国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

腸道微生物調(diào)控脂肪沉積及其代謝相關(guān)疾病的研究進(jìn)展

2024-11-08 00:00:00徐蘭夢(mèng)黃榆智韓玉竹李常營(yíng)章杰
畜牧獸醫(yī)學(xué)報(bào) 2024年10期
關(guān)鍵詞:肥胖脂肪糖尿病

摘 要: 脂肪組織是機(jī)體的重要組成部分,不僅具有儲(chǔ)存能量、保護(hù)組織和調(diào)節(jié)體溫等作用,還能通過(guò)分泌細(xì)胞因子參與代謝調(diào)節(jié),在肥胖及相關(guān)并發(fā)癥的發(fā)病過(guò)程中發(fā)揮著重要作用。大量研究已證實(shí),腸道微生物與宿主脂肪代謝及其相關(guān)疾病之間具有緊密聯(lián)系。本文綜述了腸道微生物影響脂肪沉積的主要因素,包括脂肪細(xì)胞、脂肪酸組成和脂肪相關(guān)血液指標(biāo)。探討腸道微生物如何通過(guò)一系列途徑參與調(diào)節(jié)脂肪吸收、生成和分解過(guò)程,同時(shí)詳細(xì)闡述了腸道微生物與脂肪代謝紊亂引起的疾病之間的關(guān)聯(lián)。本文旨在完善和加深對(duì)腸道微生物調(diào)控脂肪沉積及其相關(guān)代謝疾病的了解,為下一步的研究和臨床實(shí)踐提供理論基礎(chǔ)和借鑒。

關(guān)鍵詞: 腸道微生物;脂肪;肥胖;糖尿?。籑AFLD

中圖分類號(hào):Q493.5

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):0366-6964(2024)10-4263-15

收稿日期:2024-02-18

基金項(xiàng)目:重慶市自然科學(xué)基金(cstc2019jcyjmsxm2342)

作者簡(jiǎn)介:徐蘭夢(mèng)(2002-),女,安徽安慶人,碩士生,主要從事畜禽腸道微生物研究,E-mail:2131126509@qq.com

*通信作者:章 杰,主要從事畜禽腸道微生物研究,E-mail:zhangjie813@163.com;李常營(yíng),主要從事動(dòng)物健康養(yǎng)殖研究,E-mail:licy1983@163.com

Research Progress of Gut Microbiota Regulating Fat Deposition and Metabolic Related

Diseases

XU" Lanmeng, HUANG" Yuzhi, HAN" Yuzhu, LI" Changying*, ZHANG" Jie*

(College of Animal Science and Technology, Southwest University, Chongqing 402460, China)

Abstract:" Adipose tissue is an important component of the body, which not only stores energy, protects tissues, and regulates body temperature, but also participates in metabolic regulation by secreting cytokines, playing an important role in the pathogenesis of obesity and related complications. Numerous studies have confirmed that, there exists a close relationship between gut microbiota and host fat metabolism and related diseases. This article reviews the main factors that gut microbiota affects fat deposition, including adipocytes, fatty acid composition, and fat related blood indicators. Exploring how gut microbiota participates in regulating fat absorption, generation, and decomposition processes through a series of pathways, and elaborating in detail the association between gut microbiota and diseases caused by lipid metabolism disorders. This article aims to improve and deepen the understanding of the regulation of fat deposition and related metabolic diseases by gut microbiota, providing a theoretical basis and reference for further research and clinical practice.

Key words: gut microbiota; fat; obesity; diabetes; MAFLD

*Corresponding authors:" ZHANG Jie, E-mail:zhangjie813@163.com; LI Changying, E-mail:licy1983@163.com

脂肪是人類和動(dòng)物體的重要組成成分,具有貯存能量和調(diào)節(jié)免疫等作用,比如其所含的n-3多不飽和脂肪酸可轉(zhuǎn)化為類花生酸刺激細(xì)胞在免疫應(yīng)答期間發(fā)出信號(hào)[1]。同時(shí),脂肪組織的含量也是畜禽動(dòng)物重要的經(jīng)濟(jì)性狀,直接決定了生長(zhǎng)性能的高低,并與肉的風(fēng)味、多汁性、嫩度和色澤等多個(gè)肉品質(zhì)指標(biāo)密切相關(guān)[2]。在過(guò)去的幾十年里,肥胖和相關(guān)代謝性疾病的發(fā)生呈現(xiàn)快速增長(zhǎng)的趨勢(shì)。除了不良的飲食、生活方式和遺傳等已知因素外,腸道微生物對(duì)脂肪沉積的調(diào)控成為新的研究方向被廣泛關(guān)注。腸道微生物發(fā)酵食物后產(chǎn)生的大量代謝物,如短鏈脂肪酸(short chain fatty acids, SCFAs)、膽汁酸(bile acids, BAs)和氧化三甲胺(trimethylamine oxide, TMAO),以及革蘭陰性菌細(xì)胞壁組成成分脂多糖(lipopolysaccharide, LPS)等,具有調(diào)節(jié)宿主生理功能和健康的作用[3]。2004年,Bckhed等[4]首次證實(shí)腸道微生物是調(diào)節(jié)能量穩(wěn)態(tài)和脂肪沉積的關(guān)鍵環(huán)境因素。隨著測(cè)序技術(shù)和生物信息學(xué)的發(fā)展,大量研究也表明,腸道微生物與脂肪代謝相關(guān)疾病密切關(guān)聯(lián),如肥胖、糖尿病和代謝相關(guān)脂肪性肝?。╩etabolic-related fatty liver disease, MAFLD)[5-7]。反過(guò)來(lái)說(shuō),對(duì)失調(diào)的腸道微生物進(jìn)行適當(dāng)干預(yù)改善后,可有效逆轉(zhuǎn)宿主脂肪沉積狀況及代謝相關(guān)疾病[8]。因此,本文就腸道微生物如何調(diào)控宿主脂肪沉積、代謝及相關(guān)代謝疾病過(guò)程,以及脂肪飲食對(duì)腸道微生物組成的影響展開(kāi)論述。

1 腸道微生物調(diào)控脂肪沉積

1.1 脂肪細(xì)胞體積與轉(zhuǎn)化

肥胖的典型特征是脂肪量增多,即脂肪細(xì)胞增大或增殖[9]。脂肪組織分為白色脂肪組織(white adipose tissue, WAT)、棕色脂肪組織(brown adipose tissue, BAT)和米色脂肪組織(beige adipose tissue, Beige),BAT通過(guò)表達(dá)解偶聯(lián)蛋白1(uncoupling protein 1, UCP1)消除線粒體內(nèi)膜兩側(cè)跨膜質(zhì)子濃度差異,阻斷ATP合成,使能量以熱量形式耗散,WAT的功能則主要是儲(chǔ)存能量[10]。因此,促進(jìn)BAT活化和WAT褐變有助于降低體重[11]。研究表明,腸道微生物能通過(guò)調(diào)控脂肪的積累來(lái)影響脂肪細(xì)胞的大小,比如植物乳桿菌ATG-K2通過(guò)下調(diào)脂肪生成相關(guān)基因和蛋白表達(dá)水平來(lái)抑制3T3-L1細(xì)胞脂肪的積累,在高脂飲食(high fat diet, HFD)誘導(dǎo)的肥胖小鼠模型中能夠降低體重增加量和WAT重量并阻礙脂肪細(xì)胞增大[12]。外源物質(zhì)的添加改變了腸道微生物的組成,其引起的脂肪細(xì)胞的變化進(jìn)一步說(shuō)明了腸道微生物與脂肪沉積密切相關(guān)。綠原酸通過(guò)抑制脫硫菌科、瘤胃球菌科、拉氏螺旋科和丹毒科細(xì)菌,增強(qiáng)擬桿菌科和乳酸桿菌科等微生物的生長(zhǎng)來(lái)調(diào)控腸道微生物群落組成,引起脂肪生成和分解相關(guān)基因表達(dá)的改變,進(jìn)而減少小鼠脂肪細(xì)胞數(shù)量,減小脂肪細(xì)胞體積,并改善了由HFD引起的肝脂肪變性和肝脂滴大量堆積的病理現(xiàn)象[13]。腸道微生物的代謝產(chǎn)物同樣對(duì)脂肪細(xì)胞有一定的影響,如乙酸能夠誘導(dǎo)肥胖小鼠沉積更多的WAT,增加脂肪液泡并促進(jìn)脂肪間充質(zhì)干細(xì)胞的分化,且隨著乙酸濃度的升高,脂肪間充質(zhì)干細(xì)胞體積增大,細(xì)胞內(nèi)脂滴隨之增大并聚集[14]。

此外,腸道微生物還能影響脂肪組織的褐變過(guò)程。Beige起源于WAT[15],與WAT表型相似,當(dāng)受到刺激時(shí)其表型類似BAT,導(dǎo)致產(chǎn)熱增加的現(xiàn)象即褐變[16]。Surez-Zamorano等[17]研究指出,抗生素清掃和無(wú)菌(germ free, GF)鼠與常規(guī)飼養(yǎng)(specific pathogen free, SPF)小鼠相比,腹股溝皮下和性腺周圍內(nèi)臟脂肪組織UCP1陽(yáng)性細(xì)胞數(shù)量增加,同時(shí)GF小鼠血清3,5,3′-三碘甲狀腺原氨酸水平升高,表明腸道微生物的耗竭加劇了皮下和內(nèi)臟WAT的褐變。HFD誘導(dǎo)的小鼠飼喂三七皂苷后,其腸道嗜黏蛋白阿克曼菌和狄氏副擬桿菌豐度升高,而瘤胃球菌豐度降低,引起瘦素-腺苷酸活化蛋白激酶(adenosine 5’-monophosphate-activated protein kinase, AMPK)/轉(zhuǎn)錄激活因子5(轉(zhuǎn)錄激活因子-5(signal transducer and activator of transcription-5, STAT-5)信號(hào)通路的激活,進(jìn)而促進(jìn)BAT的產(chǎn)熱和WAT褐變,研究進(jìn)一步將三七皂苷誘導(dǎo)后的小鼠腸道微生物移植給飲食中未添加三七皂苷的HFD小鼠,發(fā)現(xiàn)促進(jìn)了HFD小鼠WAT的褐變[18]。柚皮素能改善HFD誘導(dǎo)小鼠腸道微生物失調(diào),降低厚壁菌門(mén)/擬桿菌門(mén)(Firmicutes/Bacteroidetes, F/B)比值,以及疣菌屬、阿克曼菌科、阿克曼菌和嗜黏蛋白阿克曼菌等微生物的豐度,引起宿主盲腸和血清SCFA,尤其是乙酸水平的升高,從而激活腹股溝Beige細(xì)胞產(chǎn)熱發(fā)生褐變[19]。一些物理刺激也能改變腸道微生物組成。腸道微生物在機(jī)體受到冷刺激時(shí)會(huì)引起F/B比值的增加,若將“冷微生物群”移植給GF小鼠將促進(jìn)其WAT褐變,產(chǎn)熱增強(qiáng)[20]。總之,腸道微生物是介導(dǎo)宿主脂肪組織形態(tài)轉(zhuǎn)變及行使其正常功能的重要參與者。

1.2 脂肪酸組成

脂肪酸(fatty acids, FAs)是油脂中三?;视偷闹饕煞郑浣M成與脂肪沉積息息相關(guān),比如n-3和n-6多不飽和脂肪酸通過(guò)參與脂肪生成、脂肪組織褐變、脂肪穩(wěn)態(tài)、腦-腸-脂肪組織軸和炎癥反應(yīng)等途徑增加體脂[21]。飽和脂肪酸則通過(guò)激活Toll樣受體4(Toll-like receptor 4, TLR4)信號(hào)通路來(lái)誘導(dǎo)炎癥,導(dǎo)致機(jī)體肥胖[22]。研究表明,腸道微生物在影響小鼠FA組成上具有重要作用,它能將膳食亞油酸代謝為10-羥基-順式-12-十八碳烯酸,避免小鼠因HFD導(dǎo)致的肥胖[23]。腸道微生物的存在增加了小鼠肝中硬脂酰輔酶 A 去飽和酶1對(duì)棕櫚酸的去飽和度并促進(jìn)長(zhǎng)鏈脂肪酸延伸酶5對(duì)γ-亞油酸向二聚-γ-亞麻酸的延伸,從而顯著改變甘油磷脂?;溩V[24]。Furuse等[25]對(duì)GF鵪鶉和產(chǎn)蛋鵪鶉的肝和蛋黃脂肪中FA組成比較研究后發(fā)現(xiàn),腸道微生物降低了肝脂肪中油酸比例,提高了硬脂酸和亞油酸比例,同時(shí)降低了蛋黃脂肪中肉豆蔻酸和棕櫚油酸比例,并提高了其硬脂酸比例。某些具體的腸道微生物已被證實(shí)與FA組成具有直接聯(lián)系,不同的腸道微生物組成可能引起特定FA含量的顯著變化。短雙歧桿菌可提高小鼠和豬肝組織的順式-9, 反式-11共軛亞油酸含量,以及脂肪組織二十碳五烯酸(eicosapentaenoic acid, EPA)和二十二碳六烯酸(docosahexaenoic acid, DHA)含量,減少促炎細(xì)胞因子腫瘤壞死因子α(tumor necrosis factor-α, TNF-α)和γ-干擾素表達(dá),進(jìn)而緩解機(jī)體炎癥[26]。植物乳桿菌PL62在小鼠體內(nèi)可將亞油酸轉(zhuǎn)化為反式-10, 順式-12-共軛亞油酸,具有治療肥胖癥的功能[27]。理研菌科與豬背膘硬脂酸含量和肌肉油酸含量呈負(fù)相關(guān),與肌肉棕櫚酸含量呈正相關(guān)[28]。此外,腸道微生物代謝產(chǎn)物SCFA穿過(guò)腸道屏障參與代謝同樣能影響宿主組織的FA譜。SCFA可作為長(zhǎng)鏈脂肪酸生物合成的底物,如乙酸是肝合成C16和C18脂肪酸及其相關(guān)甘油磷脂的前體[24]。

1.3 脂肪相關(guān)血液指標(biāo)

高血脂是指血液中脂肪水平過(guò)高,特征是總膽固醇(total cholesterol, TC)、低密度脂蛋白膽固醇(low density lipoprotein cholesterol, LDL-C)和甘油三酯(triglyceride, TG)水平升高,而高密度脂蛋白膽固醇(high density lipoprotein cholesterol, HDL-C)水平降低[29]。通常來(lái)說(shuō),血脂異常往往伴隨著腸道微生物結(jié)構(gòu)和功能紊亂,比如高血脂癥和高膽固醇患者的大腸桿菌/志賀菌比例和鏈球菌豐度升高,而梭狀芽孢桿菌和瘤胃球菌科豐度降低[30]。因此,腸道微生物與脂肪相關(guān)血液指標(biāo)必然存在一定的聯(lián)系。Han等[31]以抗生素混合物清除了HFD誘導(dǎo)小鼠腸道中的微生物后,其血清葡萄糖、TC、低密度脂蛋白(low density lipoprotein, LDL)、胰島素和瘦素水平得以降低,同時(shí)改善了HFD誘導(dǎo)的肝脂肪代謝功能障礙。荷葉醇提取物能顯著增加大鼠腸道有益菌類副桿菌豐度,降低促炎細(xì)菌普雷沃氏菌豐度,導(dǎo)致血清TC、TG和LDL水平降低,脂肪沉積減少,緩解脂肪肝等炎癥[32]。口服碲化鎘量子點(diǎn)引起小鼠腸道微生物F/B比值降低,導(dǎo)致血清中LDL、TG和TC水平顯著升高[33]。不僅整體的腸道微生物變化能影響血脂含量,單一的微生物菌株也具有改善宿主血液脂肪相關(guān)指標(biāo)的作用。Zhang等[34]指出,屎腸球菌WEFA23具有活性膽鹽水解酶,可體外清除膽固醇,在雄鼠肥胖模型中能有效降低體重,并顯著降低其體內(nèi)的血液TC、TG和LDL-C水平。另一項(xiàng)針對(duì)高膽固醇小鼠的研究表明,羅伊氏黏液乳桿菌降低血液TG和LDL的水平分別達(dá)到38%和40%,同時(shí)提高20%的HDL/LDL比值[35]。含有雙歧桿菌的發(fā)酵牛奶顯著降低小鼠血清中TG、LDL和TC水平,并降低高膽固醇血癥人類受試者的血清膽固醇水平[36]。Lin等[37]研究指出,保加利亞乳桿菌和嗜酸乳桿菌片劑可顯著降低志愿者的血液膽固醇水平??傊?,動(dòng)物以及人類的研究均強(qiáng)烈表明腸道微生物與脂肪相關(guān)的血液指標(biāo)之間存在聯(lián)系,但腸道微生物的種類多樣,究竟是多個(gè)核心菌群協(xié)調(diào)作用還是單一菌群作為優(yōu)勢(shì)菌來(lái)調(diào)控血脂含量,以及它們的具體調(diào)控機(jī)理都有待進(jìn)一步挖掘。

2 腸道微生物調(diào)控脂肪代謝

2.1 脂肪攝入和吸收

脂肪沉積過(guò)程實(shí)質(zhì)上是FA酯化為T(mén)G并沉積為體脂的過(guò)程,F(xiàn)A則主要來(lái)源于飼糧(外源性FA)和體內(nèi)物質(zhì)轉(zhuǎn)化(內(nèi)源性FA)[38]。脂肪的攝入和吸收則與腸道微生物具有密切聯(lián)系。將常規(guī)小鼠腸道微生物移植給GF小鼠后,盡管食物攝入量減少,但GF小鼠的體脂含量和胰島素抵抗(insulin resistance, IR)程度增加了60%[4]。抗生素處理的小鼠腸道微生物組成發(fā)生改變,引起肝中攝取游離脂肪酸(free fatty acid, FFA)的脂肪酸轉(zhuǎn)運(yùn)酶顯著上調(diào)[39]。目前,腸道微生物調(diào)控脂肪攝入和吸收的主要途徑總結(jié)如下。

2.1.1 影響宿主食欲調(diào)節(jié)脂肪攝入量

腸道微生物可以通過(guò)微生物群-腸道-腦軸影響宿主飽腹感,調(diào)節(jié)影響食欲的瘦素、胃饑餓素、胰高血糖素樣肽-1(glucagon-like peptide, GLP-1)、肽YY(peptide YY, PYY)和膽囊收縮素(cholecystokinin, CCK)等腸道激素,以及食欲調(diào)節(jié)相關(guān)肽、神經(jīng)肽Y、前阿黑皮素和可卡因-苯丙胺調(diào)節(jié)轉(zhuǎn)錄肽等神經(jīng)肽[40],如膳食脂肪誘導(dǎo)的腸道微生物變化可引起下丘腦炎癥并抑制細(xì)胞因子信號(hào)傳導(dǎo)3來(lái)參與瘦素抵抗[41]。還可通過(guò)介導(dǎo)必需氨基酸的可用性,引起大腦免疫細(xì)胞(小膠質(zhì)細(xì)胞)活化、神經(jīng)炎癥和調(diào)節(jié)下丘腦神經(jīng)元這三種途徑影響宿主食欲[42-43]。此外,以F/B比值升高為特征的腸道微生物失調(diào)與刺激饑餓的腸道激素血清生長(zhǎng)素釋放肽的升高密切相關(guān)[44]。腸道微生物產(chǎn)生的代謝產(chǎn)物也能影響宿主食欲。SCFA可通過(guò)激活檸檬酸循環(huán)來(lái)調(diào)節(jié)下丘腦飽腹感神經(jīng)肽的表達(dá),從而降低食欲[45]。乙酸可激活腸道短鏈脂肪酸受體,刺激腸道激素PYY和GLP-1的分泌,影響宿主食欲和飽腹感[46]。LPS能激活迷走神經(jīng)傳入神經(jīng)元上的TLR4,對(duì)瘦素產(chǎn)生抵抗,對(duì)CCK無(wú)法做出應(yīng)答,導(dǎo)致食欲亢進(jìn)[47]。

2.1.2 影響腸道對(duì)脂肪的吸收

腸道微生物可通過(guò)調(diào)控胰腺和腸道基因的表達(dá)來(lái)影響腸道對(duì)脂肪的吸收,如一些嗜酸乳桿菌能促進(jìn)膽固醇與腸腔結(jié)合,減少宿主腸道對(duì)其的吸收[48]。與常規(guī)小鼠相比,GF小鼠對(duì)三油酸甘油酯和膽固醇的吸收顯著降低,誘因則是無(wú)菌導(dǎo)致小鼠胰腺CCK信號(hào)傳導(dǎo)受阻,空腸CCK和SCT基因及胰腺CCK受體基因表達(dá)降低[49]。同時(shí),腸道微生物會(huì)引起FA在腸上皮的積累,提升腸細(xì)胞對(duì)FA的儲(chǔ)存和吸收能力,加快將其轉(zhuǎn)運(yùn)到肝的速度,并且能參與腸上皮細(xì)胞的消化和吸收過(guò)程[50]。將HFD條件的空腸微生物群移植給GF小鼠,即使喂食低脂飲食,也表現(xiàn)出脂質(zhì)吸收增加,說(shuō)明小腸菌群可能是小鼠脂肪吸收的重要調(diào)節(jié)因子[49]。腸道微生物還可通過(guò)促進(jìn)腸道內(nèi)單糖的吸收,提高肝中乙酰輔酶A羧化酶(acetyl-CoA carboxylase, ACC)和脂肪酸合成酶活性,促進(jìn)TG合成[4]。

2.1.3 影響膽鹽的產(chǎn)生或組成調(diào)節(jié)宿主對(duì)脂肪的利用度

BA的主要功能是乳化膳食脂肪,促進(jìn)脂肪的消化吸收以及膽固醇的攝?。?1]。Ramasamy等[52]研究指出,乳酸桿菌能在體外對(duì)膽鹽進(jìn)行去綴合及膽固醇去除。腸道微生物通過(guò)降低法尼醇-X受體(Farnesoid X Receptor, FXR)的競(jìng)爭(zhēng)性抑制劑?;?β-鼠膽酸的水平和上調(diào)回腸中 FXR 及其分子靶標(biāo) SHP 和 FGF15 的表達(dá)來(lái)調(diào)控BA的合成,影響宿主對(duì)脂肪的消化吸收[53]。大腸桿菌、蠟樣芽孢桿菌、糞鏈球菌和梭狀芽孢桿菌等對(duì)BA具有脫羥基作用,乳桿菌屬對(duì)BA具有水解作用[54]。

2.1.4 調(diào)節(jié)腸道載脂蛋白的產(chǎn)生和乳糜微粒的分泌促進(jìn)脂肪的吸收

Sato等[55]研究指出,抗生素處理降低小鼠腸道微生物豐度,減少TG和磷脂的淋巴轉(zhuǎn)運(yùn),進(jìn)而降低黏膜載脂蛋白B、A-I和A-IV的水平。

2.1.5 調(diào)控脂肪細(xì)胞對(duì)脂肪的吸收

腸道微生物群可通過(guò)抑制空腹誘導(dǎo)脂肪因子(fasting-induced adipose factor, FIAF),提高脂肪細(xì)胞脂蛋白脂肪酶(lipoprtein lipase, LPL)活性,促進(jìn)細(xì)胞對(duì)FA的攝取和TG在脂肪細(xì)胞中的積累[4,56]。

2.2 脂肪生成及相關(guān)基因表達(dá)

脂肪生成是前體脂肪細(xì)胞增殖分化為含脂質(zhì)的成熟脂肪細(xì)胞的復(fù)雜過(guò)程[57]。研究證實(shí),腸道微生物與脂肪生成密切相關(guān),如脂肪生成與變形桿菌豐度之間呈顯著的正相關(guān)關(guān)系,而擬桿菌、厚壁菌和放線菌豐度與大多數(shù)脂肪生成指標(biāo)呈顯著的負(fù)相關(guān)關(guān)系[58]。植物乳桿菌ATG-K2和ATG-K6可下調(diào)脂肪生成基因SREBP-6c、FAS和C/EBP的表達(dá),降低肝脂肪的積累[59]。腸道微生物的失調(diào)擾亂胰島素分泌節(jié)律,增加葡萄糖吸收,引起ChREBP、SREBP-1等脂肪合成基因過(guò)表達(dá),導(dǎo)致脂肪代謝異常[60]。飼喂合生元和益生元等膳食補(bǔ)充劑調(diào)節(jié)大鼠腸道微生物后,SREBP-1c和FAS等脂肪生成相關(guān)基因表達(dá)降低,導(dǎo)致脂蛋白和TGs的合成減少[61-62]。此外,腸道微生物代謝產(chǎn)物SCFA也能夠調(diào)控脂肪生成。肝中FASN和GPAM等脂肪生成基因,以及SCD1、ELOV13、和FADS1等FA伸長(zhǎng)/去飽和度基因的表達(dá)在SCFA濃度升高時(shí)表達(dá)下降[63]。丙酸濃度升高后通過(guò)降低FA合成相關(guān)酶基因如ACC、FAS和ME等的表達(dá)來(lái)降低肝的從頭合成FA[64]。脂肪生成關(guān)鍵酶ACC在丙酸的作用下會(huì)發(fā)生磷酸化而失去活性,進(jìn)而抑制脂肪生成[65]。

腸道微生物還可促進(jìn)脂肪生成。腸道微生物主要是通過(guò)轉(zhuǎn)錄因子(如ChREBP)的介導(dǎo)作用刺激肝生成TG,并促進(jìn)LPL定向地將TG摻入脂肪細(xì)胞中[4]。FIAF基因具有抑制脂肪生成的作用,比如飼喂高糖、高脂的膳食不會(huì)引起GF小鼠肥胖,但FIAF基因敲除鼠則會(huì)發(fā)生肥胖。腸道微生物則能抑制腸上皮FIAF基因的表達(dá),從而促進(jìn)脂肪生成[4,56]。同樣,有些腸道微生物代謝產(chǎn)物的大量分泌也會(huì)促進(jìn)脂肪生成。乙酸通過(guò)組蛋白乙?;缺碛^遺傳機(jī)制提升脂肪生成基因ACACA和FASN啟動(dòng)子區(qū)域的H3K9、H3K27和H3K56乙?;絹?lái)激活其表達(dá),進(jìn)而促進(jìn)脂肪合成[66]。丁酸能促進(jìn)FA從頭合成關(guān)鍵調(diào)節(jié)因子SREBP-1c、脂肪細(xì)胞分化標(biāo)志基因PPARγ、C/EBPα 和 C/EBPβ,TG合成關(guān)鍵基因GPAT4、DGAT1和DGAT2,以及與脂肪儲(chǔ)存增加相關(guān)基因LPL、FATP 和 GLUT4 的表達(dá)。同時(shí),丁酸也能通過(guò)抑制組蛋白脫乙酰酶(histone deacetylase, HDAC)來(lái)增強(qiáng)組蛋白乙?;剑?7],如豬皮下脂肪CEBPA啟動(dòng)子的組蛋白乙?;C實(shí)了這一推測(cè)[68]。正常情況下,BA通過(guò)激活FXR來(lái)調(diào)節(jié)SREBP-1c及其脂肪生成靶基因的表達(dá)[69],降低FA的攝取和合成[70]。但腸道微生物可以通過(guò)TMAO途徑降低BA合成關(guān)鍵酶基因CYP7A1的表達(dá)[71],導(dǎo)致BA代謝紊亂,使FXR和TGR5活化不足,能量消耗減少,脂肪生成增加[72]。

2.3 脂肪降解及相關(guān)基因表達(dá)

脂肪降解實(shí)質(zhì)是脂肪TG在一系列酶類的作用下分解為甘油和FFA,F(xiàn)FA進(jìn)一步徹底氧化生成CO2和水的過(guò)程。大量研究表明,腸道微生物參與了脂肪分解的過(guò)程,并在其中起重要作用。Bckhed等[4]研究指出,GF小鼠接受常規(guī)小鼠的腸道微生物后,其附睪體脂增加了60%,主要原因是轉(zhuǎn)移的腸道微生物抑制腸上皮FIAF表達(dá),進(jìn)而抑制脂肪分解[73-74]。在異常生理狀態(tài)下,腸道微生物紊亂引起血漿乳酸水平升高,激活G蛋白偶聯(lián)受體(G protein-coupled receptor, GPR)81抑制AC-PKA途徑的脂肪分解[75]。膳食補(bǔ)充合生元能改變腸道微生物,從而調(diào)控PPAR-α基因的表達(dá),影響其指示的脂肪β氧化過(guò)程[61]。多種腸道微生物已被證實(shí)在脂肪分解中具有重要作用,如雙歧桿菌和乳酸桿菌豐度的增加可刺激脂肪分解;副干酪乳桿菌產(chǎn)生L-乳酸鹽抑制腸細(xì)胞分泌乳糜微粒,腸細(xì)胞則通過(guò)吸收L-乳酸鹽并將其轉(zhuǎn)化為丙二酰輔酶A抑制脂肪β-氧化;大腸桿菌產(chǎn)生乙酸鹽也能抑制腸細(xì)胞分泌乳糜微粒,而腸細(xì)胞則吸收乙酸鹽并將其代謝為乙酰輔酶A和腺嘌呤核糖核苷酸(adenosine monophosphate, AMP),上調(diào)AMPK/PGC-1α/PPAR-α途徑促進(jìn)脂肪氧化[76]。

總體來(lái)看,腸道微生物影響脂肪分解的機(jī)制主要是通過(guò)其代謝產(chǎn)物調(diào)節(jié)脂肪酶相關(guān)基因的表達(dá)來(lái)實(shí)現(xiàn)的。一方面腸道微生物可增加HFD小鼠ARβ3和ATGL基因表達(dá)和激素敏感性脂肪酶(hormone-sensitive triglyceride lipase, HSL)磷酸化,而90%以上TGs的水解受脂肪甘油三酯脂肪酶(adipose triglyceride lipase, ATGL)和HSL作用,這一過(guò)程促進(jìn)了脂肪分解[77-78],另一方面又可減弱脂肪細(xì)胞HSL磷酸化,通過(guò)醋酸酯-游離脂肪酸受體偶聯(lián)信號(hào)通路的介導(dǎo)發(fā)揮抗脂解作用[79]。具體來(lái)講,SCFA增強(qiáng)GPR41和GPR43基因表達(dá),促進(jìn)TG水解和FFA氧化[80];乙酸則能增加脂肪分解基因LCACD、3KACT和PPAR的表達(dá)[81],上調(diào)HSL和LPL基因的表達(dá)[82]。乙酸和丙酸還可激活游離脂肪酸受體2來(lái)介導(dǎo)Gi/o蛋白抑制腺苷酸,進(jìn)而抑制蛋白激酶A(protein kinases A, PKA)和HSL[83]。

此外,腸道微生物也能通過(guò)調(diào)節(jié)體內(nèi)激素來(lái)影響脂肪分解。胰島素能夠抑制ATGL和HSL活性和相關(guān)基因表達(dá)[84]或下調(diào)轉(zhuǎn)錄因子FOXO1來(lái)介導(dǎo)PNPLA2基因表達(dá)[85],從而抑制脂肪分解。研究表明,腸道微生物可通過(guò)c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)途徑改變胰島素的活性[86],比如嗜黏蛋白桿菌能刺激胰腺β細(xì)胞分泌胰島素[87]。SCFA中丙酸和丁酸可通過(guò)抑制異丙腎上腺素來(lái)刺激脂肪分解[65]。同樣,SCFA通過(guò)激活cAMP/PKA/CREB途徑抑制垂體前葉細(xì)胞生長(zhǎng)激素的分泌[88],生長(zhǎng)激素與其受體結(jié)合后可通過(guò)Jauns激酶2使STAT-5磷酸化,直接激活白色和棕色脂肪細(xì)胞中PNPLA2的表達(dá)[89-90]。腸道微生物代謝產(chǎn)物中丁酸對(duì)脂肪分解代謝最為重要。AMPK的磷酸化(p-AMPK)可上調(diào)PPAR-α表達(dá)[91]。丁酸鹽能促進(jìn)脂聯(lián)素分泌,激活A(yù)dipoR1/APPL1介導(dǎo)的AMPK磷酸化,上調(diào)PPARγ的表達(dá),進(jìn)而誘導(dǎo)增強(qiáng)FFAs氧化[82,92],且丁酸鹽處理的脂肪細(xì)胞顯示出更高的p-AMPK和p-AMPK/AMPK比值[83]。此外,丁酸還能提高參與線粒體產(chǎn)熱和FA的β氧化關(guān)鍵基因UCP2、UCP3、CPT-1b和PGC1α及其蛋白質(zhì)表達(dá)水平[82]。

其他研究還發(fā)現(xiàn)腸道微生物與脂質(zhì)轉(zhuǎn)化相關(guān),在正常情況下,膽固醇主要轉(zhuǎn)化為一種不可吸收的前列醇并通過(guò)糞便排出體外,而GF大鼠排泄的則是未經(jīng)修飾的膽固醇[93],表明腸道微生物與腸道內(nèi)膽固醇的轉(zhuǎn)化有直接關(guān)系[94]。具體來(lái)看,大腸桿菌可將膽固醇轉(zhuǎn)化為4-膽甾烯-3-酮的中間物,然后再將其還原為前列醇[95];乳酸桿菌和雙歧桿菌通過(guò)產(chǎn)生的胞外多糖與膽固醇分子結(jié)合將膽固醇摻入細(xì)胞膜,在膽固醇還原酶的作用下將膽固醇轉(zhuǎn)化為前列醇[96-97];魯米諾球菌UCG.014和拉赫諾梭菌的豐度則與前列醇和膽固醇水平呈正相關(guān)[98]。除上述生理作用外,腸道微生物還可通過(guò)影響膽鹽激活胰脂肪酶來(lái)降低脂滴表面張力,將較大的脂滴分解成較小的脂滴,然后協(xié)助脂肪酶/共脂肪酶復(fù)合物附著在脂滴表面以促進(jìn)脂肪分解[99]。

3 脂肪攝入影響腸道微生物組成

腸道微生物與宿主脂肪代謝之間是相互關(guān)聯(lián)及作用的,因此,脂肪攝入的質(zhì)和量也能誘導(dǎo)腸道微生物的改變。大量研究表明HFD在誘發(fā)機(jī)體肥胖的同時(shí),對(duì)腸道微生物及其代謝物組成產(chǎn)生較大的影響。HFD可通過(guò)刺激促炎信號(hào)級(jí)聯(lián)反應(yīng)提高腸道通透性,或通過(guò)增加屏障破壞細(xì)胞因子白細(xì)胞介素(interleukin, IL)-1β、 IL-6、TNF-α和γ-干擾素并減少屏障形成細(xì)胞因子IL-10、IL-17和IL-22間接提高腸道通透性,從而影響腸道微生物[100]。Kong等[101]研究指出,HFD降低小鼠腸道微生物多樣性、丁酸產(chǎn)生菌以及其他有益菌的豐度,如乳酸桿菌、普雷沃氏菌和擬普雷沃氏菌,且提高了條件致病菌豐度,如擬桿菌和另枝菌。與正常飲食小鼠相比,HFD小鼠腸道變形菌門(mén)和厚壁菌門(mén)豐度更高;在屬水平上,擬桿菌表現(xiàn)出較高的種群數(shù)量;腸桿菌科如大腸桿菌、克雷伯菌和志賀菌占據(jù)主導(dǎo)地位[102]。食物中FA的種類也可能影響腸道微生物的組成。飼料中添加反式-10,順式-12-共軛亞油酸顯著提高小鼠盲腸SCFA如乙酸、丙酸和異丁酸水平,且降低F/B比例[103]。較高的長(zhǎng)鏈和中鏈飽和脂肪酸飲食會(huì)降低腸道微生物多樣性,提高厚壁菌門(mén)豐度,并降低擬桿菌門(mén)豐度[104]。富含n-3多不飽和脂肪酸的飲食改善小鼠腸道微生物組成,提高腸桿菌屬、乳桿菌屬、卟啉單胞菌科和擬桿菌門(mén)豐度并誘導(dǎo)產(chǎn)生乙酸、丙酸和丁酸等SCFA[105]。

4 腸道微生物與脂肪代謝疾病的關(guān)系

4.1 炎癥

機(jī)體出現(xiàn)慢性炎癥是脂肪代謝紊亂的特征之一,與肥胖、Ⅱ型糖尿病和MAFLD等疾病密切相關(guān)[106]。腸道微生物豐度較低的個(gè)體發(fā)生整體肥胖、血脂異常、IR和炎癥等現(xiàn)象更為明顯[107]。因此,有必要在討論腸道微生物與脂肪代謝相關(guān)疾病之前闡述清楚腸道微生物與炎癥之間的關(guān)系。LPS是引發(fā)HFD誘導(dǎo)的代謝性疾病的早期因素,與先天免疫細(xì)胞表面的膜CD14和TLR4復(fù)合物結(jié)合時(shí)會(huì)觸發(fā)促炎細(xì)胞因子的分泌[108]。腸道微生物的異??蓪?dǎo)致腸道屏障的完整性降低,引發(fā)LPS滲漏增加,大量LPS進(jìn)入血液(內(nèi)毒素血癥)作用于 TLR4[109],引起低度慢性炎癥,其標(biāo)志是較高的瘦素、IL-1β、IL-6和TNF-α水平,較低的脂聯(lián)素和IL-10水平[110]。在HFD的誘導(dǎo)下,小鼠腸道微生物發(fā)生改變,引發(fā)LPS進(jìn)入循環(huán)系統(tǒng),導(dǎo)致肥胖、糖尿病和炎癥加重等情況[108]。也就是說(shuō),如果對(duì)腸道微生物及其代謝產(chǎn)物的進(jìn)行調(diào)整,可適當(dāng)緩解肥胖引起的炎癥。InKim等[111]研究指出,外源補(bǔ)充植物乳桿菌LC27和長(zhǎng)雙歧桿菌LC67可減少小鼠糞便LPS的產(chǎn)生。腸道微生物代謝產(chǎn)物吲哚可抑制核因子κB(nuclear factor kappa-B, NF-κB)通路關(guān)鍵蛋白和下游促炎基因的表達(dá),并促進(jìn)肝中4β-羥基膽固醇相關(guān)基因的轉(zhuǎn)錄來(lái)預(yù)防LPS誘導(dǎo)的膽固醇代謝異常,緩解小鼠肝的炎癥[112]。丁酸鹽通過(guò)刺激IL-18分泌,并促進(jìn)由GPR109a介導(dǎo)的調(diào)節(jié)性T細(xì)胞和產(chǎn)生IL-10的T細(xì)胞分化,以及上調(diào)PPAR-γ和抑制LPS誘導(dǎo)的NF-κB活化來(lái)避免小鼠炎癥的發(fā)生[113]。此外,SCFA也能與結(jié)腸上皮細(xì)胞的GPR43結(jié)合刺激K+外排和超極化,從而激活NLRP3炎癥小體,而炎癥小體通路是促進(jìn)腸道上皮完整性的主要通路[114]。綜上,宿主腸道微生物異常可釋放促炎因子誘發(fā)炎癥,而某些有益腸道微生物則可分泌抗炎分子或利用其代謝產(chǎn)物抑制炎癥通路相關(guān)基因表達(dá),調(diào)節(jié)免疫細(xì)胞的分化等方式來(lái)對(duì)抗炎癥。

4.2 肥胖

肥胖是一種以脂肪組織過(guò)度擴(kuò)張和低度炎癥為特征的慢性疾病,是誘發(fā)其他疾病的因素之一,正如身體質(zhì)量指數(shù)(body mass index, BMI)與炎癥標(biāo)志物C反應(yīng)蛋白之間存在強(qiáng)烈正相關(guān)關(guān)系[115]。肥胖患者的腸道中產(chǎn)LPS的菌群含量增加,引起一系列炎癥并導(dǎo)致代謝性內(nèi)毒素血癥[116-117]。不管是人還是動(dòng)物的研究均表明腸道微生物對(duì)預(yù)防肥胖具有重要作用。首先,肥胖者腸道微生物組成與正常體重者明顯不同,腸道微生物多樣性顯著降低[118]。肥胖與擬桿菌門(mén)和厚壁菌門(mén)的相對(duì)豐度變化密切相關(guān),其中擬桿菌門(mén)的菌群數(shù)量減少,而厚壁菌門(mén)的菌群數(shù)量增加,尤其是桿菌科和梭菌科[119]。桿菌門(mén)和擬桿菌/普雷沃氏菌群的降低與高BMI有關(guān),厚壁菌門(mén)與體重增加呈正相關(guān)[120]。與正常體重者相比,肥胖者的腸道微生物中梭桿菌、羅伊氏乳桿菌、脆弱擬桿菌和金黃色葡萄球菌數(shù)量較高,而甲烷桿菌、植物乳桿菌、嗜黏蛋白阿克曼菌和雙歧桿菌數(shù)量較低[121]。與BMIgt;30的肥胖者相比,克里斯滕森菌科在BMIlt;25的人群中顯著富集[122]。Ley等[123]分析比較瘦和肥胖小鼠盲腸微生物16S rRNA基因序列后指出,肥胖小鼠擬桿菌門(mén)數(shù)量減少50%,而厚壁菌比例顯著增加,并且移植了肥胖小鼠腸道微生物的GF小鼠在兩周內(nèi)變得肥胖,說(shuō)明肥胖影響腸道微生物多樣性,同時(shí)也說(shuō)明通過(guò)人工干預(yù)腸道微生物結(jié)構(gòu)調(diào)控脂肪沉積是可行的?,F(xiàn)有文獻(xiàn)已證明通過(guò)外源補(bǔ)充有益微生物對(duì)改善宿主的肥胖具有良好的作用。副干酪乳酪桿菌K56可顯著降低肥胖者體脂百分比、內(nèi)臟脂肪面積、全身脂肪量、軀干體脂量和腰圍[124]。植物乳桿菌PL62可降低肥胖小鼠腹股溝、附睪和腎周白色脂肪組織的重量,同時(shí)顯著改善飲食誘導(dǎo)的體重增加和高血糖[27]。青春雙歧桿菌可減輕HFD誘導(dǎo)的小鼠體重增加和內(nèi)臟脂肪堆積[125]。綜上,大量研究證實(shí)腸道微生物與肥胖有著必然關(guān)系,反過(guò)來(lái)通過(guò)外源補(bǔ)充有益微生物在一定程度上可降低體脂百分比以及內(nèi)臟和全身脂肪量等肥胖相關(guān)指標(biāo)。

4.3 糖尿病

糖尿病是一種以持續(xù)高血糖為標(biāo)志的代謝紊亂類疾病,根據(jù)產(chǎn)生的機(jī)制不同可分為Ⅰ型糖尿病(type 1 diabetes Mellitus, T1D)和Ⅱ型糖尿病(type 2 diabetes Mellitus, T2D),前者發(fā)生于自身免疫性T細(xì)胞攻擊胰島β細(xì)胞導(dǎo)致胰島素分泌不足時(shí),后者發(fā)生于胰島β細(xì)胞衰竭和IR同時(shí)發(fā)生時(shí)間[126]。研究證實(shí),腸道微生物與糖尿病之間存在密切聯(lián)系。糖尿病前期患者通常伴隨著腸道微生物的異常,主要表現(xiàn)是梭狀芽胞桿菌屬和嗜黏蛋白阿克曼氏菌豐度的降低[127]。通過(guò)糞菌移植(fecal microbiota transplantation, FMT)將正常小鼠腸道微生物轉(zhuǎn)移到糖尿病小鼠后,產(chǎn)生SCFA的細(xì)菌組成得以改善,并通過(guò)激活GPR43/GLP-1通路達(dá)到改善糖脂紊亂的目的[128]。此外,在肥胖個(gè)體上,丙酸能通過(guò)誘導(dǎo)特定的DNA甲基化使其更易患糖尿?。?29]。

從不同類型糖尿病的發(fā)病機(jī)制來(lái)看,T1D患者腸道微生物結(jié)構(gòu)往往出現(xiàn)失衡的現(xiàn)象,其糞便中富含克里斯滕森氏菌和雙歧桿菌,能增加LPS的合成[130],而普氏糞桿菌、直腸真桿菌和腸薔薇菌等產(chǎn)丁酸鹽的菌群豐度降低[131],LPS和丁酸分別對(duì)T1D小鼠的葡萄糖代謝和胰島結(jié)構(gòu)和功能起破壞和保護(hù)作用。斑馬魚(yú)上的研究表明,其腸道微生物編碼的β細(xì)胞擴(kuò)增因子a能通過(guò)誘導(dǎo)斑馬魚(yú)幼蟲(chóng)β細(xì)胞增殖來(lái)恢復(fù)正常β細(xì)胞數(shù)量,以分泌足夠的胰島素來(lái)改善T1D[132]。此外,腸道上皮屏障的破壞和微生物代謝產(chǎn)物的逃逸也可能是誘導(dǎo)T1D產(chǎn)生的因素。T1D患者發(fā)病前的特征之一即是產(chǎn)生丁酸鹽的腸道微生物數(shù)量降低,對(duì)腸道通透性產(chǎn)生負(fù)面影響,導(dǎo)致腸道微生物及其代謝產(chǎn)物的易位[133]。Costa等[134]研究指出,小鼠腸上皮屏障的破壞導(dǎo)致腸道微生物轉(zhuǎn)移到胰腺淋巴結(jié),觸發(fā)并激活核苷酸結(jié)合寡聚化結(jié)構(gòu)域2引起T1D。相反,腸道微生物的改變也能促進(jìn)胰島素的分泌而改善大鼠T1D,如乙酸增加激活副交感神經(jīng)系統(tǒng),促進(jìn)葡萄糖誘導(dǎo)的胰島素分泌[135]。吲哚和吲哚乙酸則通過(guò)誘導(dǎo)小鼠結(jié)腸L細(xì)胞分泌GLP-1來(lái)促進(jìn)胰腺β細(xì)胞分泌胰島素[136]。

與T1D類似,T2D患者的腸道微生物也異于健康者,比如瘤胃球菌屬、梭桿菌屬和布勞蒂亞屬豐度升高,而雙歧桿菌屬、擬桿菌屬、糞桿菌屬、阿克曼氏菌屬和羅斯伯里屬豐富降低[137]。T2D患者的腸道微生物失調(diào)導(dǎo)致丁酸鹽分泌不足,HDAC3活性和結(jié)腸通透性增加,活性氧和IL-1β水平升高,而IL-10和IL-17α水平降低,進(jìn)一步促使T2D癥狀加重[138]。腸道微生物失調(diào)還可能阻斷胰島素、JNK、Janus激酶、JAK/STAT以及NF-κB信號(hào)通路的正常運(yùn)行,導(dǎo)致IR產(chǎn)生[139-140]。實(shí)踐中,可采用補(bǔ)充外源有益微生物的方式來(lái)調(diào)節(jié)T2D患者腸道微生物進(jìn)行治療。植物乳桿菌HAC01能緩解小鼠高血糖和T2D癥狀,具有調(diào)節(jié)肝糖代謝、保護(hù)胰島β細(xì)胞團(tuán)、恢復(fù)腸道菌群和SCFA分泌的作用[141]。此外,腸道微生物代謝產(chǎn)物也可作用于治療T2D。丁酸促進(jìn)AMPK磷酸化后,提高GLP-1分泌并上調(diào)結(jié)腸黏蛋白和TJ蛋白基因表達(dá),增強(qiáng)腸道屏障,減少LPS滲漏和炎癥的發(fā)生,從而改善大鼠的IR[142]。對(duì)丙酸的研究表現(xiàn)出截然不同的兩面性,一面是在體外腸肝模型中發(fā)現(xiàn)丙酸參與激活宿主的腸道糖異生,調(diào)節(jié)食物攝入,增強(qiáng)胰島素敏感性[143],另一面是丙酸通過(guò)增加血漿中胰高血糖素、脂肪酸結(jié)合蛋白4和去甲腎上腺素的水平來(lái)刺激小鼠糖原分解并升高血糖,導(dǎo)致IR[144]。鑒于此,丙酸對(duì)胰島素的影響機(jī)制還需進(jìn)一步的研究。同時(shí),炎癥與T2D之間也具有緊密的聯(lián)系,表現(xiàn)在LPS激活脂肪細(xì)胞的TLR4/MyD88/NF-κB通路,觸發(fā)炎癥反應(yīng)和促炎因子TNF-α、IL-1β、IL-6和誘導(dǎo)型一氧化氮合酶的釋放,TNF-α受體和JNK隨之被激活,下調(diào)胰島素受體底物的絲氨酸磷酸化,抑制胰島素信號(hào)傳導(dǎo)并發(fā)生IR,形成T2D[145]。綜上,通過(guò)改善腸道微生物組成對(duì)糖尿病患者胰島素分泌、糖代謝、腸道屏障、胰島素敏感性和炎癥等具有積極作用,比如激活GPR43/GLP-1、JAK/STAT和NF-κB等通路、保護(hù)胰島β細(xì)胞、誘導(dǎo)DNA甲基化及調(diào)節(jié)SCFA分泌等。

4.4 代謝相關(guān)脂肪性肝病

代謝相關(guān)脂肪性肝?。╩etabolic-related fatty liver disease, MAFLD),也稱為非酒精性脂肪肝,是一種以肝細(xì)胞內(nèi)脂肪沉積為典型特征的肥胖性疾?。?46],患病率與BMI呈現(xiàn)顯著的正相關(guān)關(guān)系[147]。肝是脂肪代謝的主要部位,脂肪代謝發(fā)生異常時(shí),肝組織常受到損傷或出現(xiàn)炎癥。研究證實(shí),腸道微生物在MAFLD的發(fā)生過(guò)程中起著重要作用。與健康者相比,MAFLD 患者糞便中大腸桿菌、普氏菌和鏈球菌豐度較高,而糞球菌、糞桿菌和瘤胃球菌豐度較低[148]。同時(shí),健康者具有豐富的另枝菌屬,與血清葡萄糖、γ-谷氨酰轉(zhuǎn)移酶和谷丙轉(zhuǎn)氨酶(Alanine aminotransferase, ALT)呈負(fù)相關(guān),以及較少的多爾氏菌屬,其富集程度隨異常肝酶活性的升高而增加[149]。MAFLD患者的腸道微生物失調(diào)還會(huì)改變BA水平,引起肝脂肪堆積和微炎癥的病理生理級(jí)聯(lián)反應(yīng),導(dǎo)致肝纖維化并發(fā)展為非酒精性脂肪肝炎[150]。當(dāng)然,通過(guò)適當(dāng)?shù)母深A(yù)也能緩解MAFLD的癥狀。Han等[151]利用金銀花多糖來(lái)改善小鼠腸道微生物結(jié)構(gòu),脫硫弧菌的豐度提高,激活了AMPK信號(hào)通路,進(jìn)而緩解小鼠MAFLD。通常情況下,MAFLD的誘因主要是HFD。將常規(guī)飲食的小鼠腸道微生物移植給HFD小鼠后,后者腸道微生物紊亂得以改善,有益菌克里斯滕森菌科和乳酸桿菌豐度升高,使MAFLD癥狀得到緩解,相關(guān)表征如肝內(nèi)脂肪積累、肝內(nèi)促炎細(xì)胞因子和NAFLD活動(dòng)度評(píng)分顯著降低,并減輕HFD誘導(dǎo)的脂肪性肝炎[152]。腸-肝軸為腸道微生物及其代謝產(chǎn)物提供了直接通往肝的通道[153]。乙酸可通過(guò)減少F4/80陽(yáng)性巨噬細(xì)胞浸潤(rùn)以及單核細(xì)胞趨化蛋白-1和TNF-α的表達(dá)來(lái)緩解小鼠因HFD引起的肝的炎癥[154]。丁酸可顯著逆轉(zhuǎn)小鼠因高胰島素誘導(dǎo)的GPR43和β-arrestin2表達(dá)的降低,并通過(guò)促進(jìn)AMPK-PGC1-α信號(hào)通路和阻斷HDAC信號(hào)通路來(lái)增加線粒體的生物發(fā)生,從而改善肝功能[155]。綜上,通過(guò)干預(yù)腸道微生物組成有效緩解肝的脂肪沉積、炎癥和纖維化等MAFLD癥狀主要涉及BA水平調(diào)節(jié)、AMPK信號(hào)通路激活、炎癥細(xì)胞浸潤(rùn)減少和阻斷HDAC信號(hào)通路等過(guò)程。

5 小結(jié)與展望

腸道微生物通過(guò)多種方式影響宿主的脂肪沉積,調(diào)節(jié)短鏈脂肪酸的產(chǎn)生、能量攝取、腸道屏障功能和脂肪代謝基因表達(dá)等機(jī)制是腸道微生物介導(dǎo)的脂肪沉積調(diào)控的關(guān)鍵因素,這些機(jī)制的紊亂或腸道微生物的異常都能影響代謝相關(guān)疾病的發(fā)展。實(shí)踐中,常通過(guò)飲食改變、益生菌和益生元的使用、FMT等方式來(lái)改善宿主腸道微生物,進(jìn)而調(diào)節(jié)脂肪代謝。未來(lái),基于研究技術(shù)的快速發(fā)展,將會(huì)極大加深人類對(duì)腸道微生物相互作用以及調(diào)控脂肪代謝機(jī)理的認(rèn)識(shí),探索并優(yōu)化新的調(diào)節(jié)手段以更高效地干預(yù)腸道微生物,進(jìn)而起到調(diào)控脂肪沉積的作用。此外,對(duì)腸道微生物代謝產(chǎn)物影響宿主生理學(xué)和多種病理學(xué)的進(jìn)一步認(rèn)識(shí)將有效促進(jìn)人類的代謝健康,并為預(yù)防或?qū)钩R?jiàn)的代謝紊亂提供新的有效途徑。然而,值得注意的是,腸道微生物具有極高的復(fù)雜性,不僅涉及細(xì)菌和古菌,還包括真菌、噬菌體和真核病毒等,確保腸道微生物研究的安全性、可靠性和有效性仍然是重中之重。

參考文獻(xiàn)(References):

[1] CHEN Y B,LAWSON R,SHANDILYA U,et al.Dietary protein,lipid and insect meal on growth,plasma biochemistry and hepatic immune expression of lake whitefish (Coregonus clupeaformis)[J].Fish Shellfish Immunol Rep,2023,5:100111.

[2] 徐子葉,吳緯澈,汪以真,等.調(diào)控肌內(nèi)脂肪沉積的分子機(jī)制研究進(jìn)展[J].中國(guó)畜牧雜志,2018,54(5):1-5.

XU Z Y,WU W C,WANG Y Z,et al.Research progress on molecular mechanisms regulating intramuscular fat deposition[J].Chinese Journal of Animal Science,2018,54(5):1-5.(in Chinese)

[3] AL SAMARRAIE A,PICHETTE M,ROUSSEAU G.Role of the gut microbiome in the development of atherosclerotic cardiovascular disease[J].Int J Mol Sci,2023,24(6):5420.

[4] B?CKHED F,DING H,WANG T,et al.The gut microbiota as an environmental factor that regulates fat storage[J].Proc Natl Acad Sci U S A,2004,101(44):15718-15723.

[5] LEUNG C,RIVERA L,F(xiàn)URNESS J B,et al.The role of the gut microbiota in NAFLD[J].Nat Rev Gastroenterol Hepatol,2016,13(7):412-425.

[6] HENAO-MEJIA J,ELINAV E,JIN C C,et al.Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity[J].Nature,2012,482(7384):179-185.

[7] VATANEN T,F(xiàn)RANZOSA E A,SCHWAGER R,et al.The human gut microbiome in early-onset type 1 diabetes from the TEDDY study[J].Nature,2018,562(7728):589-594.

[8] DUAN Y H,ZHONG Y Z,XIAO H,et al.Gut microbiota mediates the protective effects of dietary β-hydroxy-β-methylbutyrate (HMB) against obesity induced by high-fat diets[J].FASEB J,2019,33(9):10019-10033.

[9] AHMED B,SULTANA R,GREENE M W.Adipose tissue and insulin resistance in obese[J].Biomed Pharmacother,2021,137:111315.

[10] WU D,WANG H Y,XIE L J,et al.Cross-talk between gut microbiota and adipose tissues in obesity and related metabolic diseases[J].Front Endocrinol (Lausanne),2022,13:908868.

[11] DONG H J,QIN M,WANG P,et al.Regulatory effects and mechanisms of exercise on activation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT)[J].Adipocyte,2023,12(1):2266147.

[12] LEE Y S,PARK E J,PARK G S,et al.Lactiplantibacillus plantarum ATG-K2 exerts an anti-obesity effect in high-fat diet-induced obese mice by modulating the gut microbiome[J].Int J Mol Sci,2021,22(23):12665.

[13] WANG Z Y,LAM K L,HU J M,et al.Chlorogenic acid alleviates obesity and modulates gut microbiota in high-fat-fed mice[J].Food Sci Nutr,2019,7(2):579-588.

[14] SUN C B,LI A,WANG H,et al.Positive regulation of acetate in adipocyte differentiation and lipid deposition in obese mice[J].Nutrients,2023,15(17):3736.

[15] GHESMATI Z,RASHID M,F(xiàn)AYEZI S,et al.An update on the secretory functions of brown,white,and beige adipose tissue:towards therapeutic applications[J].Rev Endocr Metab Disord,2024,25(2):279-308.

[16] BARGUT T C L,SOUZA-MELLO V,AGUILA M B,et al.Browning of white adipose tissue:lessons from experimental models[J].Horm Mol Biol Clin Investig,2017,31(1):20160051.

[17] SUREZ-ZAMORANO N,F(xiàn)ABBIANO S,CHEVALIER C,et al.Microbiota depletion promotes browning of white adipose tissue and reduces obesity[J].Nat Med,2015,21(12):1497-1501.

[18] XU Y,WANG N,TAN H Y,et al.Panax notoginseng saponins modulate the gut microbiota to promote thermogenesis and beige adipocyte reconstruction via leptin-mediated AMPKα/STAT3 signaling in diet-induced obesity[J].Theranostics,2020,10(24):11302-11323.

[19] ZHANG S,LI J J,SHI X Y,et al.Naringenin activates beige adipocyte browning in high fat diet-fed C57BL/6 mice by shaping the gut microbiota[J].Food Funct,2022,13(19):9918-9930.

[20] CHEVALIER C,STOJANOVIC′ O,COLIN D J,et al.Gut microbiota orchestrates energy homeostasis during cold[J].Cell,2015,163(6):1360-1374.

[21] SIMOPOULOS A P.An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity[J].Nutrients,2016,8(3):128.

[22] ROGERO M M,CALDER P C.Obesity,inflammation,toll-like receptor 4 and fatty acids[J].Nutrients,2018,10(4):432.

[23] MIYAMOTO J,IGARASHI M,WATANABE K,et al.Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids[J].Nat Commun,2019,10(1):4007.

[24] KINDT A,LIEBISCH G,CLAVEL T,et al.The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice[J].Nat Commun,2018,9(1):3760.

[25] FURUSE M,MURAI A,OKUMURA J.Gut microflora can modify fatty acid composition in liver and egg yolk lipids of laying Japanese quail (Coturnix coturnix japonica)[J].Comp Biochem Physiol Comp Physiol,1992,103(3):569-571.

[26] WALL R,ROSS R P,SHANAHAN F,et al.Metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues[J].Am J Clin Nutr,2009,89(5):1393-1401.

[27] LEE K,PAEK K,LEE H Y,et al.Antiobesity effect of trans-10,cis-12-conjugated linoleic acid-producing Lactobacillus plantarum PL62 on diet-induced obese mice[J].J Appl Microbiol,2007,103(4):1140-1146.

[28] SEBASTIà C,F(xiàn)OLCH J M,BALLESTER M,et al.Interrelation between gut microbiota,SCFA,and fatty acid composition in pigs[J].mSystems,2024,9(1):e0104923.

[29] JIA X K,XU W,ZHANG L,et al.Impact of gut microbiota and microbiota-related metabolites on hyperlipidemia[J].Front Cell Infect Microbiol,2021,11:634780.

[30] HAN S W,PAN Y F,YANG X,et al.Intestinal microorganisms involved in colorectal cancer complicated with dyslipidosis[J].Cancer Biol Ther,2019,20(1):81-89.

[31] HAN H,WANG M Y,ZHONG R Q,et al.Depletion of gut microbiota inhibits hepatic lipid accumulation in high-fat diet-fed mice[J].Int J Mol Sci,2022,23(16):9350.

[32] ZHANG Y N,MA L,ZHANG L,et al.Effects and action mechanisms of lotus leaf (Nelumbo nucifera) ethanol extract on gut microbes and obesity in high-fat diet-fed rats[J].Front Nutr,2023,10:1169843.

[33] LI X H,HU Y,LV Y F,et al.Gut microbiota and lipid metabolism alterations in mice induced by oral cadmium telluride quantum dots[J].J Appl Toxicol,2020,40(8):1131-1140.

[34] ZHANG F,QIU L,XU X P,et al.Beneficial effects of probiotic cholesterol-lowering strain of Enterococcus faecium WEFA23 from infants on diet-induced metabolic syndrome in rats[J].J Dairy Sci,2017,100(3):1618-1628.

[35] TARANTO M P,MEDICI M,PERDIGON G,et al.Evidence for hypocholesterolemic effect of Lactobacillus reuteri in hypercholesterolemic mice[J].J Dairy Sci,1998,81(9):2336-2340.

[36] XIAO J Z,KONDO S,TAKAHASHI N,et al.Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers[J].J Dairy Sci,2003,86(7):2452-2461.

[37] LIN S Y,AYRES J W,WINKLER Jr W,et al.Lactobacillus effects on cholesterol:in vitro and in vivo results[J].J Dairy Sci,1989,72(11):2885-2899.

[38] 吳永保,李 琳,聞治國(guó),等.動(dòng)物體內(nèi)極長(zhǎng)鏈多不飽和脂肪酸代謝及其生理功能[J].中國(guó)畜牧雜志,2018,54(3):20-26.

WU Y B,LI L,WEN Z G,et al.Research progress on metabolism and physiological function of very-long-chain polyunsaturated fatty acids in animals[J].Chinese Journal of Animal Science,2018,54(3):20-26.(in Chinese)

[39] JIN Y X,WU Y,ZENG Z Y,et al.From the cover:exposure to oral antibiotics induces gut microbiota dysbiosis associated with lipid metabolism dysfunction and low-grade inflammation in mice[J].Toxicol Sci,2016,154(1):140-152.

[40] HAMAMAH S,AMIN A,AL-KASAIR A L,et al.Dietary fat modulation of gut microbiota and impact on regulatory pathways controlling food intake[J].Nutrients,2023,15(15):3365.

[41] LIU H M,DU T, XLI C,et al.STAT3 phosphorylation in central leptin resistance[J].Nutr Metab (Lond),2021,18(1):39.

[42] TREVELLINE B K,KOHL K D.The gut microbiome influences host diet selection behavior[J].Proc Natl Acad Sci U S A,2022,119(17):e2117537119.

[43] KIM J D,YOON N A,JIN S,et al.Microglial UCP2 mediates inflammation and obesity induced by high-fat feeding[J].Cell Metab,2019,30(5):952-962.e5.

[44] GU M,LIU C,YANG T Y,et al.High-fat diet induced gut microbiota alterations associating with Ghrelin/JAK2/STAT3 up-regulation to promote benign prostatic hyperplasia development[J].Front Cell Dev Biol,2021,9:615928.

[45] SHANAHAN F.The colonic microbiota in health and disease[J].Curr Opin Gastroenterol,2013,29(1):49-54.

[46] 秦昆鵬,王志云,高 騫,等.乙酸對(duì)脂肪代謝的影響及其作用機(jī)制[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2021,33(5):2544-2554.

QIN K P,WANG Z Y,GAO Q,et al.Effects of acetic acid on fat metabolism and its mechanism[J].Chinese Journal of Animal Nutrition,2021,33(5):2544-2554.(in Chinese)

[47] RAYBOULD H E.Gut microbiota,epithelial function and derangements in obesity[J].J Physiol,2012,590(3):441-446.

[48] GILLILAND S E,NELSON C R,MAXWELL C.Assimilation of cholesterol by Lactobacillus acidophilus[J].Appl Environ Microbiol,1985,49(2):377-381.

[49] MARTINEZ-GURYN K,HUBERT N,F(xiàn)RAZIER K,et al.Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids[J].Cell Host Microbe,2018,23(4):458-469.e5.

[50] SEMOVA I,CARTEN J D,STOMBAUGH J,et al.Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish[J].Cell Host Microbe,2012,12(3):277-288.

[51] BEGLEY M,GAHAN C G M,HILL C.The interaction between bacteria and bile[J].FEMS Microbiol Rev,2005,29(4):625-651.

[52] RAMASAMY K,ABDULLAH N,WONG M C,et al.Bile salt deconjugation and cholesterol removal from media by Lactobacillus strains used as probiotics in chickens[J].J Sci Food Agric,2010,90(1):65-69.

[53] SAYIN S I,WAHLSTR?M A,F(xiàn)ELIN J,et al.Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid,a naturally occurring FXR antagonist[J].Cell Metab,2013,17(2):225-235.

[54] TANNOCK G W,DASHKEVICZ M P,F(xiàn)EIGHNER S D.Lactobacilli and bile salt hydrolase in the murine intestinal tract[J].Appl Environ Microbiol,1989,55(7):1848-1851.

[55] SATO H,ZHANG L S,MARTINEZ K,et al.Antibiotics suppress activation of intestinal mucosal mast cells and reduce dietary lipid absorption in sprague-dawley rats[J].Gastroenterology,2016,151(5):923-932.

[56] PREISS-LANDL K,ZIMMERMANN R,H?MMERLE G,et al.Lipoprotein lipase:the regulation of tissue specific expression and its role in lipid and energy metabolism[J].Curr Opin Lipidol,2002,13(5):471-481.

[57] JAKAB J,MI?KIC′ B,MIK?IC′ ?,et al.Adipogenesis as a potential anti-obesity target:a review of pharmacological treatment and natural products[J].Diabetes Metab Syndr Obes,2021,14:67-83.

[58] ZHANG T,DING H,CHEN L,et al.Antibiotic-induced dysbiosis of microbiota promotes chicken lipogenesis by altering metabolomics in the cecum[J].Metabolites,2021,11(8):487.

[59] PARK E J,LEE Y S,KIM S M,et al.Beneficial effects of Lactobacillus plantarum strains on non-alcoholic fatty liver disease in high fat/high fructose diet-fed rats[J].Nutrients,2020,12(2):542.

[60] DENTIN R,PéGORIER J P,BENHAMED F,et al.Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression[J].J Biol Chem,2004,279(19):20314-20326.

[61] ALVES C C,WAITZBERG D L,DE ANDRADE L S,et al.Prebiotic and synbiotic modifications of beta oxidation and lipogenic gene expression after experimental hypercholesterolemia in rat liver[J].Front Microbiol,2017,8:2010.

[62] BRAHE L K,ASTRUP A,LARSEN L H.Can we prevent obesity-related metabolic diseases by dietary modulation of the gut microbiota?[J].Adv Nutr,2016,7(1):90-101.

[63] WEITKUNAT K,SCHUMANN S,PETZKE K J,et al.Effects of dietary inulin on bacterial growth,short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice[J].J Nutr Biochem,2015,26(9):929-937.

[64] DELZENNE N M,KOK N.Effects of fructans-type prebiotics on lipid metabolism[J].Am J Clin Nutr,2001,73(2):456s-458s.

[65] HEIMANN E,NYMAN M,DEGERMAN E.Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes[J].Adipocyte,2015,4(2):81-88.

[66] GAO X,LIN S H,REN F,et al.Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia[J].Nat Commun,2016,7:11960.

[67] TAKAHASHI D,HOSHINA N,KABUMOTO Y,et al.Microbiota-derived butyrate limits the autoimmune response by promoting the differentiation of follicular regulatory T cells[J].EBioMedicine,2020,58:102913.

[68] LI G L,YAO W,JIANG H L.Short-chain fatty acids enhance adipocyte differentiation in the stromal vascular fraction of porcine adipose tissue[J].J Nutr,2014,144(12):1887-1895.

[69] DING L L,YANG L,WANG Z T,et al.Bile acid nuclear receptor FXR and digestive system diseases[J].Acta Pharm Sin B,2015,5(2):135-144.

[70] CHIANG J Y L,PATHAK P,LIU H L,et al.Intestinal farnesoid X receptor and takeda G protein couple receptor 5 signaling in metabolic regulation[J].Dig Dis,2017,35(3):241-245.

[71] PATHAK P,HELSLEY R N,BROWN A L,et al.Small molecule inhibition of gut microbial choline trimethylamine lyase activity alters host cholesterol and bile acid metabolism[J].Am J Physiol Heart Circ Physiol,2020,318(6):H1474-H1486.

[72] CHEN J Z,VITETTA L.Gut microbiota metabolites in NAFLD pathogenesis and therapeutic implications[J].Int J Mol Sci,2020,21(15):5214.

[73] LONG Y C,ZIERATH J R.AMP-activated protein kinase signaling in metabolic regulation[J].J Clin Invest,2006,116(7):1776-1783.

[74] CHANG H,KWON O,SHIN M S,et al.Role of Angptl4/Fiaf in exercise-induced skeletal muscle AMPK activation[J].J Appl Physiol (1985),2018,125(3):715-722.

[75] SHAN B X,AI Z F,ZENG S F,et al.Gut microbiome-derived lactate promotes to anxiety-like behaviors through GPR81 receptor-mediated lipid metabolism pathway[J].Psychoneuroendocrinology,2020,117:104699.

[76] ARAúJO J R,TAZI A,BURLEN-DEFRANOUX O,et al.Fermentation products of commensal bacteria alter enterocyte lipid metabolism[J].Cell Host Microbe,2020,27(3):358-375.e7.

[77] SCHWEIGER M,SCHREIBER R,HAEMMERLE G,et al.Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism[J].J Biol Chem,2006,281(52):40236-40241.

[78] JIA Y M,HONG J,LI H F,et al.Butyrate stimulates adipose lipolysis and mitochondrial oxidative phosphorylation through histone hyperacetylation-associated β3-adrenergic receptor activation in high-fat diet-induced obese mice[J].Exp Physiol,2017,102(2):273-281.

[79] JOCKEN J W E,GONZLEZ HERNNDEZ M A,HOEBERS N T H,et al.Short-chain fatty acids differentially affect intracellular lipolysis in a human white adipocyte model[J].Front Endocrinol (Lausanne),2018,8:372.

[80] LU Y Y,F(xiàn)AN C N,LI P,et al.Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating g protein-coupled receptors and gut microbiota[J].Sci Rep,2016,6:37589.

[81] YAMASHITA H,MARUTA H,JOZUKA M,et al.Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats[J].Biosci Biotechnol Biochem,2009,73(3):570-576.

[82] HONG J,JIA Y M,PAN S F,et al.Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice[J].Oncotarget,2016,7(35):56071-56082.

[83] YAN H,AJUWON K M.Mechanism of butyrate stimulation of triglyceride storage and adipokine expression during adipogenic differentiation of porcine stromovascular cells[J].PLoS One,2015,10(12):e0145940.

[84] GRABNER G F,XIE H,SCHWEIGER M,et al.Lipolysis:cellular mechanisms for lipid mobilization from fat stores[J].Nat Metab,2021,3(11):1445-1465.

[85] LI Y,MA Z Q,JIANG S,et al.A global perspective on FOXO1 in lipid metabolism and lipid-related diseases[J].Prog Lipid Res,2017,66:42-49.

[86] MENG Q H,LI Y,XU Y D,et al.Acetobacter and lactobacillus alleviate the symptom of insulin resistance by blocking the JNK-JAK/STAT pathway in Drosophila melanogaster[J].Biochim Biophys Acta Mol Basis Dis,2024,1870(1):166901.

[87] KIM Y A,KEOGH J B,CLIFTON P M.Probiotics,prebiotics,synbiotics and insulin sensitivity[J].Nutr Res Rev,2018,31(1):35-51.

[88] WANG J F,F(xiàn)U S P,LI S N,et al.Short-chain fatty acids inhibit growth hormone and prolactin gene transcription via cAMP/PKA/CREB signaling pathway in dairy cow anterior pituitary cells[J].Int J Mol Sci,2013,14(11):21474-21488.

[89] KALTENECKER D,MUELLER K M,BENEDIKT P,et al.Adipocyte STAT5 deficiency promotes adiposity and impairs lipid mobilisation in mice[J].Diabetologia,2017,60(2):296-305.

[90] KALTENECKER D,SPIRK K,RUGE F,et al.STAT5 is required for lipid breakdown and beta-adrenergic responsiveness of brown adipose tissue[J].Mol Metab,2020,40:101026.

[91] WU M F,XI Q H,SHENG Y,et al.Antioxidant peptides from monkfish swim bladders:ameliorating nafld in vitro by suppressing lipid accumulation and oxidative stress via regulating AMPK/Nrf2 pathway[J].Mar Drugs,2023,21(6):360.

[92] XU N B,LI X F,WENG J,et al.Adiponectin ameliorates GMH-induced brain injury by regulating microglia M1/M2 polarization via AdipoR1/APPL1/AMPK/PPARγ signaling pathway in neonatal rats[J].Front Immunol,2022,13:873382.

[93] GéRARD P.Metabolism of cholesterol and bile acids by the gut microbiota[J].Pathogens,2013,3(1):14-24.

[94] VEIGA P,JUSTE C,LEPERCQ P,et al.Correlation between faecal microbial community structure and cholesterol-to-coprostanol conversion in the human gut[J].FEMS Microbiol Lett,2005,242(1):81-86.

[95] REN D W,LI L,SCHWABACHER A W,et al.Mechanism of cholesterol reduction to coprostanol by Eubacterium coprostanoligenes ATCC 51222[J].Steroids,1996,61(1):33-40.

[96] LYE H S,RUSUL G,LIONG M T.Removal of cholesterol by Lactobacilli via incorporation and conversion to coprostanol[J].J Dairy Sci,2010,93(4):1383-1392.

[97] ZIARNO M,ZARE′BA D,S′CIBISZ I,et al.Exploring the cholesterol-modifying abilities of Lactobacilli cells in digestive models and dairy products[J].Microorganisms,2023,11(6):1478.

[98] BUBECK A M,URBAIN P,HORN C,et al.High-fat diet impact on intestinal cholesterol conversion by the microbiota and serum cholesterol levels[J].iScience,2023,26(9):107697.

[99] OZIN′SKA N,JUNGNICKEL C.Importance of conjugation of the bile salt on the mechanism of lipolysis[J].Molecules,2021,26(19):5764.

[100] ROHR M W,NARASIMHULU C A,RUDESKI-ROHR T A,et al.Negative effects of a high-fat diet on intestinal permeability:a review[J].Adv Nutr,2020,11(1):77-91.

[101] KONG C,GAO R Y,YAN X B,et al.Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet[J].Nutrition,2019,60:175-184.

[102] SINGH R P,HALAKA D A,HAYOUKA Z,et al.High-fat diet induced alteration of mice microbiota and the functional ability to utilize fructooligosaccharide for ethanol production[J].Front Cell Infect Microbiol,2020,10:376.

[103] MARQUES T M,WALL R,O’SULLIVAN O,et al.Dietary trans-10,cis-12-conjugated linoleic acid alters fatty acid metabolism and microbiota composition in mice[J].Br J Nutr,2015,113(5):728-738.

[104] JAMAR G,PISANI L P.Inflammatory crosstalk between saturated fatty acids and gut microbiota-white adipose tissue axis[J].Eur J Nutr,2023,62(3):1077-1091.

[105] TAO F Z,XING X,WU J N,et al.Enteral nutrition modulation with n-3 PUFAs directs microbiome and lipid metabolism in mice[J].PLoS One,2021,16(3):e0248482.

[106] ROHM T V,MEIER D T,OLEFSKY J M,et al.Inflammation in obesity,diabetes,and related disorders[J].Immunity,2022,55(1):31-55.

[107] LE CHATELIER E,NIELSEN T,QIN J J,et al.Richness of human gut microbiome correlates with metabolic markers[J].Nature,2013,500(7464):541-546.

[108] CANI P D,AMAR J,IGLESIAS M A,et al.Metabolic endotoxemia initiates obesity and insulin resistance[J].Diabetes,2007,56(7):1761-1772.

[109] VELLOSO L A,F(xiàn)OLLI F,SAAD M J.TLR4 at the crossroads of nutrients,gut microbiota,and metabolic inflammation[J].Endocr Rev,2015,36(3):245-271.

[110] NAVALóN-MONLLOR V,SORIANO-ROMANí L,SILVA M,et al.Microbiota dysbiosis caused by dietetic patterns as a promoter of Alzheimer′s disease through metabolic syndrome mechanisms[J].Food Funct,2023,14(16):7317-7334.

[111] IN KIM H,KIM J K,KIM J Y,et al.Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 simultaneously alleviate high-fat diet-induced colitis,endotoxemia,liver steatosis,and obesity in mice[J].Nutr Res,2019,67:78-89.

[112] BEAUMONT M,NEYRINCK A M,OLIVARES M,et al.The gut microbiota metabolite indole alleviates liver inflammation in mice[J].FASEB J,2018,32(12):6681-6693.

[113] CHENG Z L,ZHANG L,YANG L,et al.The critical role of gut microbiota in obesity[J].Front Endocrinol (Lausanne),2022,13:1025706.

[114] MACIA L,TAN J,VIEIRA A T,et al.Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome[J].Nat Commun,2015,6:6734.

[115] PARK S,KIM Y J,CHOI C Y,et al.Bariatric surgery can reduce albuminuria in patients with severe obesity and normal kidney function by reducing systemic inflammation[J].Obes Surg,2018,28(3):831-837.

[116] NEAL M D,LEAPHART C,LEVY R,et al.Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier[J].J Immunol,2006,176(5):3070-3079.

[117] VIJAY-KUMAR M,AITKEN J D,CARVALHO F A,et al.Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5[J].Science,2010,328(5975):228-231.

[118] TURNBAUGH P J,HAMADY M,YATSUNENKO T,et al.A core gut microbiome in obese and lean twins[J].Nature,2009,457(7228):480-484.

[119] PASCALE A,MARCHESI N,MARELLI C,et al.Microbiota and metabolic diseases[J].Endocrine,2018,61(3):357-371.

[120] DOS SANTOS PEREIRA INDIANI C M,RIZZARDI K F,CASTELO P M,et al.Childhood obesity and firmicutes/bacteroidetes ratio in the gut microbiota:a systematic review[J].Child Obes,2018,14(8):501-509.

[121] MICHELS N,ZOUIOUICH S,VANDERBAUWHEDE B,et al.Human microbiome and metabolic health:an overview of systematic reviews[J].Obes Rev,2022,23(4):e13409.

[122] GOODRICH J K,WATERS J L,POOLE A C,et al.Human genetics shape the gut microbiome[J].Cell,2014,159(4):789-799.

[123] LEY R E,B?CKHED F,TURNBAUGH P,et al.Obesity alters gut microbial ecology[J].Proc Natl Acad Sci U S A,2005,102(31):11070-11075.

[124] KADEER G,F(xiàn)U W R,HE Y Q,et al.Effect of different doses of Lacticaseibacillus paracasei K56 on body fat and metabolic parameters in adult individuals with obesity:a pilot study[J].Nutr Metab (Lond),2023,20(1):16.

[125] CHEN J J,WANG R,LI X F,et al.Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome[J].Br J Nutr,2012,107(10):1429-1434.

[126] TAI N W,WONG F S,WEN L.The role of gut microbiota in the development of type 1,type 2 diabetes mellitus and obesity[J].Rev Endocr Metab Disord,2015,16(1):55-65.

[127] ALLIN K H,TREMAROLI V,CAESAR R,et al.Aberrant intestinal microbiota in individuals with prediabetes[J].Diabetologia,2018,61(4):810-820.

[128] HAN X,WANG Y,ZHANG P P,et al.Kazak faecal microbiota transplantation induces short-chain fatty acids that promote glucagon-like peptide-1 secretion by regulating gut microbiota in db/db mice[J].Pharm Biol,2021,59(1):1075-1085.

[129] GUO W Q,ZHANG Z L,LI L R,et al.Gut microbiota induces DNA methylation via SCFAs predisposing obesity-prone individuals to diabetes[J].Pharmacol Res,2022,182:106355.

[130] DE GROOT P F,BELZER C,AYDIN ?,et al.Distinct fecal and oral microbiota composition in human type 1 diabetes,an observational study[J].PLoS One,2017,12(12):e0188475.

[131] YUAN X X,WANG R R,HAN B,et al.Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes[J].Nat Commun,2022,13(1):6356.

[132] HILL J H,F(xiàn)RANZOSA E A,HUTTENHOWER C,et al.A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development[J].Elife,2016,5:e20145.

[133] DEL CHIERICO F,RAPINI N,DEODATI A,et al.Pathophysiology of type 1 diabetes and gut microbiota role[J].Int J Mol Sci,2022,23(23):14650.

[134] COSTA F R C,F(xiàn)RAN?OZO M C S,DE OLIVEIRA G G,et al.Gut microbiota translocation to the pancreatic lymph nodes triggers NOD2 activation and contributes to T1D onset[J].J Exp Med,2016,213(7):1223-1239.

[135] PERRY R J,PENG L,BARRY N A,et al.Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome[J].Nature,2016,534(7606):213-217.

[136] HENDRIKX T,SCHNABL B.Indoles:metabolites produced by intestinal bacteria capable of controlling liver disease manifestation[J].J Intern Med,2019,286(1):32-40.

[137] GURUNG M,LI Z P,YOU H,et al.Role of gut microbiota in type 2 diabetes pathophysiology[J].EBioMedicine,2020,51:102590.

[138] NOURELDEIN M H,BITAR S,YOUSSEF N,et al.Butyrate modulates diabetes-linked gut dysbiosis:epigenetic and mechanistic modifications[J].J Mol Endocrinol,2020,64(1):29-42.

[139] MUSSO G,GAMBINO R,CASSADER M.Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes[J].Annu Rev Med,2011,62:361-380.

[140] BAKO H Y,IBRAHIM M A,ISAH M S,et al.Inhibition of JAK-STAT and NF-κB signalling systems could be a novel therapeutic target against insulin resistance and type 2 diabetes[J].Life Sci,2019,239:117045.

[141] LEE Y S,LEE D,PARK G S,et al.Lactobacillus plantarum HAC01 ameliorates type 2 diabetes in high-fat diet and streptozotocin-induced diabetic mice in association with modulating the gut microbiota[J].Food Funct,2021,12(14):6363-6373.

[142] GONZALEZ A,KRIEG R,MASSEY H D,et al.Sodium butyrate ameliorates insulin resistance and renal failure in CKD rats by modulating intestinal permeability and mucin expression[J].Nephrol Dial Transplant,2019,34(5):783-794.

[143] EL HAGE R,HERNANDEZ-SANABRIA E,CALATAYUD ARROYO M,et al.Supplementation of a propionate-producing consortium improves markers of insulin resistance in an in vitro model of gut-liver axis[J].Am J Physiol Endocrinol Metab,2020,318(5):E742-E749.

[144] TIROSH A,CALAY E S,TUNCMAN G,et al.The short-chain fatty acid propionate increases glucagon and FABP4 production,impairing insulin action in mice and humans[J].Sci Transl Med,2019,11(489):eaav0120.

[145] ZHAI L X,WU J Y,LAM Y Y,et al.Gut-Microbial metabolites,probiotics and their roles in type 2 diabetes[J].Int J Mol Sci,2021,22(23):12846.

[146] YAQUB S,ANANIAS P,SHAH A,et al.Decoding the pathophysiology of non-alcoholic fatty liver disease progressing to non-alcoholic steatohepatitis:a systematic review[J].Cureus,2021,13(9):e18201.

[147] STOLS-GON?ALVES D,MAK A L,MADSEN M S,et al.Faecal Microbiota transplantation affects liver DNA methylation in Non-alcoholic fatty liver disease:a multi-omics approach[J].Gut Microbes,2023,15(1):2223330.

[148] LI F X,YE J Z,SHAO C X,et al.Compositional alterations of gut microbiota in nonalcoholic fatty liver disease patients:a systematic review and meta-analysis[J].Lipids Health Dis,2021,20(1):22.

[149] YANG C,XU J G,XU X M,et al.Characteristics of gut microbiota in patients with metabolic associated fatty liver disease[J].Sci Rep,2023,13(1):9988.

[150] ABENAVOLI L,MAURIZI V,RINNINELLA E,et al.Fecal microbiota transplantation in NAFLD treatment[J].Medicina (Kaunas),2022,58(11):1559.

[151] HAN C,LI Z S,LIU R Y,et al.Lonicerae flos polysaccharides improve nonalcoholic fatty liver disease by activating the adenosine 5’-monophosphate-activated protein kinase pathway and reshaping gut microbiota[J].J Sci Food Agric,2023,103(15):7721-7738.

[152] ZHOU D,PAN Q,SHEN F,et al.Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota[J].Sci Rep,2017,7(1):1529.

[153] BARBER T M,HANSON P,WEICKERT M O.Metabolic-associated fatty liver disease and the gut microbiota[J].Endocrinol Metab Clin North Am,2023,52(3):485-496.

[154] JI Y,GAO Y,CHEN H,et al.Indole-3-acetic acid alleviates nonalcoholic fatty liver disease in mice via attenuation of hepatic lipogenesis,and oxidative and inflammatory stress[J].Nutrients,2019,11(9):2062.

[155] ZHAO T T,GU J L,ZHANG H X,et al.Sodium butyrate-modulated mitochondrial function in high-insulin induced HepG2 cell dysfunction[J].Oxid Med Cell Longev,2020,2020:1904609.

(編輯 范子娟)

猜你喜歡
肥胖脂肪糖尿病
減肥后脂肪去哪兒了
糖尿病知識(shí)問(wèn)答
中老年保健(2022年5期)2022-08-24 02:35:42
糖尿病知識(shí)問(wèn)答
中老年保健(2022年1期)2022-08-17 06:14:56
脂肪竟有“好壞”之分
糖尿病知識(shí)問(wèn)答
中老年保健(2021年5期)2021-08-24 07:07:20
糖尿病知識(shí)問(wèn)答
脂肪的前世今生
肝博士(2021年1期)2021-03-29 02:32:10
反派脂肪要逆襲
收入對(duì)食品消費(fèi)代際差異的影響研究
商(2016年32期)2016-11-24 16:25:00
學(xué)齡前兒童肥胖的綜合干預(yù)研究
陆河县| 青岛市| 抚顺市| 绍兴县| 宝清县| 张家川| 梁河县| 新泰市| 常山县| 白河县| 濮阳县| 灵丘县| 北海市| 乌海市| 通州市| 大竹县| 同德县| 大连市| 东港市| 石林| 综艺| 塘沽区| 广元市| 区。| 城口县| 罗山县| 通州市| 白水县| 习水县| 朔州市| 德江县| 大安市| 昭通市| 云浮市| 阿拉善左旗| 乳山市| 博白县| 锦屏县| 甘德县| 武威市| 东辽县|