国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

糞菌移植治療犢牛無(wú)特異病原性腹瀉和細(xì)菌性腹瀉的療效及其腸道菌群變化

2024-11-08 00:00:00楊作斌史晉成馬紫薇陳如龍舒展李鑫王金泉鐘旗馬雪連姚剛
畜牧獸醫(yī)學(xué)報(bào) 2024年10期
關(guān)鍵詞:腸道菌群腹瀉效果評(píng)價(jià)

摘 要: 旨在比較糞菌移植(Fecal microbiota transplantation,F(xiàn)MT)治療犢牛無(wú)特異病原性腹瀉和細(xì)菌性腹瀉的療效和腸道菌群變化。選擇8頭健康新生犢牛作為健康對(duì)照組(Health,H),再選擇具有臨床腹瀉癥狀的新生犢牛24頭,經(jīng)腹瀉相關(guān)病原檢測(cè),16頭無(wú)腹瀉相關(guān)病原感染的腹瀉犢牛分為無(wú)特異病原腹瀉組(Diarrhea,D),8頭感染產(chǎn)志賀毒素大腸埃希菌(Shiga toxin-producing E.coli,STEC)的腹瀉犢牛作為STEC腹瀉組(STEC-Diarrhea,SD)。各組犢牛平均日齡為(14.8±6.1)d。通過(guò)腹瀉病原和腹瀉癥狀篩查選擇供體犢牛并制備糞菌液,口服糞菌液(每頭250 mL,含40 g單一供體糞便)治療腹瀉犢牛,根據(jù)布里斯托糞便分型法(Bristol Stool Scale, BSS)評(píng)估治療有效性。治療后D組犢牛命名為無(wú)特異病原腹瀉治療組(FMT-D),SD組犢牛為STEC腹瀉治療組(FMT-SD)。記錄治愈天數(shù)和日增重,測(cè)定犢牛生理常值、血常規(guī)、細(xì)胞因子及免疫球蛋白。采集各組犢牛直腸糞便進(jìn)行16S rRNA基因測(cè)序,分析其腸道菌群變化。結(jié)果顯示,經(jīng)FMT治療,D組和SD組犢牛的布里斯托糞便分型分別從6~7型極顯著下降為4~5型(Plt;0.000 1),下降后的分型值與H組無(wú)差異(Pgt;0.05)。FMT-D組和FMT-SD組的平均治愈天數(shù)(4.9和4.4)無(wú)顯著差異(Pgt;0.05)。治療后150 d,F(xiàn)MT-D組的犢牛日增重與H組無(wú)顯著差異(Pgt;0.05),而FMT-SD組的日增重顯著低于H組(Plt;0.05)。D組和SD組犢牛血液IL-1β、IL-6和IL-10濃度極顯著高于H組(Plt;0.01),經(jīng)FMT治療后均下降至H組水平。D組和SD組犢牛糞便中分泌型免疫球蛋白A極顯著低于H組(Plt;0.001),且D組IL-22顯著低于H組(Plt;0.05),經(jīng)FMT治療后均上升,與H組水平無(wú)差異(Pgt;0.05)。D組和SD組犢牛腸道菌群的豐富度和多樣性均顯著低于H組(Plt;0.05),經(jīng)FMT治療后上升至H組水平。D組和SD組犢牛腸道菌群結(jié)構(gòu)β多樣性與H組差異極顯著(Plt;0.001),梭桿菌門的相對(duì)豐度均極顯著高于H組(Plt;0.001),志賀菌屬、Tyzzerella和棲糞桿菌屬、[Ruminococcus]_gnavus_group、丁酸球菌屬和柯林斯氏菌屬、梭桿菌屬相對(duì)豐度顯著高于H組(Plt;0.05),經(jīng)過(guò)FMT治療,上述菌門和菌屬相對(duì)豐度均下降至H組水平。而D組和SD組犢牛的Muribaculaceae、Rikenellaceae_RC9_gut_group、[Eubacterium]_coprostanoligenes_group、鼠腸單胞菌屬、Clostridia_UCG_014、Subdoligranulum和布雷茲納克氏菌屬相對(duì)豐度極顯著低于H組(Plt;0.01)。經(jīng)過(guò)FMT治療,上述菌屬的相對(duì)豐度均上升且與H組無(wú)顯著差異(Pgt;0.05)。本研究表明,F(xiàn)MT對(duì)無(wú)特異病原性腹瀉和細(xì)菌性的犢牛腹瀉均有顯著治療效果。FMT治療顯著降低了腹瀉犢牛腸道菌群中具有致病性菌屬的相對(duì)豐度,同時(shí)增加了潛在益生菌屬的相對(duì)豐度,腸道菌群的組成結(jié)構(gòu)趨向健康,犢牛免疫功能顯著增強(qiáng)。FMT治療可能對(duì)犢牛的增重和生長(zhǎng)產(chǎn)生長(zhǎng)期有益影響。但FMT對(duì)這兩種腹瀉犢牛腸道菌群的恢復(fù)過(guò)程中存在一定差異。

關(guān)鍵詞: 犢牛;腹瀉;糞菌移植;效果評(píng)價(jià);腸道菌群

中圖分類號(hào):S857.31

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):0366-6964(2024)10-4720-15

The Therapeutic Effect of the Fecal Microbiota Transplantation on Calf Non-specific

Pathogenic Diarrhea and Bacterial Diarrhea in Association with Their Gut Microbiota

Changes

YANG" Zuobin1, SHI" Jincheng1, MA" Ziwei1, CHEN" Rulong2, SHU" Zhan3, LI" Xin1,3, WANG" Jinquan

1, ZHONG" Qi4, MA" Xuelian1*, YAO" Gang1*

(1.College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052," China;

2.Xinjiang Hanting Muyuan Breeding Technology Company Limited, Bole 833407," China;

3.Animal

Disease Control and Prevention Center in Altay Prefecture, Altay 836500," China;

4.Xinjiang Academy

of Animal Science, Urumqi 830026," China)

Abstract:" The aim of this study was to compare the therapeutic efficacy and the changes of gut microbiota by faecal microbiota transplantation (FMT) treatment between non-specific pathogenic diarrhea and the bacterial diarrhea in calves. In the study, 8 healthy newborn calves were selected as the health (Health, H) group, 24 newborn calves with clinical symptoms of diarrhea were selected, in which 16 diarrheic calves without diarrheic related pathogens were assigned to the non-specific pathogenic diarrhea (Diarrhea, D) group, and the other 8 diarrheic calves with STEC infection were assigned to the STEC diarrhea (STEC-Diarrhea, SD) group after diarrhea-associated pathogens detection. The average age of all calves was 14.8±6.1 days. After FMT group D was named FMT-D and group SD was named FMT-SD. Donor calves were screened by clinical symptoms of diarrhea with pathogenic test, and then the fecal microbiota solution was prepared for oral treatment (250 mL each calf, contains 40 g feces of single donor). Bristol Stool Scale (BSS) was used to assess the effectiveness of FMT. The healing day and the daily gain (DG) were recorded, and calves′ blood physiological parameters and inflammatory cytokines were determined. Rectal feces were collected for 16S rRNA gene

sequencing to analyze the changes of gut microbiota. The results showed that after FMT , BSS of calves in group D and SD was extremely decreased (Plt;0.0001) from type 6-7 to type 4-5, and after decline was not significantly different from that in group H (Pgt;0.05). There was no significant difference in the healing day between group FMT-D and group FMT-SD (Pgt;0.05). At day 150 after FMT, DG of FMT-D group was not significantly different from that of group H (Pgt;0.05), whereas DG of group FMT-SD was still significantly lower than that of group H (Plt;0.05). IL-1β and IL-6 as well as IL-10 were extremely higher in group D and group SD than those in group H (Plt;0.01), and after FMT they were decreased to the level of H group (Pgt;0.05); Secretory immunoglobulin A was extremely lower in group D and group SD than that in group H (Plt;0.001), and IL-22 was significantly lower in group D than that in group H (Plt;0.05), which were both increased to the level of group H after FMT (Pgt;0.05). The richness and diversity of gut microbiota in group D and group SD were significantly lower than that in group H (Plt;0.01), while increased after FMT. There were extremely significantly different gut microbiota structure of group D and group SD from that of group H (Plt;0.001). The relative abundance (RA) of Fusobacteriota was extremely higher in both group D and group SD than that in group H (Plt;0.001), the RA of genera Escherichia_Shigella, Tyzzerella, Faecalibacterium, Fusobacterium, [Ruminococcus]_gnavus_group, Butyricicoccus, Collinsella and Prevotella was significantly higher in group D and group SD than those in group H (Plt;0.05), After FMT they were decreased to the level of group H. Moreover, The RA of genera Muribaculaceae, Rikenellaceae_RC9_gut_group, [Eubacterium]_coprostanoligenes_group, Intestinimonas, Clostridia_UCG_014, Subdoligranulum and Breznakia was extremely reduced in group D and group SD in comparison with group H (Plt;0.01), then increased in both group FMT-D and group FMT-SD after FMT, which was reached to the level of H group (Pgt;0.05). FMT treatment has a significant therapeutic effect on both aforementioned kinds of diarrhea in calves via reducing the relative abundance of some pathogenic genera, while increasing that of some potentially probiotic ones in the gut microbiota of diarrheic calves, thus resulting in the composition and structure of the gut microbiota tended to be healthier, and host immune function is enhanced, FMT treatment may have long-term beneficial impact on calves’ gain and grows. However, the gut microbiota restoration by FMT treatment between these two kinds of diarrhea calves still remains some difference.

Key words: calves; diarrhea; fecal microbiota transplantation; effect evaluation; gut microbiota

*Corresponding authors: YAO Gang,E-mail:yg@xjau.edu.cn;MA Xuelian,E-mail:1016685239@qq.com

犢牛腹瀉是造成養(yǎng)牛業(yè)巨大損失的常見(jiàn)病。導(dǎo)致?tīng)倥8篂a的原因主要分為兩大類,一類是無(wú)特異病原性腹瀉,主要由于飼養(yǎng)管理不當(dāng)、環(huán)境應(yīng)激、自身免疫等因素所致。另一類是病原性腹瀉,主要由細(xì)菌、病毒、寄生蟲(chóng)引起。這些因素交織互作,常常給臨床診斷和精準(zhǔn)防治帶來(lái)困難。吮乳犢牛反復(fù)腹瀉,輕則造成犢牛瘤胃菌群和腸道菌群不成熟,導(dǎo)致?tīng)倥O漳芰ο陆担?],重則導(dǎo)致?tīng)倥K劳?,給牧民和養(yǎng)牛企業(yè)帶來(lái)經(jīng)濟(jì)損失。腸道菌群在促進(jìn)動(dòng)物生長(zhǎng)、調(diào)節(jié)動(dòng)物消化機(jī)能和免疫功能、維持動(dòng)物機(jī)體健康的過(guò)程中發(fā)揮著重要的作用。通過(guò)糞菌移植來(lái)調(diào)節(jié)動(dòng)物腸道菌群組成結(jié)構(gòu)和功能,以達(dá)到防治疾病、促進(jìn)健康的研究與實(shí)踐日益增加[2-3]。糞菌移植(fecal microbiota transplantation,F(xiàn)MT)是將供體擁有更平衡、完整結(jié)構(gòu)及細(xì)菌代謝物的腸道菌群移植給患者,修復(fù)或替代被破壞的受體腸道菌群[4]。FMT在2013年被寫(xiě)入臨床醫(yī)學(xué)指南,用于復(fù)發(fā)性難辨梭狀芽孢桿菌感染的治療[5]。此外,F(xiàn)MT對(duì)感染、腸道疾病、微生物-腸-肝軸(microbiota-gut-liver axis)、微生物-腸-腦軸(microbiota-gut-brain axis)、代謝疾病、腫瘤、血液系統(tǒng)疾病和其他疾病中的85種特定疾病的臨床應(yīng)用有效[6]。2023年9月我國(guó)將菌群移植技術(shù)正式納入《全國(guó)醫(yī)療服務(wù)項(xiàng)目技術(shù)規(guī)范(2023年版)》[7]。在動(dòng)物領(lǐng)域,標(biāo)準(zhǔn)治療(補(bǔ)液+止吐劑+胃保護(hù)劑+抗菌劑)結(jié)合FMT可以更快地解決感染犬細(xì)小病毒幼犬的急性出血性腹瀉以及縮短住院時(shí)間[8]。FMT可以改善仔豬腹瀉,也能夠有效緩解羔羊非特異病原性腹瀉的癥狀,抑制炎性反應(yīng),顯著降低腹瀉率[9-10]。同時(shí)FMT也是治療抗生素引起的馬結(jié)腸炎、艱難梭菌感染或慢性腹瀉的潛在選擇[11-13]。目前,人們對(duì)FMT治療犢牛無(wú)特異病原性腹瀉和不同病原性腹瀉的臨床效果以及腸道菌群變化了解甚少。本研究采用FMT方法治療犢牛無(wú)特異病原性腹瀉和STEC引起的病原性腹瀉,比較其治療效果和腸道菌群變化,以期為研發(fā)治療不同病因的犢牛腹瀉的FMT技術(shù)提供理論支持。

1 材料與方法

1.1 動(dòng)物來(lái)源

參考Kim等[14]評(píng)價(jià)犢牛糞便類型的布里斯托糞便分型方法,從新疆某規(guī)?;⒉“哺袼谷馀pB(yǎng)殖場(chǎng)選取8頭布里斯托糞便分型4~5型的健康犢牛,另選24頭日齡為(14.8±6.1)d,布里斯托爾糞便分型6~7型的腹瀉犢牛,開(kāi)展糞菌移植治療試驗(yàn)。

1.2 主要試劑與儀器

2×Taq MasterMix(產(chǎn)品貨號(hào):AS111-12)購(gòu)自北京全式金生物有限公司)、DNA Marker 2000(產(chǎn)品貨號(hào):10501ES60)、核酸染料(產(chǎn)品貨號(hào):10202ES76)購(gòu)自上海翌圣生物科技有限公司;細(xì)胞因子檢測(cè)試劑盒購(gòu)自上海江萊生物科技有限公司;PCR儀(型號(hào):Mastercycler nexus),德國(guó)Eppendorf公司;凝膠成像系統(tǒng)(型號(hào):Gel Doc XP),美國(guó)BIORAD公司;電泳儀(型號(hào):DYY-6C),北京六一儀器廠;磁力加熱攪拌器(型號(hào):CJJ78-1),金壇區(qū)西城基銘實(shí)驗(yàn)儀器廠;臺(tái)式離心機(jī)(型號(hào):TD-5M),四川蜀科儀器有限公司。

1.3 樣本采集及處理

在治療前1 d和治愈后,使用采血器從頸靜脈采集各組犢牛的血液,分離血清保存于-20 ℃,用于細(xì)胞因子和免疫球蛋白檢測(cè)。同時(shí)用無(wú)菌拭子采集犢牛直腸糞便,分裝于甘油肉湯EP管和凍存管內(nèi),分別于-20 ℃和-80 ℃保存,用于腹瀉病原檢測(cè)和16S rRNA基因測(cè)序。

1.4 犢牛腹瀉的病原檢測(cè)

使用接種環(huán)將肛拭子樣品接種到5 mL營(yíng)養(yǎng)肉湯中,放入搖床37 ℃,180 r·min-1 進(jìn)行培養(yǎng),然后接種到麥康凱培養(yǎng)基中37 ℃培養(yǎng)18~24 h。挑取平板上圓形、外表光滑且大小適中的桃紅色單菌落繼續(xù)在伊紅美藍(lán)瓊脂上劃線培養(yǎng),連續(xù)純化兩代后挑取單菌落使用水煮法提取細(xì)菌DNA,利用特異性引物對(duì)樣品DNA進(jìn)行擴(kuò)增,引物來(lái)自文獻(xiàn)[15],由上海生工生物有限公司合成。PCR擴(kuò)增體系(25 μL):2×Taq PCR Master Mix 12.5 μL,上、下游引物各1 μL,DNA 1.0 μL 補(bǔ)足ddH2O 至25 μL。反應(yīng)程序?yàn)?4 ℃、3 min;94 ℃、30 s,59 ℃、60 s,72 ℃、60 s,30個(gè)循環(huán),72 ℃、10 min。PCR擴(kuò)增結(jié)束后取反應(yīng)產(chǎn)物進(jìn)行1%瓊脂糖凝膠電泳,在凝膠成像系統(tǒng)上觀察結(jié)果。PCR引物和產(chǎn)物大小見(jiàn)表1。

1.5 試驗(yàn)設(shè)計(jì)

由于本研究在生產(chǎn)實(shí)踐中進(jìn)行,基于動(dòng)物福利考慮,因此未設(shè)置不接受任何治療的腹瀉組。試驗(yàn)期間,各組犢牛在相間隔的圈舍飼養(yǎng)、飼養(yǎng)條件、飼養(yǎng)環(huán)境、飼養(yǎng)密度等均相同。試驗(yàn)設(shè)計(jì)見(jiàn)圖1。

1.6 篩選供體、糞菌液的制備與移植

1.6.1 篩選供體犢牛

供體與受體處于同一養(yǎng)殖場(chǎng),公母不限,供體120日齡以內(nèi)或供體與受體日齡接近[16-17];供體各項(xiàng)指標(biāo)正常,符合生長(zhǎng)規(guī)律,體態(tài)良好及行為正常;供體糞便為布里斯托4型,犢牛排便時(shí)輕松,排出時(shí)形似緊密的塔柱狀,表面光滑有光澤,手指稍用力可掐斷糞便且只沾染少量糞便,質(zhì)地均勻,落地時(shí)可堆立,無(wú)腥臭味、酸臭味和腐臭味;無(wú)布魯氏桿菌病以及引起犢牛呼吸道和腸道疾病的病毒、細(xì)菌和腸道寄生蟲(chóng);為盡量避免腸道耐藥菌的傳播,供體牛須從未使用過(guò)抗生素;采糞前15日之內(nèi)未接種任何活病毒疫苗[18];供體犢牛生存環(huán)境無(wú)極端情況出現(xiàn),如:高鹽、高堿等;調(diào)查系譜信息、評(píng)估供體母親狀況,如:無(wú)撞人史、無(wú)重大胃腸道疾病史、無(wú)傳染病或人畜共患病史等[19];符合以上條件,日增重高的犢牛優(yōu)先選為供體[20]。

1.6.2 供體糞便的采集和保存

將供體犢牛保定,右手帶無(wú)菌手套,食指和中指探入犢牛肛門,輕輕刺激犢牛直腸壁使?fàn)倥E疟?;用干凈的自封袋采集糞便后,快速擠出自封袋內(nèi)的空氣并封口;將糞便在0~4 ℃環(huán)境中運(yùn)輸至實(shí)驗(yàn)室,從采集到移植宜在2~4 h內(nèi)完成;供體糞便可在-20 ℃暫存,在-80 ℃保存3個(gè)月;供體犢牛每過(guò)1個(gè)月進(jìn)行全面評(píng)估。若評(píng)估結(jié)果異常,則放棄該階段糞便樣品或該供體。

1.6.3 糞菌液制備與移植

參考Hu等[18]以及Zhang等[21]的糞菌液制備方法稱取40g糞便后,使用5倍的無(wú)菌生理鹽水溶解,并使用恒溫磁力攪拌儀攪拌6~8 min。先使用單層無(wú)菌紗布過(guò)濾大部分食物殘?jiān)?,再依次使?0目、70目(孔徑0.3~0.2 mm)的濾網(wǎng)過(guò)濾1次得到糞菌濾液。將糞菌濾液6 000 r·min-1,離心15 min。去除上清液,補(bǔ)充無(wú)菌生理鹽水后混勻,然后3 000 r·min-1,離心5 min。如此重復(fù)3次,最后去除上清液,得到糞菌沉淀物。將糞菌沉淀物重懸至250 mL后進(jìn)行移植。保存時(shí),先將糞菌沉淀物用5倍沉淀物體積的無(wú)菌生理鹽水重懸,然后將12.5 mL·L-1甘油與懸液1∶(1~3)混合,-80℃至多保存3個(gè)月(除留樣外)。儀器使用完后進(jìn)行滅菌。

移植前,可以用奶瓶飼喂適量溫?zé)崤D袒蛘咂咸烟侨芤?,刺激新生犢牛食管溝閉合。移植時(shí),犢牛面朝前方,用雙腿夾緊犢牛頸部,用一只手的拇指從嘴巴側(cè)面打開(kāi)口腔,將犢牛的頭部稍稍抬起,另一只手向犢??谇粌?nèi)注入適量糞菌液,并用拇指輕輕按摩犢牛舌根部,刺激犢牛進(jìn)行吞咽。吞咽時(shí)觀察犢牛是否有咳嗽出現(xiàn),吞咽完成后將犢牛頭部放松,每天移植1次,每頭犢牛每次移植250 mL(含40 g單一供體糞便)。

1.7 測(cè)定指標(biāo)與方法

1.7.1 體重測(cè)定

在FMT治療前1 d以及治療后1個(gè)月和5個(gè)月這3個(gè)時(shí)間點(diǎn)分別進(jìn)行稱重。

1.7.2 生理指標(biāo)測(cè)定及治愈天數(shù)和糞便類型記錄

治療組FMT期間每天相同時(shí)間點(diǎn)測(cè)量體溫、呼吸次數(shù)和脈搏次數(shù)。布里斯托糞便分型達(dá)到4~5型判定為治愈,并記錄治愈天數(shù)。

1.7.3 細(xì)胞因子和免疫球蛋白測(cè)定

檢測(cè)各組治療前、后(樣本采集和處理方法于“1.3”中)的白細(xì)胞介素1β(IL-1β)、白細(xì)胞介素6(IL-6)、白細(xì)胞介素10(IL-10)、白細(xì)胞介素(IL-22)、分泌性免疫球蛋白A(sIgA)。

1.8 腸道菌群組成結(jié)構(gòu)分析

樣本的采集和處理已于“1.3”中進(jìn)行介紹。采用16S rRNA基因測(cè)序技術(shù)對(duì)腸道菌群組成結(jié)構(gòu)分析。提取樣本DNA,對(duì)V3+V4可變區(qū)進(jìn)行PCR擴(kuò)增,引物為341F:5′-CCTAYGGGRBGCASCAG-3′,806R:5′-GGACTACNNGGGTATCTAAT-3′。反應(yīng)體系為Phusion Master Mix(2×):15 μL,上、下游引物各1 μL,gDNA:10 μL,ddH2O:3 μL。反應(yīng)程序?yàn)?8 ℃預(yù)變性1 min;98 ℃ 10 s、50 ℃ 30 s、72 ℃ 30 s,循環(huán)30次,72 ℃ 5 min。根據(jù)PCR產(chǎn)物濃度進(jìn)行等量混樣和純化,然后使用NEB Next? Ultra DNA Library Prep Kit建庫(kù)試劑盒進(jìn)行文庫(kù)構(gòu)建再使用NovaSeq 6000測(cè)序,最后進(jìn)行信息分析。

1.9 數(shù)據(jù)處理與分析

數(shù)據(jù)采用“平均值±標(biāo)準(zhǔn)誤(mean±SE)”表示。采用統(tǒng)計(jì)軟件GraphPad Prism9.4.1進(jìn)行單因素方差分析(one-way-ANOVA),****代表Plt;0.000 1、***代表Plt;0.001、**代表Plt;0.01均表示差異極顯著,*表示Plt;0.05,表示差異顯著。

2 結(jié) 果

2.1 犢牛生理常值、治療效果及生長(zhǎng)性能

由圖2A~2C可知,SD組犢牛的體溫極顯著高于H組(Plt;0.01),犢牛呼吸次數(shù)和脈搏指標(biāo)無(wú)顯著差異(Pgt;0.05)。由圖2D、2E可知,經(jīng)FMT治療,D組和SD組犢牛的布里斯托糞便分型平均從6.1型分別極顯著下降到4.4和4.5型(Plt;0.0001),與H組無(wú)顯著差異(Pgt;0.05)。FMT-D組平均治愈天數(shù)為4.9 d,F(xiàn)MT-SD組為4.4 d,兩組治愈天數(shù)無(wú)顯著差異(Pgt;0.05)。由圖2F、2G可知,治療后30 d,F(xiàn)MT-D組和FMT-SD組犢牛的日增重與H組無(wú)顯著差異(Pgt;0.05)。治療后150 d,F(xiàn)MT-D組的犢牛日增重與H組無(wú)顯著差異(Pgt;0.05),而FMT-SD組的日增重卻顯著低于H組(Plt;0.05)。

2.2 犢牛血液生理指標(biāo)

圖3顯示D組和SD組犢牛的白細(xì)胞(WBC)、單核細(xì)胞(MON)高于H組,治療后,均降低。D組犢牛的粒細(xì)胞數(shù)(GRA)和粒細(xì)胞百分比(GRA%)極顯著高于H組(Plt;0.01),治療后均下降,與H組水平無(wú)差異(Pgt;0.05)。D組的淋巴細(xì)胞百分比(LYM%)極顯著低于H組(Pgt;0.05),治療后上升,與H組水平無(wú)差異。

2.3 犢牛血清細(xì)胞因子

由圖4可知,D組和SD組犢牛血清中IL-1β和IL-6濃度極顯著高于H組(Plt;0.01),治療后FMT-D組和FMT-SD組下降,并與H組無(wú)顯著差異(Pgt;0.05)。D組和SD組犢牛的IL-10濃度極顯著高于H組(Plt;0.001),治療后FMT-D組和FMT-SD組下降,與H組無(wú)顯著差異(Pgt;0.05)。D組犢牛的IL-22濃度顯著低于H組(Plt;0.05),SD組也低于H組,治療后FMT-D組和FMT-SD組上升,與H組無(wú)顯著差異(Pgt;0.05)。

2.4 犢牛糞便中分泌型免疫球蛋白A(sIgA)

如圖5所示,與H組比較,D組和SD組犢牛糞便中sIgA濃度極顯著降低(Plt;0.001),治療后,F(xiàn)MT-D組和FMT-SD組sIgA濃度均升高,且與H組無(wú)顯著差異(Pgt;0.05)。

2.5 犢牛腸道菌群組成結(jié)構(gòu)差異分析

2.5.1 Alpha多樣性

由圖6可知,D組和SD組犢牛的物種豐富度顯著低于H組犢牛(Plt;0.000 1和Plt;0.01),經(jīng)過(guò)FMT治療,F(xiàn)MT-D組和FMT-SD組的Chao1指數(shù)和Observed-features指數(shù)上升,并與H組無(wú)顯著差異(Pgt;0.05)。D組和SD組犢牛的Shannon指數(shù)和Simpson指數(shù)顯著低于H組犢牛(Plt;0.05和Plt;0.001)。經(jīng)FMT治療后,兩治療組的Shannon指數(shù)和Simpson指數(shù)上升并與H組無(wú)顯著差異(Pgt;0.05)。

2.5.2 Beta多樣性

利用Beta多樣性中PCoA分析的Unweighted-unifrac距離和PERMANOVA相似性分析對(duì)組間的腸道菌群結(jié)構(gòu)進(jìn)行比較,評(píng)估組間的腸道菌群結(jié)構(gòu)差異。如圖7所示,治療前D組和SD組犢牛的樣本點(diǎn)廣泛分布,D組和SD組犢牛腸道菌群結(jié)構(gòu)β多樣性與H組差異極顯著(Plt;0.001)。經(jīng)過(guò)FMT治療,樣本點(diǎn)逐漸向H組方向聚攏。

2.6 犢牛腸道菌群結(jié)構(gòu)與相對(duì)豐度差異分析

2.6.1 犢牛腸道菌群菌門組成與相對(duì)豐度差異分析

在H組、D組、SD組、FMT-D組及FMT-SD組犢牛腸道菌群共檢測(cè)出31個(gè)菌門。相對(duì)豐度前20的菌門如圖8A所示,其中厚壁菌門(Firmicutes)、擬桿菌門(Bacteroidota)、變形菌門(Proteobacteria)、梭桿菌門(Fusobacteriota)、放線菌門(Actinobacteriota)為優(yōu)勢(shì)菌門。

如圖8B所示,與H組犢牛相比,D組和SD組犢牛腸道菌群中梭桿菌門(Fusobacteriota)的相對(duì)豐度顯著升高(Plt;0.05)。治療后,F(xiàn)MT-D組的梭桿菌門(Fusobacteriota)相對(duì)豐度顯著下降,與H組無(wú)顯著差異(Pgt;0.05),而FMT-SD組的梭桿菌門(Fusobacteriota)相對(duì)豐度下降,但極顯著高于H組(Plt;0.01)。D組犢牛腸道菌群中變形菌門(Proteobacteria)的相對(duì)豐度極顯著高于H組(Plt;0.01),治療后下降并與H組無(wú)顯著差異(Pgt;0.05)。

2.6.2 犢牛腸道菌群菌屬組成與相對(duì)豐度差異比較

在H組、D組、SD組、FMT-D組及FMT-SD組犢牛腸道菌群共檢測(cè)出827個(gè)菌屬。平均相對(duì)豐度前0.1%的菌屬如圖9所示,其中乳桿菌屬(Lactobacillus)、擬桿菌屬(Bacteroides)、埃希氏-志賀菌屬(Escherichia_Shigella)、梭桿菌屬(Fusobacterium)、Clostridia_UCG_014、棲糞桿菌屬(Faecalibacterium)、布勞特氏菌屬(Blautia)、Tyzzerella、[Ruminococcus]_torques_group、Muribaculaceae、柯林斯氏菌屬(Collinsella)、UCG_005、[Ruminococcus]_gnavus_group、Lachnoclostridium、罕見(jiàn)小球菌屬(Subdoligranulum)、[Eubacterium]_coprostanoligenes_group、丁酸球菌屬(Butyricicoccus)、Rikenellaceae_RC9_gut_group、消化鏈球菌屬(Peptostreptococcus)、Clostridium_sensu_stricto_1、羅爾斯通氏菌屬(Ralstonia)、雙歧桿菌屬(Bifidobacterium)、不動(dòng)桿菌屬(Acinetobacter)為相對(duì)豐度大于1%的高豐度菌屬,其余低相對(duì)豐度菌屬如圖9。

結(jié)果如圖10A所示,與H組相比,D組和SD組犢牛腸道菌群中的[Ruminococcus]_gnavus_group、丁酸球菌屬(Butyricicoccus)和柯林斯氏菌屬(Collinsella)的相對(duì)豐度極顯著升高(Plt;0.01)。埃希-志賀菌屬(Escherichia_Shigella)、Tyzzerella和棲糞桿菌屬(Faecalibacterium)、梭桿菌屬(Fusobacterium)的相對(duì)豐度顯著升高(Plt;0.05)。D組犢牛的擬桿菌屬(Bacteroides)相對(duì)豐度和SD組的巨球形菌屬(Megasphaera)相對(duì)豐度均顯著高于H組(Plt;0.05)。

經(jīng)過(guò)治療,F(xiàn)MT-SD組和FMT-D組的Tyzzerella和柯林斯氏菌屬(Collinsella)相對(duì)豐度降低并與H組無(wú)顯著差異(Pgt;0.05)。FMT-D組的擬桿菌屬(Bacteroides)相對(duì)豐度降低并與H組無(wú)顯著差異(Pgt;0.05)。FMT-SD組的巨球形菌屬(Megasphaera)相對(duì)豐度降低并與H組無(wú)顯著差異(Pgt;0.05)。此外,F(xiàn)MT-SD組和FMT-D組的丁酸球菌屬(Butyricicoccus)相對(duì)豐度下降,但顯著高于H組(Plt;0.05)。FMT-SD組的棲糞桿菌屬(Faecalibacterium)相對(duì)豐度降低,而FMT-D組卻升高,二組均顯著高于H組(Plt;0.05)。FMT-D組的[Ruminococcus]_gnavus_group相對(duì)豐度降低,但顯著高于H組(Plt;0.05)。FMT-SD組的埃希氏-志賀氏菌屬(Escherichia_Shigella)和梭桿菌屬(Fusobacterium)相對(duì)豐度下降,但顯著高于H組(Plt;0.05),而FMT-D組的埃希氏-志賀氏菌屬(Escherichia_Shigella)和梭桿菌屬(Fusobacterium)相對(duì)豐度顯著下降,與H組無(wú)顯著差異(Pgt;0.05)。

另外如圖10B所示,與H組相比,D組和SD組犢牛的Muribaculaceae、UCG_005、Rikenellaceae_RC9_gut_group、[Eubacterium]_coprostanoligenes_group、龍包茨氏菌屬(Romboutsia)、震顫桿菌屬(Oscillibacter)、Christensenellaceae_R_7_group、Lachnospiraceae_NK4A136_group、另枝菌屬(Alistipes)、類梭菌屬(Paeniclostridium)、鼠腸單胞菌屬(Intestinimonas)、Clostridia_UCG_014、[Ruminococcus]_torques_group、Subdoligranulum、[Ruminococcus]_gauvreauii_group、布雷茲納克氏菌屬(Breznakia)、單球菌屬(Monoglobus)、布勞特氏菌屬(Blautia)相對(duì)豐度極顯著降低(Plt;0.01)。SD組的RF39相對(duì)豐度極顯著低于H組(Plt;0.0001)。

經(jīng)過(guò)治療,F(xiàn)MT-D組和FMT-SD組的Muribaculaceae、Rikenellaceae_RC9_gut_group、[Eubacterium]_coprostanoligenes_group、鼠腸單胞菌屬(Intestinimonas)、Clostridia_UCG_014、Subdoligranulum和布雷茲納克氏菌屬(Breznakia)的相對(duì)豐度升高并與H組無(wú)顯著差異(Pgt;0.05)。而FMT-D組和FMT-SD組的龍包茨氏菌屬(Romboutsia)、另枝菌屬(Alistipes)、布勞特氏菌屬(Blautia)相對(duì)豐度升高,但都顯著低于H組(Plt;0.05)。

FMT-D組的震顫桿菌屬(Oscillibacter)、類梭菌屬(Paeniclostridium)、[Ruminococcus]_torques_group、[Ruminococcus]_gauvreauii_group和單球菌屬(Monoglobus)的相對(duì)豐度上升,但顯著低于H組Plt;0.05),而FMT-SD組的上述菌屬相對(duì)豐度上升并與H組無(wú)顯著差異(Pgt;0.05)。同時(shí)FMT-SD組的UCG_005、Christensenellaceae_R_7_group、Lachnospiraceae_NK4A136_group相對(duì)豐度升高,但顯著低于H組(Plt;0.05),而FMT-D組的上述菌屬相對(duì)豐度上升并與H組無(wú)顯著差異(Pgt;0.05)。

3 討 論

3.1 FMT對(duì)腹瀉犢牛治療效果和日增重的影響

犢牛腹瀉是一種常見(jiàn)的幼畜疾病,已知有多種因素會(huì)直接或間接導(dǎo)致?tīng)倥8篂a并影響疾病的嚴(yán)重程度,多因素交織互作使得犢牛腹瀉難以得到有效控制[22]。在人類和其他動(dòng)物中,腸道菌群失調(diào)相關(guān)性疾病最適合接受FMT治療[23]。據(jù)報(bào)道,對(duì)非傳染性急性腹瀉的成年犬進(jìn)行單次FMT灌腸或7 d口服甲硝唑治療,雖然兩種治療方法在1周內(nèi)都改善了糞便的性狀,但4周后,F(xiàn)MT治療犬的糞便比甲硝唑治療犬的糞便更堅(jiān)固[24]。本研究中FMT顯著改善了腹瀉犢牛的糞便形態(tài),這說(shuō)明供體的腸道菌群在受體腸道定植,協(xié)助受體恢復(fù)腸道菌群多樣性,同時(shí)與致病菌爭(zhēng)奪營(yíng)養(yǎng)和定植資源,并激活受體免疫防御系統(tǒng),恢復(fù)受體的腸道屏障。

研究表明,F(xiàn)MT可降低感染沙門菌雛雞的死亡率和肝的炎癥病變,提高免疫力,改善消化吸收能力,促進(jìn)增重[25]。本研究發(fā)現(xiàn),治療后150 d,F(xiàn)MT-D組犢牛的日增重優(yōu)于FMT-SD組。一方面可能是FMT-D組和FMT-SD組犢牛擁有相同或相似的采食量,但FMT-D組犢牛未感染STEC,因此維持健康腸道所需的能量更少,可以有額外的能量來(lái)增加體重[26]。另一方面可能是STEC導(dǎo)致FMT-SD組犢牛隱窩深度增加,腸絨毛受損,降低了犢牛的消化吸收能力[27-28]。本研究表明,F(xiàn)MT治療可能會(huì)對(duì)犢牛的增重和生長(zhǎng)產(chǎn)生長(zhǎng)期影響。

3.2 FMT對(duì)犢牛腹瀉細(xì)胞因子和免疫球蛋白的影響

IL-1β可以抑制腸道鈉鉀ATP酶的活性,進(jìn)而抑制水、鈉吸收而導(dǎo)致腹瀉[29]。楊檸芝等[30]報(bào)道腹瀉羔羊的炎性因子IL-4、IL-6、IL-8顯著高于健康羔羊。王燕等[10]研究表明FMT治療可以顯著降低腹瀉羔羊的TNF-α、IFN-γ、IL-2、IL-6和IL-8。本研究中,F(xiàn)MT治療顯著降低了腹瀉犢牛血液中IL-1β、IL-6濃度,與已有研究結(jié)果一致。IL-10可以針對(duì)先天性和適應(yīng)性免疫反應(yīng)發(fā)揮免疫抑制功能,本研究發(fā)現(xiàn)FMT治療顯著降低了腹瀉犢牛血液中的IL-10濃度,以減少失控的炎癥反應(yīng)所造成的組織損傷[31-32]。IL-22可以反映先天免疫功能,也可以調(diào)節(jié)關(guān)鍵的腸黏膜愈合機(jī)制[33]。本研究中FMT顯著升高了腹瀉犢牛的IL-22濃度。sIgA水平可體現(xiàn)腸道免疫功能的強(qiáng)弱[34]。本研究發(fā)現(xiàn),F(xiàn)MT治療顯著提高了腹瀉犢牛糞便中的sIgA水平,這說(shuō)明FMT可以促進(jìn)犢牛的獲得性免疫功能及增強(qiáng)犢牛腸道屏障,與前人的研究結(jié)果相一致[35-36]。

3.3 FMT對(duì)腹瀉犢牛腸道菌群組成結(jié)構(gòu)的影響

據(jù)報(bào)道,腸道菌群中厚壁菌門、擬桿菌門、放線菌門、變形菌門、梭桿菌門、疣微菌門為優(yōu)勢(shì)菌門,其中厚壁菌門和擬桿菌門占腸道菌群的90%[37]。腸道菌群的組成和功能以及對(duì)宿主生理、代謝、免疫和疾病的影響不僅僅體現(xiàn)在高豐度物種上,一些個(gè)體低豐度物種的基因組中含有更多參與聚合碳水化合物微生物降解途徑的編碼基因,這些低豐度亞群可能對(duì)結(jié)腸微生物的各種代謝和發(fā)酵有很大貢獻(xiàn),并且這些代謝和發(fā)酵對(duì)宿主有益且至關(guān)重要[38]。例如,乳酸菌的單個(gè)成員通常占不到人體腸道菌群的0.1%[39]。因此,本研究對(duì)低豐度菌門與菌屬進(jìn)行了挖掘分析,發(fā)現(xiàn)D組和SD組犢牛腸道菌群中梭桿菌門(Fusobacteria)和變形菌門(Proteobacteria)相對(duì)豐度顯著升高。這與Zeineldin等[40]研究發(fā)現(xiàn)腹瀉犢牛的變形菌門豐度顯著升高的結(jié)果相似。同時(shí)變形菌門(Proteobacteria)和梭桿菌門(Fusobacteria)與腸道菌群失調(diào)和炎癥反應(yīng)顯著相關(guān)[41]。D組和SD組犢牛腸道菌群中的埃希氏-志賀菌屬(Escherichia_Shigella)、Tyzzerella、[Ruminococcus]_gnavus_group、丁酸球菌屬(Butyricicoccus)、柯林斯氏菌屬(Collinsella)和梭桿菌屬(Fusobacterium)相對(duì)豐度顯著升高。據(jù)報(bào)道,[Ruminococcus]-gnavus-group在腸道和非腸道相關(guān)疾病中的比例過(guò)高,如活躍期炎癥性腸病通常伴隨著[Ruminococcus]-gnavus-group的增加[42-43]。Fan等[44]發(fā)現(xiàn)犢牛異常的糞便中Tyzzerella和梭桿菌屬(Fusobacterium)的相對(duì)豐度較高。同時(shí)馬結(jié)腸炎與梭桿菌屬(Fusobacterium)的相對(duì)豐度增加有關(guān)[45]。埃希氏-志賀菌屬(Escherichia_Shigella)是引起人和動(dòng)物細(xì)菌性腹瀉的常見(jiàn)病原菌。有研究發(fā)現(xiàn),新確診Ⅱ型糖尿病患者腸道菌群中的柯林斯氏菌屬(Collinsella)相對(duì)豐度增加[46-47]。筆者團(tuán)隊(duì)推測(cè),這些致病菌屬的大量增殖可能是導(dǎo)致?tīng)倥8篂a的原因之一,治療后FMT-D組和FMT-SD組犢牛腸道菌群中致病菌門或菌屬的相對(duì)豐度不同程度下降。Muribaculaceae可以產(chǎn)生乙酸鹽和丙酸鹽,這些短鏈脂肪酸可以提高反芻動(dòng)物的生長(zhǎng)性能和瘤胃發(fā)酵功能并對(duì)酮病有積極作用[48-49]。Eubacterium_coprostanoligenes_group可以降低膽固醇,并在腸道中具有抗炎作用[50]。Lachnospiraceae_NK4A136_group被認(rèn)為是潛在的益生菌屬,其與膽汁酸正相關(guān),參與膽固醇穩(wěn)態(tài)[51]。本研究發(fā)現(xiàn),治療后FMT-D組和FMT-SD組犢牛腸道菌群中Muribaculaceae、[Eubacterium]_coprostanoligenes_group和Lachnospiraceae_NK4A136_group等其他一些潛在益生菌屬的相對(duì)豐度不同程度上升。結(jié)果表明FMT顯著改善腹瀉犢牛腸道菌群結(jié)構(gòu),但在FMT-D組和FMT-SD組提高潛在益生菌屬相對(duì)豐度和降低致病菌屬的相對(duì)豐度仍然存在差異。

4 結(jié) 論

本研究表明,F(xiàn)MT對(duì)犢牛無(wú)特異病原性腹瀉和STEC導(dǎo)致的細(xì)菌性腹瀉均有顯著治療效果。FMT顯著降低了無(wú)特異病原性腹瀉犢牛和STEC導(dǎo)致的細(xì)菌性腹瀉犢牛腸道菌群中致病性菌屬的相對(duì)豐度,同時(shí)增加了潛在益生菌屬的相對(duì)豐度,使腹瀉犢牛腸道菌群組成結(jié)構(gòu)趨向健康,犢牛免疫功能顯著增強(qiáng),F(xiàn)MT治療可能對(duì)犢牛的增重和生長(zhǎng)產(chǎn)生長(zhǎng)期有益影響。但FMT對(duì)這兩種腹瀉犢牛腸道菌群的恢復(fù)過(guò)程中存在一定差異。腸道菌群代謝物對(duì)宿主生理功能的影響值得進(jìn)一步研究。

參考文獻(xiàn)(References):

[1] JI S K,JIANG T,YAN H,et al.Ecological restoration of antibiotic-disturbed gastrointestinal microbiota in foregut and hindgut of cows[J].Front Cell Infect Microbiol,2018,8:79.

[2] 吳兆海.糞菌移植對(duì)被動(dòng)免疫失敗犢牛腸道屏障功能及腸道菌群構(gòu)建的影響[D].北京:中國(guó)農(nóng)業(yè)大學(xué),2018.

WU Z H.Effects of fecal microbiota transplantation on intestinal barrier function and microbiota establishment in calves with failure of passive immune transfer[D].Beijing:China Agricultural University,2018.(in Chinese)

[3] NIEDERWERDER M C,CONSTANCE L A,ROWLAND R R R,et al.Fecal microbiota transplantation is associated with reduced morbidity and mortality in porcine circovirus associated disease[J].Front Microbiol,2018,9:1631.

[4] KHORUTS A,SADOWSKY M J.Understanding the mechanisms of faecal microbiota transplantation[J].Nat Rev Gastroenterol Hepatol,2016,13(9):508-516.

[5] SURAWICZ C M,BRANDT L J,BINION D G,et al.Guidelines for diagnosis,treatment,and prevention of clostridium difficile infections[J].Am J Gastroenterol,2013,108(4):478-498.

[6] WANG Y,ZHANG S,BORODY T J,et al.Encyclopedia of fecal microbiota transplantation:a review of effectiveness in the treatment of 85 diseases[J].Chin Med J,2022,135(16):1927-1939.

[7] 國(guó)家衛(wèi)生健康委,國(guó)家中醫(yī)藥局,國(guó)家疾控局.關(guān)于印發(fā)全國(guó)醫(yī)療服務(wù)項(xiàng)目技術(shù)規(guī)范(2023年版)的通知[EB/OL].(2023-09-20)[2023-10-10].http:∥www.nhc.gov.cn/caiwusi/s7785t/202309/914aec9618944ee2b36621d33517e576.shtml.

National Health Commission,State Administration of Traditional Chinese Medicine,National Bureau of Disease Control and Prevention.Circular on the issuance of the national technical specification for medical services programs (2023 edition)[EB/OL].(2023-09-20)[2023-10-10].http:∥www.nhc.gov.cn/caiwusi/s7785t/202309/914aec9618944ee2b36621 d33517e576.shtml.(in Chinese)

[8] PEREIRA G Q,GOMES L A,SANTOS I S,et al.Fecal microbiota transplantation in puppies with canine parvovirus infection[J].J Vet Intern Med,2018,32(2):707-711.

[9] TANG W J,CHEN D W,YU B,et al.Capsulized faecal microbiota transplantation ameliorates post-weaning diarrhoea by modulating the gut microbiota in piglets[J].Vet Res,2020,51(1):55.

[10] 王 燕,滕曉曉,楊檸芝,等.糞菌移植法治療非特異病原性羔羊腹瀉的效果初報(bào)[J].畜牧獸醫(yī)學(xué)報(bào),2020,51(8):1878-1885.

WANG Y,TENG X X,YANG N Z,et al.Preliminary report of the therapeutic effect of fecal microbiota transplantation on non-specific pathogenic diarrhea in suckling lambs[J].Acta Veterinaria et Zootechnica Sinica,2020,51(8):1878-1885.(in Chinese)

[11] MCGOVERN K.Approach to the adult horse with chronic diarrhoea[J].Livestock,2013,18(5):189-194.

[12] FEARY D J,HASSEL D M.Enteritis and colitis in horses[J].Vet Clin North Am Equine Pract,2006,22(2):437-479.

[13] MULLEN K R,YASUDA K,DIVERS T J,et al.Equine faecal microbiota transplant:current knowledge,proposed guidelines and future directions[J].Equine Vet Educ,2018,30(3):151-160.

[14] KIM H S,WHON T W,SUNG H,et al.Longitudinal evaluation of fecal microbiota transplantation for ameliorating calf diarrhea and improving growth performance[J].Nat Commun,2021,12(1):161.

[15] VORA G J,MEADOR C E,STENGER D A,et al.Nucleic acid amplification strategies for DNA microarray-based pathogen detection[J].Appl Environ Microbiol,2004,70(5):3047-3054.

[16] CAMMAROTA G,IANIRO G,KELLY C R,et al.International consensus conference on stool banking for faecal microbiota transplantation in clinical practice[J].Gut,2019,68(12):2111-2121.

[17] AAS J,GESSERT C E,BAKKEN J S.Recurrent clostridium difficile colitis:case series involving 18 patients treated with donor stool administered via a nasogastric tube[J].Clin Infect Dis,2003,36(5):580-585.

[18] HU J,CHEN L L,TANG Y M,et al.Standardized preparation for fecal microbiota transplantation in pigs[J].Front Microbiol,2018,9:1328.

[19] YANG H,YANG M,F(xiàn)ANG S M,et al.Evaluating the profound effect of gut microbiome on host appetite in pigs[J].BMC Microbiol,2018,18(1):215.

[20] WANG X F,TSAI T,ZUO B,et al.Donor age and body weight determine the effects of fecal microbiota transplantation on growth performance,and fecal microbiota development in recipient pigs[J].J Anim Sci Biotechnol,2022,13(1):49.

[21] ZHANG T,LU G C,ZHAO Z,et al.Washed microbiota transplantation vs. Manual fecal microbiota transplantation:clinical findings,animal studies and in vitro screening[J].Protein Cell,2020,11(4):251-266.

[22] CHO Y I,YOON K J.An overview of calf diarrhea-infectious etiology,diagnosis,and intervention[J].J Vet Sci,2014,15(1):1-17.

[23] MULLISH B H,QURAISHI M N,SEGAL J P,et al.The use of faecal microbiota transplant as treatment for recurrent or refractory clostridium difficile infection and other potential indications:joint british society of gastroenterology (BSG) and healthcare infection society (HIS) guidelines[J].Gut,2018,67(11):1920-1941.

[24] CHAITMAN J,ZIESE A L,PILLA R,et al.Fecal microbial and metabolic profiles in dogs with acute diarrhea receiving either fecal microbiota transplantation or oral metronidazole[J].Front Vet Sci,2020,7:192.

[25] WANG X,WU X J,CONG X Y,et al.The functional role of fecal microbiota transplantation on salmonella enteritidis infection in chicks[J].Vet Microbiol,2022,269:109449.

[26] FODITSCH C,VAN VLECK PEREIRA R,GANDA E K,et al.Oral administration of faecalibacterium prausnitzii decreased the incidence of severe diarrhea and related mortality rate and increased weight gain in preweaned dairy heifers[J].PLoS One,2015,10(12):e0145485.

[27] XIANG L,YING Z,XUE M,et al.A novel lactobacillus bulgaricus isolate can maintain the intestinal health,improve the growth performance and reduce the colonization of E. coli O157:H7 in broilers[J].Br Poult Sci,2022,63(5):621-632.

[28] 任書(shū)男,敖日格樂(lè),呂文亭,等.腹瀉犢牛源大腸桿菌對(duì)小鼠的致病性[J].微生物學(xué)通報(bào),2022,49(2):645-658.

REN S N,AO R G L,L W T,et al.Pathogenicity of Escherichia coli strains isolated from calves with diarrhea to mice[J].Microbiology China,2022,49(2):645-658.(in Chinese)

[29] 陳 浩,柯美云.腸易激綜合征與炎癥關(guān)系的研究現(xiàn)狀[J].國(guó)際消化病雜志,2007,27(3):172-174,177.

CHEN H,KE M Y.Current research situation of the relationship between irritable bowel syndrome and inflammation[J].International Journal of Digestive Diseases,2007,27(3):172-174,177.(in Chinese)

[30] 楊檸芝,李 婷,王 燕,等.斷奶前后非特異病原性腹瀉羔羊生長(zhǎng)生理及腸道菌群差異性比較[J].中國(guó)農(nóng)業(yè)科學(xué),2021,54(2):422-434.

YANG N Z,LI T,WANG Y,et al.Comparison of growth physiology and gut microbiota between healthy and diarrheic lambs in pre-and post-weaning period[J].Scientia Agricultura Sinica,2021,54(2):422-434.(in Chinese)

[31] ENGELHARDT K R,GRIMBACHER B.IL-10 in humans:lessons from the gut,IL-10/IL-10 receptor deficiencies,and IL-10 polymorphisms[M]∥FILLATREAU S,O′GARRA A.Interleukin-10 in Health and Disease.Berlin:Springer,2014:1-18.

[32] GABRY?OV L,HOWES A,SARAIVA M,et al.The regulation of IL-10 expression[M]∥FILLATREAU S,O′GARRA A.Interleukin-10 in Health and Disease.Berlin:Springer,2014:157-190.

[33] TSAI P Y,ZHANG B K,HE W Q,et al.IL-22 upregulates epithelial claudin-2 to drive diarrhea and enteric pathogen clearance[J].Cell Host Microbe,2017,21(6):671-681.e4.

[34] CELI P,VERLHAC V,PéREZ CALVO E,et al.Biomarkers of gastrointestinal functionality in animal nutrition and health[J].Anim Feed Sci Technol,2019,250:9-31.

[35] 向全航.菌群發(fā)育窗口期早期干預(yù)對(duì)仔豬腸道菌群與腸道先天性免疫系統(tǒng)發(fā)育的影響及機(jī)制[D].武漢:華中農(nóng)業(yè)大學(xué),2020.

XIANG Q H.Effect and mechanism of intervention during window period on gut microbiota and intestinal innate immune development in piglets[D].Wuhan:Huazhong Agricultural University,2020.(in Chinese)

[36] MA X,ZHANG Y C,XU T T,et al.Early-life intervention using exogenous fecal microbiota alleviates gut injury and reduce inflammation caused by weaning stress in piglets[J].Front Microbiol,2021,12:671683.

[37] ARUMUGAM M,RAES J,PELLETIER E,et al.Enterotypes of the human gut microbiome[J].Nature,2011,473(7346):174-180.

[38] JIN H,YOU L J,ZHAO F Y,et al.Hybrid,ultra-deep metagenomic sequencing enables genomic and functional characterization of low-abundance species in the human gut microbiome[J].Gut Microbes,2022,14(1):2021790.

[39] PASOLLI E,DE FILIPPIS F,MAURIELLO I E,et al.Large-scale genome-wide analysis links lactic acid bacteria from food with the gut microbiome[J].Nat Commun,2020,11(1):2610.

[40] ZEINELDIN M,ALDRIDGE B,LOWE J.Dysbiosis of the fecal microbiota in feedlot cattle with hemorrhagic diarrhea[J].Microb Pathogen,2018,115:123-130.

[41] SINGH P,TEAL T K,MARSH T L,et al.Intestinal microbial communities associated with acute enteric infections and disease recovery[J].Microbiome,2015,3:45.

[42] PAL D,NASKAR M,BERA A,et al.Chemical synthesis of the pentasaccharide repeating unit of the o-specific polysaccharide from Ruminococcus gnavus[J].Carbohydr Res,2021,507:108384.

[43] CROST E H,COLETTO E,BELL A,et al.Ruminococcus gnavus:friend or foe for human health[J].FEMS Microbiol Rev,2023,47(2):fuad014.

[44] FAN P X,KIM M,LIU G,et al.The gut microbiota of newborn calves and influence of potential probiotics on reducing diarrheic disease by inhibition of pathogen colonization[J].Front Microbiol,2021,12:772863.

[45] COSTA M C,ARROYO L G,ALLEN-VERCOE E,et al.Comparison of the fecal microbiota of healthy horses and horses with colitis by high throughput sequencing of the V3-V5 region of the 16s rRNA gene[J].PLoS One,2012,7(7):e41484.

[46] ZHAO L J,LOU H X,PENG Y,et al.Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications[J].Endocrine,2019,66(3):526-537.

[47] ZHANG X Y,SHEN D Q,F(xiàn)ANG Z W,et al.Human gut microbiota changes reveal the progression of glucose intolerance[J].PLoS One,2013,8(8):e71108.

[48] FLINT H J,SCOTT K P,DUNCAN S H,et al.Microbial degradation of complex carbohydrates in the gut[J].Gut Microbes,2012,3(4):289-306.

[49] YU Y B,YANG W J,LI Y Q,et al.Enteroendocrine cells:sensing gut microbiota and regulating inflammatory bowel diseases[J].Inflamm Bowel Dis,2020,26(1):11-20.

[50] KOPPEL N,MAINI REKDAL V,BALSKUS E P.Chemical transformation of xenobiotics by the human gut microbiota[J].Science,2017,356(6344):eaag2770.

[51] HUANG S M,PANG D R,LI X,et al.A sulfated polysaccharide from Gracilaria lemaneiformis regulates cholesterol and bile acid metabolism in high-fat diet mice[J].Food Funct,2019,10(6):3224-3236.

(編輯 范子娟)

猜你喜歡
腸道菌群腹瀉效果評(píng)價(jià)
高鉛血癥兒童腸道菌群構(gòu)成變化研究
舒肝健脾方治療腹瀉型腸易激綜合征68例療效觀察
腸炎寧顆粒治療小兒腸炎疾病的可行性分析
規(guī)?;i場(chǎng)仔豬腹瀉及防控措施
120例糖尿病患者社區(qū)護(hù)理干預(yù)效果評(píng)價(jià)
植物保護(hù)劑防治害蟲(chóng)效果的評(píng)價(jià)研究
氣相色譜法快速分析人唾液中7種短鏈脂肪酸
肝臟射頻消融術(shù)應(yīng)用全面細(xì)致化護(hù)理的效果評(píng)價(jià)
精細(xì)化管理應(yīng)用于醫(yī)院病案管理中的效果評(píng)價(jià)
大鼠腸道菌群對(duì)芍藥苷體外代謝轉(zhuǎn)化的研究
新兴县| 海伦市| 兴文县| 卫辉市| 九龙城区| 睢宁县| 甘南县| 新津县| 长汀县| 西藏| 察雅县| 广宁县| 吴江市| 古蔺县| 衡水市| 英超| 璧山县| 鸡西市| 象山县| 郑州市| 麻江县| 孟州市| 广安市| 佛坪县| 达尔| 陵水| 繁峙县| 永胜县| 昭通市| 延津县| 泰兴市| 漠河县| 海丰县| 平乡县| 富平县| 明水县| 文昌市| 饶阳县| 肃宁县| 木兰县| 邵东县|