摘 要: 旨在研究短期饑餓脅迫對(duì)豬骨骼肌衛(wèi)星細(xì)胞(skeletal muscle satellite cells,SMSCs)代謝及自噬發(fā)生的影響,解析自噬機(jī)制在骨骼肌發(fā)育調(diào)控網(wǎng)絡(luò)中的地位和作用,為改良家豬產(chǎn)肉性狀提供理論依據(jù)。將本實(shí)驗(yàn)室分離并保存的SMSCs細(xì)胞系復(fù)蘇,按培養(yǎng)體系中血清濃度將細(xì)胞分為20%血清組(對(duì)照組)、15%血清組、10%血清組、5%血清組和0%血清組,以形成不同程度的饑餓脅迫。當(dāng)細(xì)胞融合度達(dá)到70%~80%后再培養(yǎng)24 h進(jìn)行檢測(cè),每組4個(gè)重復(fù)。流式細(xì)胞術(shù)檢測(cè)各組細(xì)胞凋亡率、膜電位和活性氧水平;試劑盒測(cè)定ATP水平;WB檢測(cè)自噬標(biāo)志蛋白LC3B-Ⅱ、p62和通路相關(guān)蛋白AMPK、mTOR的表達(dá);透射電鏡檢測(cè)細(xì)胞線粒體形態(tài)和細(xì)胞器的變化。結(jié)果顯示,隨著細(xì)胞中血清濃度降低,細(xì)胞活力、p62蛋白量、p-mTOR/mTOR比值逐漸降低;細(xì)胞凋亡率、ROS水平、ATP水平、LC3B-Ⅱ蛋白水平、p-AMPK/AMPK比值、細(xì)胞內(nèi)自噬溶酶體數(shù)量、細(xì)胞核及線粒體異常率則逐漸升高;與對(duì)照組相比,15%組膜電位顯著升高,5%和0%組極顯著降低。這表明,短期血清饑餓脅迫能誘導(dǎo)基于AMPK/mTOR 信號(hào)通路的自噬發(fā)生,加快細(xì)胞代謝,但同時(shí)存在加快細(xì)胞凋亡、抑制細(xì)胞增殖等毒副作用。
關(guān)鍵詞: 豬;自噬;SMSCs;血清饑餓脅迫;AMPK/mTOR通路
中圖分類號(hào):S828.2
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0366-6964(2024)08-3408-10
收稿日期:2024-01-16
基金項(xiàng)目:江蘇省自然科學(xué)基金項(xiàng)目(BK20201224);國(guó)家自然科學(xué)基金(31872323);江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程項(xiàng)目(PAPD2018)
作者簡(jiǎn)介:王 怡(1979-),女,江蘇揚(yáng)州人,博士,講師,主要從事動(dòng)物模型與疾病研究,E-mail: 307014000@qq.com
通信作者:鞠輝明,近年來主要從事豬肌肉生長(zhǎng)發(fā)育機(jī)制研究, E-mail: hmju@yzu.edu.cn
Effect of Transient Serum Starvation on Metabolism and Autophagy of Porcine Skeletal
Muscle Satellite Cells
WANG Yi1,2, GAO Juan2, HU" Yuemin2, YANG Yuefei2, FAN Bojun2, JU Huiming1,2*
(1.College of GuangLing, Yangzhou University, Yangzhou 225000," China;
2.Jiangsu Co-innovation
Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of
Veterinary Medicine, Yangzhou University, Yangzhou 225009," China)
Abstract:" This study aimed to investigate the effects and mechanisms of transient starvation on the metabolism and autophagy of porcine skeletal muscle satellite cells (SMSCs), to analyze the role of autophagy in skeletal muscle development, and to help design strategies for improving meat production traits in domestic pigs. Resuscitate the SMSCs cell lines isolated and preserved in the laboratory, and divide the cells into 5 groups based on the serum concentration: 20% serum group (control group), 15% serum group, 10% serum group, 5% serum group, and 0% serum group, to form varying degrees of hunger stress. When the cells fuse to 70%-80%, culture for more 24 hours for detection, with 4 replicates in each group. Cell apoptosis, membrane potential, reactive oxygen species(ROS) levels were detected by flow cytometry; ATP levels were measured using a reagent kit, and the expression of autophagy marker proteins(LC3B-Ⅱ, p62) and pathway-related proteins(AMPK, mTOR) was detected by WB; transmission electron microscopy was used to detect changes in mitochondrial morphology and organelles in cells. The cell viability, level of p62 protein, and the p-mTOR/mTOR ratio decreased with the decrease of serum concentration; apoptosis rate, level of ROS, level of ATP, the level of LC3B-Ⅱ protein, the p-AMPK/AMPK ratio, the number of autophagy lysosomes and the abnormal rate of nucleus and mitochondria increased; Compared with the 20% serum concentration group, the 15% group showed a significant increase in membrane potential, while the 5% and 0% groups showed a highly significant decrease. This indicates that short-term serum starvation can induce autophagy induced by the AMPK/mTOR signaling pathway and accelerate cell metabolism, but at the cost of some toxic effects such as accelerating cell apoptosis and inhibiting cell proliferation.
Key words: porcine; autophagy; SMSCs; serum starvation; AMPK/mTOR pathway
*Corresponding author:JU Huiming," E-mail: hmju@yzu.edu.cn
骨骼肌生長(zhǎng)發(fā)育和產(chǎn)肉性狀形成的分子機(jī)制一直是動(dòng)物豬遺傳育種領(lǐng)域關(guān)注的重點(diǎn),雖然近年來取得了一些重要進(jìn)展和突破,但尚有許多未知的調(diào)控因子和調(diào)控機(jī)制待闡明[1-2]。SMSCs分布于肌細(xì)胞基底膜與肌膜之間,最早由Mauro[3]于1961年發(fā)現(xiàn),是成年個(gè)體肌肉組織內(nèi)留存的未分化的、處于靜止?fàn)顟B(tài)的肌前體細(xì)胞。當(dāng)肌肉生長(zhǎng)受到損傷或發(fā)生肌肉退化疾病引起的應(yīng)激時(shí),SMSCs可以通過肌源性分化形成肌纖維從而對(duì)肌肉發(fā)育、維持和再生產(chǎn)生重要作用,甚至可直接決定豬骨骼肌的生長(zhǎng)發(fā)育和產(chǎn)肉性狀[4-6]。
細(xì)胞自噬是高度保守的過程,通過形成自噬體,將蛋白質(zhì)等生物大分子或線粒體等細(xì)胞器回收至溶酶體,最終將其降解為氨基酸、單糖等小分子,從而實(shí)現(xiàn)能量物質(zhì)的循環(huán)再利用[7]。細(xì)胞在體外生長(zhǎng)代謝所需能量支撐、生長(zhǎng)因子、維生素等多種營(yíng)養(yǎng)物質(zhì)可通過一定濃度血清滿足[8-9]。已有研究表明,饑餓或內(nèi)外部應(yīng)激條件可誘導(dǎo)SMSCs發(fā)生非選擇性自噬[10],嚴(yán)重血清饑餓誘發(fā)的自噬能導(dǎo)致人和小鼠肌纖維空泡化、肝臟損傷等嚴(yán)重癥狀[11-12]。近年來,因自噬在骨骼肌代謝穩(wěn)態(tài)和疾病進(jìn)展中的作用而引起極大關(guān)注[13]。目前雖有證據(jù)表明骨骼肌在饑餓等狀態(tài)下自噬通量會(huì)增加[13-15],而肌肉恢復(fù)過程亦與SMSCs自噬密切相關(guān)[13-14],但自噬影響肌肉再生和修復(fù)的具體途徑和精確機(jī)制仍有待系統(tǒng)研究。
近年來,隨著組學(xué)技術(shù)的發(fā)展,通過對(duì)SMSCs進(jìn)行多組學(xué)分析,篩選出很多影響豬骨骼肌發(fā)育的microRNA[16-18]、microarray[19]、SAGE數(shù)據(jù)庫(kù)[20]、甲基化數(shù)據(jù)庫(kù)[21]以及l(fā)ncRNA分析數(shù)據(jù)[22-23]等。本研究小組前期分離并建立了多個(gè)品種豬SMSCs細(xì)胞系[24],通過全轉(zhuǎn)錄組測(cè)序發(fā)現(xiàn)多個(gè)細(xì)胞代謝及自噬信號(hào)通路相關(guān)基因的表達(dá)在不同品種豬間存在顯著差異,因此我們推測(cè)豬SMSCs可能通過自噬途徑影響出生后豬肌肉的生成和修復(fù),這也可能是導(dǎo)致不同品種豬肌肉發(fā)育差異的因素之一。本研究擬以直接影響骨骼肌發(fā)育的SMSCs為研究對(duì)象,通過調(diào)整體外培養(yǎng)體系中的血清濃度,制備不同程度的饑餓脅迫,誘發(fā)不同程度自噬,研究細(xì)胞代謝、凋亡以及自噬標(biāo)志蛋白和通路相關(guān)蛋白的表達(dá)情況,以探究影響豬骨骼肌發(fā)育的因素,為全面解讀豬骨骼肌發(fā)育的影響機(jī)制奠定基礎(chǔ)。
1 材料與方法
1.1 材料
巴馬豬骨骼肌衛(wèi)星細(xì)胞系(SMSCs)由本實(shí)驗(yàn)室分離并保存。DMEM高糖培養(yǎng)基、Trypsin-EDTA(0.25%)、FBS及其他細(xì)胞培養(yǎng)試劑購(gòu)自Gibco公司;細(xì)胞凋亡檢測(cè)試劑盒、ATP檢測(cè)試劑盒、活性氧檢測(cè)試劑盒、線粒體膜電位檢測(cè)試劑盒(JC-1)購(gòu)自Beyotime公司;電子天平購(gòu)自Germany公司。
1.2 方法
1.2.1 細(xì)胞分組與培養(yǎng)
按SMSCs培養(yǎng)體系中血清濃度將細(xì)胞分為5組:20%血清組(20% S)、15%血清組(15%S)、10%血清組(10% S)、5%血清組(5% S)和0%血清組(0% S),以20% S組為對(duì)照組。各組細(xì)胞于37℃,5% CO2環(huán)境中培養(yǎng)。當(dāng)細(xì)胞融合度達(dá)到70%~80%時(shí),于相應(yīng)濃度血清再培養(yǎng)24h后進(jìn)行檢測(cè),每組4個(gè)重復(fù)。
1.2.2 CCK-8 法檢測(cè)細(xì)胞活力
SMSCs按每孔 2×104個(gè)接種于96孔板,換入無血清培養(yǎng)基100 μL與CCK-8檢測(cè)試劑10 μL,37 ℃避光孵育2 h,用酶標(biāo)儀測(cè)定450 nm波長(zhǎng)的吸光度值 (A值),計(jì)算細(xì)胞增殖情況。細(xì)胞相對(duì)活力(%)=(A試驗(yàn)孔-A空白孔)/(A對(duì)照孔-A空白孔)×100%。
1.2.3 流式細(xì)胞術(shù)檢測(cè)細(xì)胞凋亡情況、線粒體膜電位和ROS水平
加入含EDTA的胰蛋白酶消化各組細(xì)胞,制備細(xì)胞懸液,部分細(xì)胞依次加入混合195 μL Annexin V-FITC、5 μL Annexin V-FITC和10 μL碘化丙啶的染色溶液,用細(xì)胞凋亡試劑盒借助流式細(xì)胞術(shù)檢測(cè)各組細(xì)胞的凋亡率;部分細(xì)胞用線粒體膜電位試劑盒檢測(cè)各組細(xì)胞膜電位;部分細(xì)胞根據(jù)試劑盒操作說明檢測(cè)各組細(xì)胞中的線粒體ROS水平。
1.2.4 檢測(cè)細(xì)胞內(nèi)ATP水平
加入含EDTA的胰蛋白酶消化各組細(xì)胞,制備細(xì)胞懸液,根據(jù)ATP檢測(cè)試劑盒(S0026,Beyotime,中國(guó))的說明,每孔添加200 μL裂解液,4℃下以12 000 g離心5 min后棄上清,加入100 μL ATP檢測(cè)工作液3~5 min,利用化學(xué)發(fā)光儀器測(cè)定光單位(RLU)值,根據(jù)制備的標(biāo)準(zhǔn)曲線計(jì)算樣品中的ATP濃度。
1.2.5 WB檢測(cè)自噬相關(guān)蛋白的表達(dá)
提取各組細(xì)胞總蛋白,用聚丙烯酰胺凝膠電泳、轉(zhuǎn)膜后,以Tublin(11224-1-AP,Proteintech,USA)為內(nèi)參蛋白,測(cè)定自噬相關(guān)蛋白LC3B-Ⅱ(ab229327,Abcam,USA)、p62(ab233207,Abcam,USA)和通路相關(guān)蛋白AMPK(66536-1-lg,Proteintech,USA)、Phospho-AMPK(p-AMPK,GTX03702,GeneTex)、mTOR(66888-1-lg,Proteintech,USA)及Phospho-mTOR(p-mTOR,67778-1-lg,Proteintech,USA)表達(dá)量。用Image J與Analysis軟件測(cè)定WB雜交條帶的灰度值。目標(biāo)蛋白灰度值和相應(yīng)內(nèi)參條帶灰度值的比值為各目的條帶的相對(duì)表達(dá)量, 具體試驗(yàn)方法同參考文獻(xiàn)[25]。
1.2.6 透射電鏡觀察細(xì)胞和細(xì)胞器的形態(tài)變化
收集各組細(xì)胞,換入電鏡固定液室溫固定2 h,低速離心、梯度脫水、包埋、切片、染色制片后,用透射電子顯微鏡觀察細(xì)胞形態(tài)結(jié)構(gòu)、線粒體結(jié)構(gòu)數(shù)量以及自噬小體,采集圖像分析。
1.3 數(shù)據(jù)分析
以SPSS 17.0統(tǒng)計(jì)軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行分析,數(shù)據(jù)均用“x-±SD”表示,應(yīng)用GraphPadPrism7軟件對(duì)數(shù)據(jù)進(jìn)行單因素方差分析,組間差異采用t檢驗(yàn),P<0.05表示差異顯著,P<0.01表示差異極顯著。
2 結(jié) 果
2.1 CCK-8法檢測(cè)細(xì)胞活力
結(jié)果如圖1所示,20%S、15%S、10%S、5%S、0%S組細(xì)胞活力分別為(100±3.9)%、(88.1±2.0)%、(72.1±4.5)%、(60.78±5.6)%和(24.95±4.7)%。以20%S組為對(duì)照組,其余4組細(xì)胞活力逐漸降低,其中10%S、5%S、0%S組與對(duì)照組相比差異極顯著(P<0.01)。結(jié)果表明,短期血清饑餓脅迫導(dǎo)致SMSCs培養(yǎng)體系中營(yíng)養(yǎng)及能量供應(yīng)不足,對(duì)SMSCs產(chǎn)生一定損害作用,且損害程度隨饑餓程度增加而增加,各組細(xì)胞生長(zhǎng)增殖活力逐漸降低。
2.2 流式細(xì)胞術(shù)檢測(cè)細(xì)胞凋亡情況
結(jié)果如圖2所示,20%S、15%S、10%S、5%S、0%S組細(xì)胞凋亡率分別為(4.55±0.08)%、(4.71±0.10)%、(5.42±0.20)%、(5.73±0.20)%、(6.84±0.42)%,隨血清濃度降低逐漸升高。輕度血清饑餓組(15%S組)凋亡率和對(duì)照組差異不顯著,10%S 、5%S、0%S組均顯著或極顯著升高(P<0.05或P<0.01)。結(jié)果表明,血清饑餓脅迫導(dǎo)致細(xì)胞凋亡率上升,上升程度與血清饑餓脅迫程度成正相關(guān)。低于對(duì)照組的血清濃度都會(huì)對(duì)細(xì)胞代謝產(chǎn)生不利影響。
2.3 流式細(xì)胞術(shù)檢測(cè)線粒體ROS水平
結(jié)果如圖3所示,20%S、15%S、10%S、5%S、0%S組ROS水平分別為(43.81±0.63)%、(54.20±0.56)%、(60.83±0.59)%、(77.91±0.05)%、(88.37±0.48)%。以20%S組為對(duì)照組,其余4組ROS水平均極顯著升高(P<0.01),且呈現(xiàn)隨血清濃度降低而逐漸升高的趨勢(shì)。結(jié)果表明,隨著血清饑餓脅迫程度加重,細(xì)胞氧化應(yīng)激逐漸增加,ROS水平顯著升高,對(duì)細(xì)胞產(chǎn)生損害,觸發(fā)細(xì)胞凋亡。
2.4 流式細(xì)胞術(shù)檢測(cè)線粒體膜電位水平
結(jié)果如圖4所示,20%S、15%S、10%S、5%S、0%S組線粒體膜電位分別為3.39±0.18、3.93±0.20、2.91±0.31、2.64±0.17、1.80±0.15。以20%S組為對(duì)照組,除15%S組膜電位出現(xiàn)顯著升高外(P<0.05),其余各組均低于對(duì)照組且呈逐漸降低的趨勢(shì),5%S、0%S組與對(duì)照組相比差異極顯著(P<0.01)。結(jié)果表明,輕度血清饑餓組(15%S)線粒體膜電位水平升高,提示細(xì)胞內(nèi)代謝節(jié)律增加、能量產(chǎn)生增加;其他試驗(yàn)組膜電位水平降低,可能與ROS大量產(chǎn)生有關(guān),也是細(xì)胞凋亡的早期特征,說明線粒體功能被抑制,細(xì)胞代謝受到影響。
2.5 細(xì)胞內(nèi)ATP水平
結(jié)果如圖5所示,20% S、15% S、10% S、5%S、0%S組細(xì)胞內(nèi)ATP水平分別為(18.11±0.07)、(20.79±0.99)、(21.36±0.18)、(23.50±0.45)、(27.09±0.72) nmol·L-1。以20%S組為對(duì)照組,其余4組ROS水平均顯著或極顯著升高(P<0.05或P<0.01),且呈隨血清濃度降低而逐漸升高的趨勢(shì)。結(jié)果表明,隨著饑餓脅迫程度的增加,細(xì)胞內(nèi)營(yíng)養(yǎng)和能量缺乏加重,線粒體中脂肪酸氧化產(chǎn)生的ATP代償性增加。
2.6 WB檢測(cè)自噬相關(guān)蛋白LC3B-Ⅱ、p62的表達(dá)
結(jié)果如圖6所示,20% S、15% S、10% S、5%S、0%S組細(xì)胞內(nèi)LC3B-Ⅱ蛋白的相對(duì)表達(dá)量分別為0.05±0.01、0.13±0.02、0.23±0.01、0.32±0.02和1.52±0.02,隨血清濃度降低而逐漸升高;p62蛋白的相對(duì)表達(dá)量則呈相反趨勢(shì),分別為1.27±0.03、1.00±0.01、0.44±0.02、0.42±0.02、0.39±0.01,隨血清濃度降低而逐漸降低。以20%S組為對(duì)照,其余4組LC3B-Ⅱ的相對(duì)表達(dá)量均極顯著升高,p62蛋白相對(duì)表達(dá)量均極顯著降低(P<0.01)。結(jié)果表明,隨著饑餓脅迫程度增加,細(xì)胞自噬程度逐漸加強(qiáng)。
2.7 WB檢測(cè)AMPK/mTOR 信號(hào)通路相關(guān)蛋白的表達(dá)
結(jié)果如圖7所示,20% S、15% S、10% S、5%S、0%S組p-mTOR與mTOR的蛋白灰度值比值分別為1.61±0.04、1.42±0.07、1.37±0.02、1.05±0.06、0.93±0.05;p-AMPK與AMPK的蛋白灰度值比值分別為0.52±0.03、0.93±0.08、1.25±0.05、1.77±0.07、2.64±0.05。與20%S組相比,AMPK-mTOR信號(hào)通路的關(guān)鍵信號(hào)分子p-mTOR/mTOR比值隨血清濃度的降低而降低(P<0.05或P<0.01),而p-AMPK/AMPK比值隨血清濃度的降低而極顯著升高(P<0.01)。結(jié)果提示血清饑餓脅迫可能通過AMPK/mTOR 信號(hào)通路調(diào)控細(xì)胞產(chǎn)生自噬。
2.8 透射電鏡觀察細(xì)胞和細(xì)胞器的形態(tài)變化
結(jié)果如圖8所示,與20%S組相比,15%S組細(xì)胞內(nèi)自噬小體(紅色箭頭所示)數(shù)量顯著增加,但線粒體形狀及結(jié)構(gòu)差異不明顯;10%S組細(xì)胞中多個(gè)線粒體腫脹(黑色三角標(biāo)示正常線粒體,白色三角標(biāo)示異常線粒體)、嵴模糊,自噬小體數(shù)量進(jìn)一步增多,細(xì)胞核呈異型;5%S組大部分線粒體腫脹、嵴模糊消失,粗面內(nèi)質(zhì)網(wǎng)中度擴(kuò)張,核糖體脫顆粒,自噬小體進(jìn)一步增加,細(xì)胞核異型;0%S組細(xì)胞質(zhì)內(nèi)有大量自噬小體,細(xì)胞核膜異型、部分核膜溶解。結(jié)果表明,血清饑餓脅迫可誘導(dǎo)SMSCs內(nèi)線粒體異常、自噬小體形成,且線粒體異常程度和自噬小體數(shù)量隨著血清濃度的降低而增加。
3 討 論
正常情況下,骨骼肌自噬水平較低,但某些外部因素刺激,如藥物、饑餓、能量剝奪、缺氧等能誘導(dǎo)其發(fā)生[13-15]。本試驗(yàn)以直接影響豬骨骼肌發(fā)育的SMSCs為研究對(duì)象,控制培養(yǎng)體系中的血清濃度形成不同程度的饑餓脅迫,繼而誘發(fā)不同程度自噬,通過其對(duì)SMSCs的影響初步評(píng)估饑餓脅迫如何作用于肌肉發(fā)育。細(xì)胞代謝是細(xì)胞生長(zhǎng)、繁殖、保持結(jié)構(gòu)而對(duì)外界環(huán)境做出的反應(yīng),通過測(cè)定細(xì)胞凋亡率、膜電位、活性氧及ATP水平可較好的評(píng)估外部因素對(duì)細(xì)胞代謝的影響[26-28]。本研究發(fā)現(xiàn),隨培養(yǎng)體系中血清濃度的降低,細(xì)胞活力和膜電位降低、細(xì)胞凋亡率、ROS和ATP水平逐漸升高。ROS水平升高、線粒體膜電位降低為線粒體功能障礙的表現(xiàn),說明短期血清饑餓脅迫促使細(xì)胞加速代謝和凋亡,損害細(xì)胞,尤其在血清饑餓脅迫程度較重時(shí)(10%S、5%S、0%S)損傷更大。透射電鏡檢測(cè)結(jié)果和上述一致,血清饑餓脅迫程度較重組的線粒體出現(xiàn)形變、線粒體脊消失更明顯。一般情況下,ATP水平升高是有益的,代表細(xì)胞代謝旺盛,能更快的提供能量和營(yíng)養(yǎng)物質(zhì)[28]。而本研究結(jié)果提示,當(dāng)能量和營(yíng)養(yǎng)物質(zhì)極度缺乏時(shí)(如0%S組),ATP水平的升高可理解為一種警示信號(hào),提示細(xì)胞生存環(huán)境的嚴(yán)峻,與之相對(duì)應(yīng)的是高凋亡率、高ROS水平和低膜電位水平等。和對(duì)照組相比,饑餓脅迫程度較輕組(15%S)膜電位升高,細(xì)胞凋亡率變化不顯著,ATP水平升高,線粒體形態(tài)和內(nèi)部結(jié)構(gòu)基本正常,說明輕度血清饑餓脅迫促進(jìn)細(xì)胞能量轉(zhuǎn)換,提升線粒體功能,該結(jié)果和我們本研究發(fā)現(xiàn)的輕度自噬能提高SMSCs分化能力的結(jié)果基本一致[29]。
自噬是具有細(xì)胞保護(hù)作用的胞內(nèi)降解機(jī)制,參與生物體發(fā)育、代謝、凋亡等多個(gè)過程,自噬標(biāo)志蛋白LC3B與p62間的相互作用通常被用來鑒定細(xì)胞內(nèi)的自噬水平[30-32]。LC3B是一種膜相關(guān)蛋白,包括兩種可相互轉(zhuǎn)化的形式——LC3B-I和LC3B-II,自噬越強(qiáng)則LC3B-Ⅱ含量越高[33-34]。p62通常存在于蛋白質(zhì)聚集體中,p62水平升高常標(biāo)志著自噬活性受到抑制[33,35]。本研究發(fā)現(xiàn),隨SMSCs培養(yǎng)體系中血清濃度降低,p62蛋白表達(dá)降低,同時(shí)LC3B-Ⅱ含量逐漸升高;透射電鏡檢測(cè)結(jié)果也顯示隨饑餓脅迫程度增加,細(xì)胞中自噬溶酶體數(shù)量逐步增加,進(jìn)一步表明了SMSCs培養(yǎng)體系中血清饑餓脅迫可以誘導(dǎo)細(xì)胞自噬的發(fā)生。AMPK與mTOR是細(xì)胞感知營(yíng)養(yǎng)物質(zhì)狀態(tài)最重要的兩大蛋白,作為自噬過程中的重要調(diào)控途徑,由饑餓引起的營(yíng)養(yǎng)物質(zhì)缺乏會(huì)導(dǎo)致AMPK磷酸化,進(jìn)而激活自噬級(jí)聯(lián)反應(yīng)[36-37];而豐富的生長(zhǎng)因子、葡萄糖和氨基酸等營(yíng)養(yǎng)物質(zhì)會(huì)激活mTOR通過磷酸化抑制自噬[37-38],研究中常用p-mTOR/mTOR值和p-AMPK/AMPK值反映自噬水平[39-40]。本研究發(fā)現(xiàn),血清饑餓明顯上調(diào) AMPK 的磷酸化水平,同時(shí)抑制 mTOR 的磷酸化水平,說明血清饑餓可能通過調(diào)控AMPK/mTOR信號(hào)通路激活自噬發(fā)生,調(diào)控SMSCs自噬水平。
4 結(jié) 論
目前雖有證據(jù)表明骨骼肌在饑餓等狀態(tài)下自噬通量會(huì)增加,而肌肉恢復(fù)過程亦與SMSCs自噬密切相關(guān)[13-15],但自噬影響肌肉再生和修復(fù)的具體途徑和精確機(jī)制仍待系統(tǒng)研究。本研究發(fā)現(xiàn),SMSCs體外培養(yǎng)過程中,短期血清饑餓脅迫能加快細(xì)胞代謝,但同時(shí)存在加快細(xì)胞凋亡、抑制細(xì)胞增殖等毒副作用;血清饑餓脅迫通過AMPK/mTOR 信號(hào)通路誘導(dǎo)細(xì)胞自噬發(fā)生,進(jìn)而可影響豬骨胳肌發(fā)育調(diào)控。同時(shí)我們本課題組也在研究長(zhǎng)期血清饑餓脅迫對(duì)SMSCs代謝及自噬發(fā)生的影響。本研究的開展有助于探究不同營(yíng)養(yǎng)狀態(tài)下影響豬骨骼肌發(fā)育的因素,解讀豬骨骼肌發(fā)育的機(jī)制。
參考文獻(xiàn)(References):
[1] MOHAMMADABADI M,BORDBAR F,JENSEN J,et al.Key genes regulating skeletal muscle development and growth in farm animals[J].Animals (Basel),2021,11(3):835.
[2] 張冬杰,汪 亮,馬 紅,等.低溫脅迫下民豬骨骼肌的轉(zhuǎn)錄調(diào)控分析[J].畜牧獸醫(yī)學(xué)報(bào),2022,53(8):2524-2536.
ZHANG D J,WANG L,MA H,et al.Analysis of transcriptional regulation in min pig skeletal muscle under low temperature stress[J].Acta Veterinaria et Zootechnica Sinica,2022,53(8):2524-2536.(in Chinese)
[3] MAURO A.Satellite cell of skeletal muscle fibers[J].J Biophys Biochem Cytol,1961,9(2):493-495.
[4] METZGER K,TUCHSCHERER A,PALIN M F,et al.Establishment and validation of cell pools using primary muscle cells derived from satellite cells of pig skeletal muscle[J].In Vitro Cell Dev Biol Anim,2020,56(3):193-199.
[5] RENAULT V,ROLLAND E,THORNELL L E,et al.Distribution of satellite cells in the human vastus lateralis muscle during aging[J].Exp Gerontol,2002,37(12):1513-1514.
[6] FIACCO E,CASTAGNETTI F,BIANCONI V,et al.Autophagy regulates satellite cell ability to regenerate normal and dystrophic muscles[J].Cell Death Differ,2016,23(11):1839-1849.
[7] OHSUMI Y.Historical landmarks of autophagy research[J].Cell Res,2014,24(1):9-23.
[8] WARNER R D.Review:analysis of the process and drivers for cellular meat production[J].Animal,2019,13(12):3041-3058.
[9] PRICE P J.Best practices for media selection for mammalian cells[J].In Vitro Cell Dev Biol Anim,2017,53(8):673-681.
[10] KLIONSKY D J,SCHULMAN B A.Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins[J].Nat Struct Mol Biol,2014,21(4):336-345.
[11] YANG J B,SUN H F,TIAN F,et al.Autophagy suppression plays a role in parenteral nutrition-associated lung injury[J].Clin Nutr,2021,40(2):560-570.
[12] VANHOREBEEK I,CASAER M,GUNST J.Nutrition and autophagy deficiency in critical illness[J].Curr Opin Crit Care,2023,29(4):306-314.
[13] CALL J A,NICHENKO A S.Autophagy:an essential but limited cellular process for timely skeletal muscle recovery from injury[J].Autophagy,2020,16(7):1344-1347.
[14] CHEN W,CHEN Y S,LIU Y X,et al.Autophagy in muscle regeneration:potential therapies for myopathies[J].J Cachexia Sarcopenia Muscle,2022,13(3):1673-1685.
[15] PAOLINI A,OMAIRI S,MITCHELL R,et al.Attenuation of autophagy impacts on muscle fibre development,starvation induced stress and fibre regeneration following acute injury[J].Sci Rep,2018,8(1):9062.
[16] MCDANELD T G,SMITH T P,DOUMIT M E,et al.MicroRNA transcriptome profiles during swine skeletal muscle development[J]. BMC Genomics,2009,10:77.
[17] ZHU L H,HOU L J,OU J X,et al.MiR-199b represses porcine muscle satellite cells proliferation by targeting JAG1[J]. Gene,2019,691:24-33.
[18] WANG S S,TAN B H,XIAO L Y,et al.Long non-coding RNA Gm10561 promotes myogenesis by sponging miR-432[J]. Epigenetics,2022,17(13):2039-2055.
[19] FRY C S,LEE J D,JACKSON J R,et al.Regulation of the muscle fiber micro environment by activated satellite cells during hypertrophy[J].FASEB J,2014,28(4):1654-1665.
[20] REN H,LI Y,TANG Z,et al.Genomic structure,chromosomal localization and expression profile of a porcine long non-coding RNA isolated from long SAGE libraries[J].Anim Genet,2009,40(4):499-508.
[21] CORBETT R J,F(xiàn)ORD L M,RANEY N E,et al.Pig fetal skeletal muscle development is associated with genome-wide DNA hypomethylation and corresponding alterations in transcript and microRNA expression[J].Genome,2023,66(4):68-79.
[22] LV W,JIANG W,LUO H M,et al.Long noncoding RNA lncMREF promotes myogenic differentiation and muscle regeneration by interacting with the Smarca5/p300 complex[J].Nucleic Acids Res,2022,50(18):10733-10755.
[23] 李倩倩,李 龍,黃子瑩,等.豬lncRNA TCONS_00791383對(duì)骨骼肌衛(wèi)星細(xì)胞增殖分化的影響[J].畜牧獸醫(yī)學(xué)報(bào),2020, 51(6):1177-1186.
LI Q Q,LI L,HUANG Z Y,et al.Effect of pig lncRNA TCONS_00791383 on the proliferation and differentiation of skeletal muscle satellite cells[J].Acta Veterinaria et Zootechnica Sinica,2020,51(6):1177-1186.(in Chinese)
[24] 胡悅旻.不同程度自噬對(duì)豬骨骼肌衛(wèi)星細(xì)胞代謝及分化功能影響的研究[D].揚(yáng)州:揚(yáng)州大學(xué),2022.
HU Y M.Effects of different levels of autophagy on metabolism and differentiation of porcine skeletal muscle satellite cells[D].Yangzhou:Yangzhou University,2022.(in Chinese)
[25] JU H M,ZHANG J Q,BAI L J,et al.The transgenic cloned pig population with integrated and controllable GH expression that has higher feed efficiency and meat production[J].Sci Rep,2015,5:10152.
[26] ALSAYYAH C,OZTURK O,CAVELLINI L,et al.The regulation of mitochondrial homeostasis by the ubiquitin proteasome system[J].Biochim Biophys Acta Bioenerg,2020,1861(12):148302.
[27] SZTALRYD C,BRASAEMLE D L.The perilipin family of lipid droplet proteins:gatekeepers of intracellular lipolysis[J]. Biochim Biophys Acta Mol Cell Biol Lipids,2017,1862(10 Pt B):1221-1232.
[28] KISHIKAWA J I,INOUE Y,F(xiàn)UJIKAWA M,et al.General anesthetics cause mitochondrial dysfunction and reduction of intracellular ATP levels[J].PLoS One,2018,13(1):e0190213.
[29] WANG Y,GAO J,F(xiàn)AN B J,et al.Different levels of autophagy induced by transient serum starvation regulate metabolism and differentiation of porcine skeletal muscle satellite cells[J].Sci Rep,2023,13(1):13153.
[30] SANDRI M.Autophagy in skeletal muscle[J].FEBS Lett,2010,584(7):1411-1416.
[31] PAUNOVIC V,VUCICEVIC L,MISIRKIC MARJANOVIC M,et al.Autophagy receptor p62 regulates SARS-CoV-2-induced inflammation in COVID-19[J].Cells,2023,12(9):1282.
[32] SENER E F,DANA H,TAHTASAKAL R,et al.Heterozygous Cc2d1a mice show sex-dependent changes in the Beclin-1/p62 ratio with impaired prefrontal cortex and hippocampal autophagy[J].Prog Neuropsychopharmacol Biol Psychiatry,2023,125:110764.
[33] SHVETS E,ABADA A,WEIDBERG H,et al.Dissecting the involvement of LC3B and GATE-16 in p62 recruitment into autophagosomes[J].Autophagy,2011,7(7):683-688.
[34] LI L,LI S Y,PAN Z F,et al.Bilirubin impacts microglial autophagy via the Akt-mTOR signaling pathway[J].J Neurochem, 2023,167(4):582-599.
[35] YIN Z Y,PASCUAL C,KLIONSKY D J.Autophagy:machinery and regulation[J].Microb Cell,2016,3(12):588-596.
[36] PARK J M,LEE D H,KIM D H.Redefining the role of AMPK in autophagy and the energy stress response[J].Nat Commun,2023,14(1):2994.
[37] KIM J,KUNDU M,VIOLLET B,et al.AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J].Nat Cell Biol,2011,13(2):132-141.
[38] SHUCHI S,RATHO R K,MOHI G K,et al.Modulation of autophagy and mTOR signaling pathway genes in respiratory epithelium by respiratory syncytial virus (RSV) in children suffering from acute lower respiratory tract infections[J].J Med Virol,2023,95(3):e28666.
[39] LI H,PANG B,NIE B,et al.Dioscin promotes autophagy by regulating the AMPK-mTOR pathway in ulcerative colitis[J]. Immunopharmacol Immunotoxicol,2022,44(2):238-246.
[40] ZHOU J L,LUO Y S,KANG X C,et al.The root extract of Scutellaria baicalensis Georgi promotes β cell function and protects from apoptosis by inducing autophagy[J].J Ethnopharmacol,2022,284:114790.
(編輯 郭云雁)