. Effects of moistube fertigation on photosynthesis, yield, and use of water and fertilizer of mango (Mangifera indica L.) in dry and hot region[J]. Journal of soil and water conservation, 2020, 34(1): 350-357. (in Chinese)
[21]" 張效星, 樊毅, 賈悅, 等. 水分虧缺對(duì)滴灌柑橘光合和產(chǎn)量及水分利用效率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2018, 34(3): 143-150.
ZHANG Xiaoxing, FAN Yi, JIA Yue, et al. Effect of water deficit on photosynthetic characteristics, yield and water use efficiency in Shiranui citrus under drip irrigation[J]. Transactions of the CSAE, 2018, 34(3): 143-150. (in Chinese)
[22]" XIA J B, ZHANG S Y, GUO J, et al. Critical effects of gas exchange parameters in Tamarix chinensis Lour on soil water and its relevant environmental factors on a shell ridge island in China′s Yellow River Delta[J]. Ecological engineering, 2015, 76(1): 36-46.
[23]" 劉小剛, 孫光照, 彭有亮, 等. 水肥耦合對(duì)芒果光合特性和產(chǎn)量及水肥利用的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2019, 35(16): 125-133.
LIU Xiaogang, SUN Guangzhao, PENG Youliang, et al. Effect of water-fertilizer coupling on photosynthetic characteristics, fruit yield, water and fertilizer use of mango[J].Transactions of the CSAE, 2019, 35(16): 125-133. (in Chinese)
[24]" 徐瑞晶, 胡璇, 劉廣路, 等. 海南島熱帶低地雨林攀援竹葉片光合特性季節(jié)動(dòng)態(tài)[J]. 西北植物學(xué)報(bào), 2020, 40(2): 345-352.
XU Ruijing, HU Xuan, LIU Guanglu, et al. Seasonal dynamics of photosynthetic characteristics in climbing bamboo leaves of tropical lowland rain forest in Hainan Island[J]. Acta botanica boreali-occidentalia sinica, 2020, 40(2): 345-352. (in Chinese)
[25]" 吳宣毅, 佟玲, 康德奎, 等. 調(diào)虧灌溉對(duì)西北地區(qū)不同種植密度玉米耗水和產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2022, 38(S1): 59-67.
WU Xuanyi, TONG Ling, KANG Dekui, et al. Effects of regulated deficit irrigation on water consumption and yield of maize under different planting densities in northwest China[J]. Transactions of the CSAE, 2022, 38(S1): 59-67. (in Chinese)
[26]" 劉星, 曹紅霞, 廖陽, 等. 滴灌模式對(duì)蘋果光合特性、產(chǎn)量及灌溉水利用的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2021, 54(15): 3264-3278.
LIU Xing, CAO Hongxia, LIAO Yang, et al. Effects of drip irrigation methods on photosynthetic characteristics, yield and irrigation water use of apple[J]. Scientia agricultura sinica, 2021, 54(15): 3264-3278. (in Chinese)
[27]" WANG H D, LI J, CHENG M H, et al. Optimal drip fertigation management improves yield, quality, water and nitrogen use efficiency of greenhouse cucumber[J]. Scientia horticulturae, 2019, 243(3): 357-366.
[28]" 張健利,王振華,宗睿,等.水氣互作對(duì)滴灌加工番茄生長(zhǎng)及品質(zhì)的影響[J].江蘇農(nóng)業(yè)學(xué)報(bào),2022,38(2):453-461.
ZHANG Jianli,WANG Zhenhua,ZONG Rui, et al. Effects of water and air interaction on growth and quality of drip-irrigated processing tomato[J].Jiangsu journal of agricultural sciences,2022,38(2):453-461.(in Chinese)
[29]" GALINDOA A, COLLADO-GONZLEZB J, GRIN I, et al. Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems [J]. Agricultural water management, 2018, 202: 311-324.
[30]" 彭有亮, 費(fèi)良軍, 劉小剛, 等. 減量施肥耦合調(diào)虧灌溉對(duì)干熱區(qū)芒果產(chǎn)量和品質(zhì)的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2022, 28(3): 521-531.
PENG Youliang, FEI Liangjun, LIU Xiaogang, et al. Effect of reduced fertilization and regulated deficit irrigation coupling on yield and quality of mango in a dry-hot region[J]. Journal of plant nutrition and fertilizers, 2022, 28(3): 521-531. (in Chinese)
(責(zé)任編輯" 黃鑫鑫)