国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

非人靈長類多能干細(xì)胞體外培養(yǎng)和誘導(dǎo)分化的研究進(jìn)展

2024-11-08 00:00:00沈可成朱家橋劉宗平
畜牧獸醫(yī)學(xué)報(bào) 2024年10期

摘 要: 干細(xì)胞在疾病發(fā)生、細(xì)胞治療、藥物篩選和臨床應(yīng)用等方面具有巨大價(jià)值。自日本科學(xué)家Shinya Yamanaka發(fā)現(xiàn)誘導(dǎo)多能干細(xì)胞以來,相關(guān)的研究立即成為研究熱點(diǎn)并持續(xù)至今。小鼠干細(xì)胞的研究為其它動(dòng)物的相關(guān)研究開辟了道路,但在藥物篩選和疾病治療等方面有很大局限性。非人靈長類與人類具有更高的基因同源性,在生理、病理、生殖、藥理、神經(jīng)等多方面與人類高度相似,是研究人類疾病和開發(fā)人用藥物的理想動(dòng)物模型。非人靈長類研究也是新藥在進(jìn)入臨床實(shí)驗(yàn)前必須的一個(gè)環(huán)節(jié)。非人靈長類干細(xì)胞的研究在疾病的機(jī)理研究和藥物開發(fā)中越發(fā)重要,同時(shí)避免了倫理問題。本文從體外培養(yǎng)系統(tǒng)的優(yōu)化和誘導(dǎo)分化的方法兩個(gè)方面對(duì)非人靈長類多能干細(xì)胞的相關(guān)研究進(jìn)行了綜述,以期為非人靈長類干細(xì)胞進(jìn)一步深入研究提供參考。

關(guān)鍵詞: 非人靈長類;多能干細(xì)胞;體外培養(yǎng);誘導(dǎo)分化

中圖分類號(hào):Q254

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):0366-6964(2024)10-4278-12

收稿日期:2023-12-05

基金項(xiàng)目:國家重點(diǎn)研發(fā)計(jì)劃(2022YFF0710901);江蘇高校優(yōu)勢學(xué)科建設(shè)工程項(xiàng)目(PAPD)

作者簡介:沈可成(1999-),男,浙江紹興人,碩士, 主要從事動(dòng)物生殖發(fā)育研究,E-mail: kcshen1999@163.com

*通信作者:朱家橋,主要從事動(dòng)物生殖發(fā)育研究,E-mail: jqzhu1998@163.com

Research Progress on in vitro Culture and Induced Differentiation of Non-human

Primate Pluripotent Stem Cells

SHEN" Kecheng1, ZHU" Jiaqiao1,2*, LIU" Zongping1,2

(1.College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;

2.Jiangsu

Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses,

Yangzhou 225009, China)

Abstract:" Stem cells have great value in disease occurrence, cell therapy, drug screening, and clinical applications. Since Shinya Yamanaka, a Japanese scientist, discovered induced pluripotent stem cells (iPSCs), the relevant research has become a research hotspot and up to the present. The study of mouse stem cells has opened up a path for the related research in other animals, but there are significant limitations in drug screening and disease treatment. Non-human primates have higher genetic homology with humans and are highly similar to humans in physiology, pathology, reproduction, pharmacology, nerves, and other aspects. They are ideal animal models for studying human diseases and developing drugs for human. Research on non-human primates is also a necessary step for a new drugs before entering clinical trials. The study of non-human primate stem cells is becoming important in the mechanism of diseases and drug development, while avoiding ethical issues. This article reviews the related research on non-human primate pluripotent stem cells including optimization of in vitro culture systems and methods of inducing differentiation, aiming to provide reference for further in-depth research on non-human primate stem cells.

Key words: non-human primate; pluripotent stem cells; in vitro culture; induced differentiation

*Corresponding author:" ZHU Jiaqiao, E-mail: jqzhu1998@163.com

干細(xì)胞(stem cells,SCs)是一種具有自我更新和分化潛能的細(xì)胞,根據(jù)發(fā)育階段分為胚胎干細(xì)胞(embryonic stem cells,ESCs)和成體干細(xì)胞,依分化潛能又可分為全能干細(xì)胞、多能干細(xì)胞(pluripotent stem cells, PSCs)和專能干細(xì)胞。2006年,日本科學(xué)家Shinya Yamanaka發(fā)現(xiàn)了誘導(dǎo)多能干細(xì)胞(induced pluripotent stem cells,iPSCs),使得PSCs(主要是ESCs和iPSCs)成為了干細(xì)胞領(lǐng)域最主要的研究對(duì)象和研究熱點(diǎn)。

ESCs的分離和培養(yǎng)最早是由Evans和Kaufman于1981年在小鼠上完成的[1];隨后,其它動(dòng)物(如綿羊、豬和兔等)的ESCs相繼建立。1995年,威斯康辛的Thomson團(tuán)隊(duì)率先從獼猴囊胚中分離出ESCs(R278.5)[2],這是世界上第一個(gè)非人靈長類胚胎干細(xì)胞(non-human primate embryonic stem cells,NHP-ESCs);3年后,他們又從人的早期胚胎中分離出了ESCs[3]。ESCs來源于早期胚胎的內(nèi)細(xì)胞團(tuán),具有高度的增殖能力和分化潛力,能分化成體內(nèi)所有細(xì)胞類型,已被廣泛應(yīng)用于發(fā)育生物學(xué)、生理學(xué)和再生醫(yī)學(xué)等方面且潛能巨大,但由于倫理和政治等因素的限制,人ESCs(human embryonic stem cells,hESCs)的研究面臨諸多限制,而其他物種與人類的系統(tǒng)發(fā)育存在顯著差異,因此,最接近hESCs的NHP-ESCs可以有效代替hESCs進(jìn)行多方面的研究。另一方面,iPSCs具有類似于ESCs的特性[4],且iPSCs來自患者自身的細(xì)胞,理論上可以避免移植排斥反應(yīng),適合進(jìn)行個(gè)性化醫(yī)療和疾病模型的構(gòu)建,在一定程度上替代ESCs成為了基礎(chǔ)研究和未來細(xì)胞治療的新選擇,同時(shí)避免了從囊胚分離ESCs的種種限制和倫理要求,但值得注意的是iPSCs可能保留有成體細(xì)胞的遺傳記憶和突變,存在潛在的腫瘤風(fēng)險(xiǎn),應(yīng)定期進(jìn)行遺傳完整性分析[5]。2008年,中國科學(xué)家成功獲得了第一株逆轉(zhuǎn)錄病毒介導(dǎo)的非人靈長類誘導(dǎo)多能干細(xì)胞(non-human primate induced pluripotent stem cells,NHP-iPSCs)[6]。目前,通過對(duì)NHP-PSCs進(jìn)行培養(yǎng)和誘導(dǎo)分化已經(jīng)成功構(gòu)建各類疾病模型,在研究疾病發(fā)生機(jī)制、發(fā)生發(fā)展、藥物篩選中發(fā)揮著重要作用。且隨著人類細(xì)胞移植、器官再生等個(gè)性化醫(yī)療技術(shù)的興起,在進(jìn)入臨床試驗(yàn)前,通過NHP-PSCs進(jìn)行安全性和有效性的驗(yàn)證是必須的。另外NHP-PSCs對(duì)于人PSCs(human pluripotent stem cells, hPSCs)的研究及應(yīng)用具有不可替代的作用。非人靈長類多能干細(xì)胞(主要是NHP-ESCs和NHP-iPSCs)的研究起初多借鑒人和小鼠的相關(guān)研究,然而物種間的巨大差異使得非人靈長類的相關(guān)研究并不如預(yù)期的順利,還需進(jìn)一步優(yōu)化或重新建立適合靈長類的研究體系。

1 PSCs(ESCs和iPSCs)的培養(yǎng)與傳代

干細(xì)胞培養(yǎng)的基本要求包括,細(xì)胞增殖、干細(xì)胞特性的維持、分化能力的保持、細(xì)胞系的低溫保存等。目前已建立多種培養(yǎng)體系,都能成功支持干細(xì)胞的附著、生長、穩(wěn)定傳代,但各有優(yōu)缺。一個(gè)完整的干細(xì)胞培養(yǎng)體系主要有幾個(gè)部分組成,包括飼養(yǎng)層細(xì)胞或基質(zhì)、血清或血清替代物和細(xì)胞因子。合適的傳代方式也是維持干細(xì)胞穩(wěn)定傳代的重要因素,因此基于實(shí)驗(yàn)?zāi)康倪x擇合適的培養(yǎng)體系和傳代方式是至關(guān)重要的。

1.1 培養(yǎng)體系

1.1.1 飼養(yǎng)層細(xì)胞或基質(zhì)

干細(xì)胞的傳統(tǒng)培養(yǎng)方式是利用飼養(yǎng)層細(xì)胞進(jìn)行培養(yǎng)。飼養(yǎng)層細(xì)胞是指一些特殊細(xì)胞經(jīng)有絲分裂阻斷劑或輻射(如絲裂霉素C或γ射線)處理后的單層細(xì)胞,其保持了細(xì)胞活力但不能生長增殖分化,主要作用是促進(jìn)干細(xì)胞增殖、抑制干細(xì)胞分化和維持干細(xì)胞多能性。Thomson團(tuán)隊(duì)就是用γ射線處理后的小鼠胚胎成纖維細(xì)胞(mouse embryonic fibroblast,MEF)作為飼養(yǎng)層建立了第一個(gè)NHP-ESCs,其傳代超過一年仍然保持正常XY核型且未分化[2]。絲裂霉素C處理的小鼠成纖維細(xì)胞系(STO)也可以作為飼養(yǎng)層成功建立食蟹猴的ESCs[7]。至今,飼養(yǎng)層細(xì)胞培養(yǎng)仍然是最常用的PSCs培養(yǎng)方案且被認(rèn)為是維持干細(xì)胞特性的最佳培養(yǎng)方案之一。

飼養(yǎng)層細(xì)胞主要通過分泌各種細(xì)胞因子來維持NHP-ESCs的生長;但是不同飼養(yǎng)層細(xì)胞所分泌細(xì)胞因子的含量和種類也有所不同[8-9],進(jìn)而影響NHP-ESCs的生長和特性的維持。例如小鼠飼養(yǎng)層細(xì)胞和人飼養(yǎng)層細(xì)胞都產(chǎn)生激活素A,且前者產(chǎn)量多于后者;但是小鼠飼養(yǎng)層細(xì)胞不具備分泌FGF-2的能力,而人飼養(yǎng)層細(xì)胞則分泌大量FGF-2。使用異種飼養(yǎng)層細(xì)胞培養(yǎng)干細(xì)胞時(shí)也存在一定的風(fēng)險(xiǎn)。有文獻(xiàn)報(bào)道,用MEF和動(dòng)物源性血清替代物做飼養(yǎng)層細(xì)胞來培養(yǎng)hESCs時(shí),檢測到一種具有免疫原性的非人唾液酸Neu5GC,這種異源性的產(chǎn)物可能會(huì)使得ESCs用于臨床時(shí)產(chǎn)生免疫反應(yīng),進(jìn)而導(dǎo)致細(xì)胞死亡[10]。在NHP-ESCs的培養(yǎng)中,還未見此類報(bào)道。

由于飼養(yǎng)層細(xì)胞未被完全定義,異源飼養(yǎng)層細(xì)胞還有潛在風(fēng)險(xiǎn),除了使用同物種飼養(yǎng)層細(xì)胞外,還開發(fā)出一種無飼養(yǎng)層細(xì)胞培養(yǎng)體系,使用基質(zhì)膠代替飼養(yǎng)層細(xì)胞,但需加入多種細(xì)胞因子來維持干細(xì)胞的生長,這也是干細(xì)胞培養(yǎng)的一種理想方法。各種不同類型的基質(zhì)被開發(fā)出來,例如Matrigel基質(zhì)膠、Geltrex基質(zhì)膠、黏連蛋白、可溶性膠原蛋白、殼聚糖和水凝膠等(表1)。與此同時(shí),由于生物類基質(zhì)有引入異源物質(zhì)的風(fēng)險(xiǎn),需要謹(jǐn)慎應(yīng)用于人醫(yī)臨床移植,因此代替飼養(yǎng)層細(xì)胞的人工合成基質(zhì)也已被開發(fā)出來,可用于未分化干細(xì)胞的增殖培養(yǎng)[11],代替飼養(yǎng)層細(xì)胞的理想基質(zhì)應(yīng)當(dāng)允許干細(xì)胞的長期培養(yǎng)和增殖,并能維持干細(xì)胞的干性和遺傳完整性;若能同時(shí)滿足大規(guī)模制造的要求,將加速干細(xì)胞的臨床應(yīng)用。使用重組DNA技術(shù)制備非動(dòng)物源的基質(zhì)蛋白,或?qū)θ斯ず铣苫|(zhì)進(jìn)行優(yōu)化,將有可能滿足這些要求。

1.1.2 血清或血清替代物

胎牛血清(fetal bovine serum,F(xiàn)BS)是細(xì)胞培養(yǎng)中最常使用的血清之一,但被認(rèn)為是NHP-ESCs培養(yǎng)中的異源物質(zhì)且未被完全識(shí)別定義,會(huì)帶來潛在風(fēng)險(xiǎn)。為了減少這種風(fēng)險(xiǎn),使用人源或猴源的血清替換FBS來培養(yǎng)NHP-ESCs,但是研究發(fā)現(xiàn),hESCs在人血清中傳代10代之后的分化率顯著升高[18]。于是,血清替代物的研究應(yīng)運(yùn)而生。Knockout Serum Replacement(KSR)于1998年被開發(fā)出來用于替代血清[19],其可以保持小鼠ES細(xì)胞處于未分化狀態(tài);在之后的NHP-ESCs和NHP-iPSCs的飼養(yǎng)層細(xì)胞培養(yǎng)體系或無飼養(yǎng)層細(xì)胞培養(yǎng)體系中其同樣可以作為血清替代物并沿用至今[6,20]。但是KSR僅僅是血清替代物,并沒有徹底排除動(dòng)物源成分。也有研究者嘗試用完全無血清的培養(yǎng)基來培養(yǎng)猴ESCs,這種培養(yǎng)基含有BSA、IGF-1、TGF-a、bFGF、酸性成纖維細(xì)胞生長因子(acidic fibroblast growth factor,aFGF)、雌二醇和孕酮等;但是,在此之前,必須先將猴ESCs在含血清培養(yǎng)基中培養(yǎng)48h后,才能在這種無血清培養(yǎng)基中維持猴ESCs的增殖和不分化特性[21]。血清的完全替代物和動(dòng)物源成分的徹底排除可能是未來干細(xì)胞應(yīng)用于臨床之前需要解決的問題之一。

1.1.3 細(xì)胞因子

無論是在飼養(yǎng)層細(xì)胞培養(yǎng)體系還是無飼養(yǎng)層細(xì)胞培養(yǎng)體系中,細(xì)胞因子都是干細(xì)胞維持多能性以及大規(guī)模體外增殖培養(yǎng)的必要條件之一,在飼養(yǎng)層細(xì)胞培養(yǎng)體系中,細(xì)胞因子多由飼養(yǎng)層細(xì)胞自身分泌,根據(jù)培養(yǎng)的干細(xì)胞類型,無需或僅需少量添加額外的細(xì)胞因子。在無飼養(yǎng)層細(xì)胞培養(yǎng)體系中,包括使用條件培養(yǎng)基(conditioned medium)和化學(xué)定義培養(yǎng)基(chemical-defined medium)兩種方法。

條件培養(yǎng)基是指將培養(yǎng)過飼養(yǎng)層細(xì)胞的培養(yǎng)基除去飼養(yǎng)層細(xì)胞,取其上清液,其中含有大量來源于飼養(yǎng)層細(xì)胞的蛋白和細(xì)胞因子,可直接用于培養(yǎng)其它細(xì)胞或作為其它培養(yǎng)基的添加成分[22]。但是,由于條件培養(yǎng)基中來源于飼養(yǎng)層細(xì)胞的蛋白和細(xì)胞因子維系干細(xì)胞增殖和未分化狀態(tài)的機(jī)制是十分復(fù)雜的,尚不完全清楚;且條件培養(yǎng)基首先依賴于飼養(yǎng)層細(xì)胞的培養(yǎng),因此會(huì)出現(xiàn)不穩(wěn)定和可重復(fù)性不高的情況,所以仍需要對(duì)條件培養(yǎng)基進(jìn)行深入研究和優(yōu)化。

化學(xué)定義培養(yǎng)基是在條件培養(yǎng)基的基礎(chǔ)上進(jìn)一步發(fā)展而來的。比條件培養(yǎng)體系具有更加明確的化學(xué)屬性,其中的各個(gè)組分都盡可能被定義或識(shí)別,使用基質(zhì)膠和血清替代物來代替飼養(yǎng)層細(xì)胞和血清,并加入多種細(xì)胞因子,以確保減少異源性物質(zhì)以此來減少干細(xì)胞臨床應(yīng)用時(shí)的風(fēng)險(xiǎn),同時(shí)提高培養(yǎng)系統(tǒng)的重復(fù)性,為實(shí)現(xiàn)干細(xì)胞的大規(guī)模培養(yǎng)提供可能。研究發(fā)現(xiàn),靈長類干細(xì)胞的化學(xué)定義培養(yǎng)基明顯比其它細(xì)胞復(fù)雜許多,通常需要添加不同種類的細(xì)胞因子,來確保其未分化狀態(tài)。早在1988年,就有學(xué)者發(fā)現(xiàn)白血病抑制因子(leukemia inhibitory factor,LIF)可以代替飼養(yǎng)層細(xì)胞抑制小鼠ESCs的分化[23]。LIF是白細(xì)胞介素-6 細(xì)胞因子家族中多效性最強(qiáng)的成員,可以激活JAK/STAT 通路、PI3K/AKT 通路和MARK通路,在不同細(xì)胞類型中,LIF具有拮抗作用,在小鼠ESC中通常認(rèn)為LIF激活JAK/STAT3信號(hào)以此維持ESCs自我更新和存活[24-25]。但是,這并不適合于靈長類ESCs的培養(yǎng),因?yàn)槭驦IF無法結(jié)合人LIF受體,即便使用人LIF時(shí),hESCs也無法在無飼養(yǎng)層細(xì)胞條件下維持未分化狀態(tài)[19],NHP-ESCs也是如此[2]。這說明靈長類ESCs自我更新的要求與小鼠ESCs明顯不同。通過對(duì)靈長類ESCs自我更新機(jī)制的研究發(fā)現(xiàn),未分化的ES細(xì)胞中FGF、Wnt和TGF-β信號(hào)通路處于激活狀態(tài)[26]。雖然單獨(dú)使用LIF無法維持靈長類ESCs的未分化狀態(tài);但是LIF和FGF-2的同時(shí)使用就能使hESCs保持未分化狀態(tài)并維持?jǐn)?shù)代,且同樣適用于NHP-ESCs,因?yàn)槿薊SC多能性的維持依賴于FGF激活的MAPK/ERK和PI3K/AKT通路[6,25,27],缺乏FGF4或 ERK信號(hào)轉(zhuǎn)導(dǎo)的ESC具有嚴(yán)重的神經(jīng)和中胚層分化傾向[28]。進(jìn)一步研究發(fā)現(xiàn),在低濃度bFGF條件下,使用特異性抑制劑抑制GSK-3功能以此激活Wnt通路就能維持小鼠和hESCs的未分化狀態(tài)[29-30]。之后,TGF-β也被證實(shí)可促進(jìn)ESCs維持未分化狀態(tài)[31-32]。

隨之而來的是更多的細(xì)胞因子被同時(shí)使用。在培養(yǎng)基中添加LIF、FGF、TGF-β、IWR-1和CHIR99021等多種組合的細(xì)胞因子開啟不同的信號(hào)通路組合,同時(shí)用血清替代物和Matrigel等基質(zhì)代替FBS和飼養(yǎng)層細(xì)胞,這種成分明確的無血清無飼養(yǎng)層培養(yǎng)系統(tǒng)成功實(shí)現(xiàn)了hESCs和多種來源的NHP-iPSCs的長期未分化培養(yǎng),而且細(xì)胞表現(xiàn)正常的核型和多能性[32-34]。這種添加多細(xì)胞因子的無血清無飼養(yǎng)層系統(tǒng)對(duì)于NHP-ESCs和NHP-iPSCs的長期培養(yǎng)仍待研究[35]。

1.2 傳代方式

NHP-PSCs的傳代方式,通常為集落的酶消化法或機(jī)械分割法。使用酶消化法時(shí),NHP-PSCs在飼養(yǎng)層細(xì)胞上以集落培養(yǎng),以細(xì)胞團(tuán)方式進(jìn)行傳代,因此很難精確控制NHP-PSCs集落的解離,傳代效率較低,同時(shí)酶的處理可能會(huì)影響NHP-PSCs的狀態(tài),繼而干擾后續(xù)試驗(yàn)。而機(jī)械分割法是人工精確篩選所需細(xì)胞,剔除狀態(tài)異?;蛞逊只募?xì)胞,傳代效果優(yōu)于酶消化法,但是NHP-PSCs的質(zhì)量和傳代效率受限于操作人員的實(shí)驗(yàn)技能和熟練程度,重復(fù)性較差。

目前,已經(jīng)有NHP-PSCs單細(xì)胞傳代方法的報(bào)道。通過研究hPSCs細(xì)胞團(tuán)塊解離后的凋亡途徑發(fā)現(xiàn),ROCK抑制劑Y-27632不僅可以減少細(xì)胞傳代過程中的應(yīng)激和凋亡風(fēng)險(xiǎn),而且可以促進(jìn)干細(xì)胞的生長和增殖[36],所以被廣泛應(yīng)用于人和NHP-PSCs的單細(xì)胞傳代培養(yǎng)[37-38]。另一種ROCK抑制劑thiazovivin能更好地維持ESCs的未分化狀態(tài),并提高單細(xì)胞傳代效率[39],并且在NHP-PSCs復(fù)蘇時(shí)加入ROCK抑制劑也可以提升細(xì)胞的存活率。而這種抑制劑對(duì)干細(xì)胞后續(xù)分化的影響,尚不明確。因此,仍需要進(jìn)一步研究開發(fā)一種簡便可復(fù)制的NHP-PSCs傳代方式。

1.3 培養(yǎng)體系和傳代方式的選擇

根據(jù)干細(xì)胞培養(yǎng)目的的不同,決定選擇哪種培養(yǎng)體系和傳代方式并進(jìn)行適當(dāng)調(diào)整。例如,在研究胚胎的早期發(fā)育時(shí),飼養(yǎng)層細(xì)胞培養(yǎng)體系既能保證細(xì)胞的增殖又能維持胚胎細(xì)胞的多向分化潛能。當(dāng)干細(xì)胞被用于動(dòng)物臨床移植時(shí),無外源性物質(zhì)和低免疫原性是對(duì)培養(yǎng)體系的要求,此時(shí)干細(xì)胞的增殖能力往往會(huì)下降。而當(dāng)干細(xì)胞被用于制藥時(shí),穩(wěn)定傳代和易于大規(guī)模生產(chǎn)可能是選擇培養(yǎng)體系時(shí)的標(biāo)準(zhǔn)之一。以及,若需要對(duì)NHP-PSCs進(jìn)行轉(zhuǎn)染編輯時(shí),單細(xì)胞狀態(tài)下的NHP-PSCs往往比團(tuán)塊集落狀態(tài)的NHP-PSCs擁有更高的轉(zhuǎn)染效率。因此,最理想的干細(xì)胞培養(yǎng)體系應(yīng)當(dāng)是在滿足培養(yǎng)目的的前提下,使用“三無”(無異源飼養(yǎng)層細(xì)胞、無異源血清和無動(dòng)物源性)的培養(yǎng)系統(tǒng)。

從飼養(yǎng)層細(xì)胞培養(yǎng),到使用條件培養(yǎng)基的無飼養(yǎng)層細(xì)胞培養(yǎng)體系,最終發(fā)展為完全定義的化學(xué)定義培養(yǎng)基,干細(xì)胞的培養(yǎng)方式在不停地發(fā)展和優(yōu)化,每種培養(yǎng)方式都有其優(yōu)缺點(diǎn)。然而令人遺憾的是,在目前建立的任何一種培養(yǎng)體系中,NHP-PSCs依舊無法通過四倍體補(bǔ)償試驗(yàn)這一檢驗(yàn)干細(xì)胞多能性的黃金標(biāo)準(zhǔn)[40],簡而言之,將NHP-PSCs注入四倍體囊胚中,無法獲得一個(gè)完整的個(gè)體,這也就意味著,現(xiàn)有的培養(yǎng)體系無法真正保全NHP-PSCs的多能性。繼續(xù)深入分析NHP-PSCs的自我更新機(jī)制,發(fā)現(xiàn)新的關(guān)鍵通路,或許是突破四倍體補(bǔ)償試驗(yàn)的關(guān)鍵,也是優(yōu)化NHP-PSCs培養(yǎng)體系的方向之一。

2 NHP-PSCs誘導(dǎo)分化

理論上,NHP-PSCs可分化為任意細(xì)胞,用于各種退行性疾病的干細(xì)胞治療或藥物開發(fā)[41-42]。如何在體外將NHP-PSCs定向誘導(dǎo)分化為其它細(xì)胞一直是研究前沿和熱點(diǎn)之一。目前主要的誘導(dǎo)方法有擬胚體分化法、分步誘導(dǎo)法、轉(zhuǎn)基因誘導(dǎo)法、基質(zhì)細(xì)胞共培養(yǎng)法等。擬胚體分化法是較為常用的方法,先用外源生長因子在無飼養(yǎng)層細(xì)胞培養(yǎng)系統(tǒng)中使NHP-PSCs形成擬胚體(embryoid body,EB),再用不同的措施誘導(dǎo)分化為特定的細(xì)胞。分步誘導(dǎo)法首先通過添加特定的細(xì)胞因子誘導(dǎo)干細(xì)胞分化成三個(gè)主要的胚層細(xì)胞:內(nèi)胚層、中胚層或外胚層,在成功分化成特定胚層細(xì)胞后,繼續(xù)添加更加特定的信號(hào)分子和細(xì)胞因子,以進(jìn)一步誘導(dǎo)這些胚層細(xì)胞向更特化的細(xì)胞類型分化。轉(zhuǎn)基因誘導(dǎo)法通過過表達(dá)特定基因使NHP-PSCs定向分化為目的細(xì)胞,但是該方法較為繁瑣,且存在整合外源基因的風(fēng)險(xiǎn)?;|(zhì)細(xì)胞共培養(yǎng)法是將NHP-PSCs與其它成熟細(xì)胞一起培養(yǎng),通過成熟細(xì)胞分泌的生長因子來誘導(dǎo)NHP-PSCs向目標(biāo)細(xì)胞分化,該方法比擬胚體分化法更為高效。目前已使用上述方法將干細(xì)胞成功誘導(dǎo)分化為神經(jīng)細(xì)胞、造血細(xì)胞、脂肪細(xì)胞、角質(zhì)形成細(xì)胞、心肌細(xì)胞、骨骼肌細(xì)胞和胰島素分泌細(xì)胞等[43-44]。

2.1 NHP-PSCs向心血管系統(tǒng)細(xì)胞的誘導(dǎo)分化

非人靈長類動(dòng)物心血管系統(tǒng)與人類心血管系統(tǒng)非常類似,且能自然地發(fā)展成多種心血管疾?。?5];因此,如何將NHP-PSCs誘導(dǎo)分化為心血管系統(tǒng)的細(xì)胞一直是研究熱點(diǎn)。目前,借鑒hPSCs誘導(dǎo)分化經(jīng)驗(yàn)[46-48],已可將NHP-PSCs誘導(dǎo)分化為多種心血管系統(tǒng)的細(xì)胞,例如:血管母細(xì)胞、血管內(nèi)皮細(xì)胞、造血細(xì)胞和心肌細(xì)胞等[49-51](表2)。

2.2 NHP-PSCs向神經(jīng)細(xì)胞的誘導(dǎo)分化

NHP-PSCs也是研究神經(jīng)細(xì)胞誘導(dǎo)分化的理想模型。1995年Thomson團(tuán)隊(duì)將ES細(xì)胞注射到免疫缺陷小鼠體內(nèi),在形成的畸胎瘤中出現(xiàn)了類似神經(jīng)管的結(jié)構(gòu)[2],這是ES細(xì)胞在體內(nèi)自然分化的結(jié)果?,F(xiàn)在,已有多種方法能將NHP-PSCs在體外定向誘導(dǎo)分化為多種神經(jīng)細(xì)胞[37,52-61](表3)。

2.3 NHP-PSCs向視網(wǎng)膜組織細(xì)胞的誘導(dǎo)分化

目前,視網(wǎng)膜色素上皮移植已達(dá)到人醫(yī)臨床試驗(yàn)階段,也有報(bào)道稱已經(jīng)將視網(wǎng)膜色素上皮細(xì)胞及其組織的移植用于人類眼部疾病的治療[62]。但是,視網(wǎng)膜是一個(gè)神經(jīng)元復(fù)合體,由各種不同功能的細(xì)胞組成,其中的視網(wǎng)膜神經(jīng)節(jié)細(xì)胞和感光細(xì)胞等視網(wǎng)膜神經(jīng)元的研究仍然集中在動(dòng)物模型上[63]。

參考端腦神經(jīng)細(xì)胞的誘導(dǎo)方法,小鼠ESCs和hESCs可以成功分化為視網(wǎng)膜細(xì)胞[64];在長達(dá)90 d的培養(yǎng)過程中,ESCs先后被誘導(dǎo)分化為視網(wǎng)膜祖細(xì)胞、色素細(xì)胞和視網(wǎng)膜色素上皮細(xì)胞[65]。使用端腦神經(jīng)細(xì)胞的誘導(dǎo)方案誘導(dǎo)30 d后,再用維甲酸(retinoic acid)和?;撬幔╰aurine)進(jìn)一步誘導(dǎo)至90 d,能使猴ESCs誘導(dǎo)分化為兩類感光細(xì)胞(視桿細(xì)胞和視錐細(xì)胞)[66]。與以前的誘導(dǎo)方法相比,這種方法的誘導(dǎo)效率更高,且不含動(dòng)物源性成分;但是,過長的培養(yǎng)時(shí)間是否會(huì)影響后續(xù)試驗(yàn)和未來臨床應(yīng)用需要進(jìn)一步驗(yàn)證。

2.4 NHP-PSCs向生殖細(xì)胞的誘導(dǎo)分化

在過去的十年里,體外配子生成(in vitro gametogenesis, IVG)的研究取得了巨大的進(jìn)步,這為生殖醫(yī)學(xué)和動(dòng)物繁育科學(xué)開辟了新的道路。嚙齒類種系發(fā)育已經(jīng)在體外完全重建,即將PSCs分別誘導(dǎo)分化為卵母細(xì)胞和精子,成功受精后獲得健康的后代[67-69]。這是由于小鼠原始生殖細(xì)胞(primordial germ cells,PGCs)分化的動(dòng)力學(xué)、信號(hào)轉(zhuǎn)導(dǎo)、遺傳和表觀遺傳的機(jī)制已較為清楚[70-72] ;但是靈長類和小鼠的生殖細(xì)胞起源和分化仍有很大不同,將NHP-PSCs誘導(dǎo)為生殖細(xì)胞的研究目前已經(jīng)取得了一些進(jìn)展。

體外配子生成的過程大致分為兩個(gè)階段,首先是原始生殖細(xì)胞樣細(xì)胞(primordial germ cell-like cell, PGCLC)的誘導(dǎo)分化,其次是卵子和精子的誘導(dǎo)分化。有團(tuán)隊(duì)先將人的iPSC分化為初期中胚層樣細(xì)胞(incipient mesoderm-like cells, iMeLCs),再間接誘導(dǎo)為PGCLC[73-74]。研究表明,人PSC無法直接誘導(dǎo)為PGCLC是由于相較于小鼠ESC,靈長類PSC處于一種更加“成熟”(primed)的狀態(tài)[75-76],有較強(qiáng)的自主分化性,于是Hanna團(tuán)隊(duì)構(gòu)建出相對(duì)“幼稚”(naive)的胚胎干細(xì)胞并成功誘導(dǎo)為PGCLC。與之類似的,使用含有BMP4、LIF、SCF、EGF和Y-27632的直接分化培養(yǎng)基誘導(dǎo)猴PSC進(jìn)行分化,細(xì)胞在第6天開始表達(dá)PGC標(biāo)志分子SOX17、TFAP2C和BLIMP1[77]。而另一種誘導(dǎo)猴PSC分化為PGCLC的直接方法是,過表達(dá)兩種PGC特異性轉(zhuǎn)錄因子(BLIMP1和SOX17)后再聯(lián)合用4種細(xì)胞因子(BMP4、SCF、EGF和LIF)進(jìn)行誘導(dǎo),但是這種方法的誘導(dǎo)效率不高[78-79]。最近的一項(xiàng)研究比較了來源于不同培養(yǎng)條件的猴PSC誘導(dǎo)分化為PGCLC的差異;結(jié)果顯示,在相同的誘導(dǎo)條件下,來源于無飼養(yǎng)層培養(yǎng)體系的猴PSC不能分化為PGCLC,但是來源于飼養(yǎng)層培養(yǎng)體系的猴PSC則可以,而且在飼養(yǎng)層培養(yǎng)體系中添加WNT抑制劑(IWR1)可以顯著提高誘導(dǎo)效率;IWR1通過泛素依賴性蛋白質(zhì)降解相關(guān)基因的上調(diào)使猴PSC進(jìn)入允許狀態(tài)(permissive state),以利于向PGCLC的誘導(dǎo)分化[79]。另一研究組進(jìn)一步優(yōu)化的結(jié)果顯示,同時(shí)抑制WNT通路和視黃酸信號(hào)通路可以阻止猴ESC向中胚層和神經(jīng)的分化,以此來進(jìn)一步提高猴ESC誘導(dǎo)分化為PGCLC的效率[80]。

另一種誘導(dǎo)猴PSC分化為PGCLC的方法是兩步間接誘導(dǎo)法。猴PSC在LIF、CHIR99021、PD0325901、SP600125和SB203580的共同作用下先轉(zhuǎn)變?yōu)樵紤B(tài)(naive);然后用PGCLC分化培養(yǎng)基進(jìn)一步誘導(dǎo)為PGCLC,此分化培養(yǎng)基比直接分化培養(yǎng)基多了BMP2[81-82];誘導(dǎo)2 d后,細(xì)胞開始表達(dá)PGC標(biāo)志分子,如PRDM1、TFAP2C、KIT、DDX4和SOX17等[74,83-84]。

體外配子生產(chǎn)的第二階段是向精子和卵子的進(jìn)一步誘導(dǎo)分化。猴PGCLC的細(xì)胞表型和分子特征均與PGC相近;將其移植到體內(nèi)或與體細(xì)胞共培養(yǎng)時(shí)表現(xiàn)出生殖細(xì)胞的部分特性,可以重啟表觀遺傳重編程,但是沒有完全誘導(dǎo)為單倍體的精子或卵子[79-80,85]。但是也有報(bào)道稱,直接使用人的iPSCs誘導(dǎo)為單倍體生精細(xì)胞的方法[86],猴PSC可以直接被誘導(dǎo)為單倍體圓形精細(xì)胞,采用胞質(zhì)內(nèi)單精子注射(intracytoplasmic sperm injection,ICSI)方法將其注射到卵子中后可以發(fā)育到囊胚階段[87]。然而,這一研究中對(duì)誘導(dǎo)分化來的圓形精細(xì)胞與體內(nèi)精子的比較似乎不夠,可能仍需要進(jìn)一步的驗(yàn)證和研究。

2.5 NHP-PSCs向其他組織細(xì)胞的誘導(dǎo)分化

參考小鼠和人PSC向各類細(xì)胞分化方法[88-95],NHP-PSCs也可以分化為除上述細(xì)胞類型以外其他細(xì)胞,例如肝細(xì)胞樣細(xì)胞、胰島素分泌細(xì)胞、肌源性祖細(xì)胞等(表4) ,可用于細(xì)胞治療或模型構(gòu)建。

3 小結(jié)與展望

非人靈長類動(dòng)物(猴)在藥代動(dòng)力學(xué)和毒理學(xué)篩選等多方面比嚙齒動(dòng)物更接近于人類,且不攜帶對(duì)人類有害的內(nèi)源性病毒,表現(xiàn)出更少的人畜共患病[104-105]。NHP-PSCs的研究更有利于相關(guān)疾病的診斷和治療以及藥物開發(fā)。雖然NHP-PSCs的研究起步較晚,而且多參考小鼠PSCs和hPSCs的研究,但作為目前的干細(xì)胞研究熱點(diǎn)之一,已進(jìn)入高速發(fā)展時(shí)期。NHP-PSCs的誘導(dǎo)不僅與細(xì)胞因子有關(guān),還與NHP-PSCs的培養(yǎng)體系和培養(yǎng)質(zhì)量有關(guān)。由于干細(xì)胞種系和批次的不同,可能導(dǎo)致相同的誘導(dǎo)方法產(chǎn)生不同誘導(dǎo)結(jié)果和誘導(dǎo)效率,培養(yǎng)和誘導(dǎo)時(shí)間過長也會(huì)因?yàn)槿藶橐蛩馗蓴_誘導(dǎo)效率。對(duì)誘導(dǎo)結(jié)果的判斷和驗(yàn)證,多是在誘導(dǎo)結(jié)束后進(jìn)行,使得對(duì)結(jié)果產(chǎn)生爭議。因此,各種新的培養(yǎng)體系、誘導(dǎo)方法和誘導(dǎo)結(jié)果的判定方法也在逐步產(chǎn)生,例如水凝膠、基質(zhì)膠,以及人工智能檢測誘導(dǎo)過程等[106]。這些新技術(shù)和新方法多在小鼠和人的細(xì)胞上建立,當(dāng)其應(yīng)用于非人靈長類動(dòng)物細(xì)胞時(shí),將會(huì)加快干細(xì)胞相關(guān)產(chǎn)品的產(chǎn)生和臨床的應(yīng)用。盡管仍有許多需要克服的困難和挑戰(zhàn),但是NHP-PSCs的相關(guān)研究令人充滿期待。

參考文獻(xiàn)(References):

[1] EVANS M J, KAUFMAN M H. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 292(5819):154-156.

[2] THOMSON J A, KALISHMAN J, GOLOS T G, et al. Isolation of a primate embryonic stem cell line[J]. Proc Natl Acad Sci U S A, 1995, 92(17):7844-7848.

[3] THOMSON J A, ITSKOVITZ-ELDOR J, SHAPIRO S S, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282(5391):1145-1147.

[4] TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.

[5] POETSCH M S, STRANO A, GUAN K M. Human induced pluripotent stem cells:from cell origin, genomic stability, and epigenetic memory to translational medicine[J]. Stem Cells, 2022, 40(6):546-555.

[6] LIU H S, ZHU F F, YONG J, et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts[J]. Cell Stem Cell, 2008, 3(6):587-590.

[7] OOTO S, HARUTA M, HONDA Y, et al. Induction of the differentiation of lentoids from primate embryonic stem cells[J]. Invest Ophthalmol Vis Sci, 2003, 44(6):2689-2693.

[8] HONGISTO H, VUORISTO S, MIKHAILOVA A, et al. Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture[J]. Stem Cell Res, 2012, 8(1):97-108.

[9] EISELLEOVA L, PETERKOVA I, NERADIL J, et al. Comparative study of mouse and human feeder cells for human embryonic stem cells[J]. Int J Dev Biol, 2008, 52(4):353-363.

[10] MARTIN M J, MUOTRI A, GAGE F, et al. Human embryonic stem cells express an immunogenic nonhuman sialic acid[J]. Nat Med, 2005, 11(2):228-232.

[11] CHIEN C Y, LIN J C, HUANG C Y, et al. In situ hydrogelation of cellular monolayers enables conformal biomembrane functionalization for Xeno-free feeder substrate engineering[J]. Adv Healthc Mater, 2023, 12(8):e2201708.

[12] NAVARA C S, CHAUDHARI S, MCCARREY J R. Optimization of culture conditions for the derivation and propagation of baboon (Papio anubis) induced pluripotent stem cells[J]. PLoS One, 2018, 13(3):e0193195.

[13] XU C H, INOKUMA M S, DENHAM J, et al. Feeder-free growth of undifferentiated human embryonic stem cells[J]. Nat Biotechnol, 2001, 19(10):971-974.

[14] KLEINMAN H K, MCGARVEY M L, LIOTTA L A, et al. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma[J]. Biochemistry, 1982, 21(24):6188-6193.

[15] VILLA-DIAZ L G, NANDIVADA H, DING J, et al. Synthetic polymer coatings for long-term growth of human embryonic stem cells[J]. Nat Biotechnol, 2010, 28(6):581-583.

[16] YIN S, CAO Y. Hydrogels for large-scale expansion of stem cells[J]. Acta Biomater, 2021, 128:1-20.

[17] IRWIN E F, GUPTA R, DASHTI D C, et al. Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells[J]. Biomaterials, 2011, 32(29):6912-6919.

[18] RICHARDS M, TAN S, FONG C Y, et al. Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells[J]. Stem Cells, 2003, 21(5):546-556.

[19] AMIT M, CARPENTER M K, INOKUMA M S, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture[J]. Dev Biol, 2000, 227(2):271-278.

[20] NAKAMURA T, YABUTA Y, OKAMOTO I, et al. Single-cell transcriptome of early embryos and cultured embryonic stem cells of cynomolgus monkeys[J]. Sci Data, 2017, 4(1):170067.

[21] PEI Y, MA J, ZHANG X, et al. Serum-free culture of rhesus monkey embryonic stem cells[J]. Arch Androl, 2003, 49(5):331-342.

[22] KISHIMOTO K, SHIMADA A, SHINOHARA H, et al. Establishment of novel common marmoset embryonic stem cell lines under various conditions[J]. Stem Cell Res, 2021, 53:102252.

[23] WILLIAMS R L, HILTON D J, PEASE S, et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells[J]. Nature, 1988, 336(6200):684-687.

[24] WU B J, LI Y X, LI B J, et al. DNMTs play an important role in maintaining the pluripotency of leukemia inhibitory factor-dependent embryonic stem cells[J]. Stem Cell Rep, 2021, 16(3):582-596.

[25] CHEN G F, YIN S S, ZENG H L, et al. Regulation of embryonic stem cell self-renewal[J]. Life (Basel), 2022, 12(8):1151.

[26] SATO N, SANJUAN I M, HEKE M, et al. Molecular signature of human embryonic stem cells and its comparison with the mouse[J]. Dev Biol, 2003, 260(2):404-413.

[27] MOSSAHEBI-MOHAMMADI M, QUAN M Y, ZHANG J S, et al. FGF signaling pathway:a key regulator of stem cell pluripotency[J]. Front Cell Dev Biol, 2020, 8:79.

[28] LI M, BELMONTE J C I. Ground rules of the pluripotency gene regulatory network[J]. Nat Rev Genet, 2017, 18(3):180-191.

[29] SATO N, MEIJER L, SKALTSOUNIS L, et al. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor[J]. Nat Med, 2004, 10(1):55-63.

[30] FURLAN G, HUYGHE A, COMBéMOREL N, et al. Molecular versatility during pluripotency progression[J]. Nat Commun, 2023, 14(1):68.

[31] JAMES D, LEVINE A J, BESSER D, et al. TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells[J]. Development, 2005, 132(6):1273-1282.

[32] WEI Y L, ZHANG E, YU L Q, et al. Dissecting embryonic and extraembryonic lineage crosstalk with stem cell co-culture[J]. Cell, 2023, 186(26):5859-5875. e24.

[33] AMIT M, SHARIKI C, MARGULETS V, et al. Feeder layer- and serum-free culture of human embryonic stem cells[J]. Biol Reprod, 2004, 70(3):837-845.

[34] STAUSKE M, RODRIGUEZ POLO I, HAAS W, et al. Non-human primate iPSC generation, cultivation, and cardiac differentiation under chemically defined conditions[J]. Cells, 2020, 9(6):1349.

[35] PETKOV S, DRESSEL R, RODRIGUEZ-POLO I, et al. Controlling the switch from neurogenesis to pluripotency during marmoset monkey somatic cell reprogramming with self-replicating mRNAs and small molecules[J]. Cells, 2020, 9(11):2422.

[36] OHGUSHI M, MATSUMURA M, EIRAKU M, et al. Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells[J]. Cell Stem Cell, 2010, 7(2):225-239.

[37] WATANABE K, UENO M, KAMIYA D, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells[J]. Nat Biotechnol, 2007, 25(6):681-686.

[38] PAKZAD M, TOTONCHI M, TAEI A, et al. Presence of a ROCK inhibitor in extracellular matrix supports more undifferentiated growth of feeder-free human embryonic and induced pluripotent stem cells upon passaging[J]. Stem Cell Rev Rep, 2010, 6(1):96-107.

[39] ONO T, SUZUKI Y, KATO Y, et al. A single-cell and feeder-free culture system for monkey embryonic stem cells[J]. PLoS ONE, 2014, 9(2):e88346.

[40] ZHAO X Y, LI W, LV Z, et al. iPS cells produce viable mice through tetraploid complementation[J]. Nature, 2009, 461(7260):86-90.

[41] ROTH G A, MENSAH G A, JOHNSON C O, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019:update from the GBD 2019 study[J]. J Am Coll Cardiol, 2020, 76(25):2982-3021.

[42] SKOVRONSKY D M, LEE V M Y, TROJANOWSKI J Q. Neurodegenerative diseases:new concepts of pathogenesis and their therapeutic implications[J]. Annu Rev Pathol:Mech Dis, 2006, 1(1):151-170.

[43] LI W Q, HUANG L H, LIN W Y, et al. Engraftable neural crest stem cells derived from cynomolgus monkey embryonic stem cells[J]. Biomaterials, 2015, 39:75-84.

[44] DOMINGUES S, MASSON Y, MARTEYN A, et al. Differentiation of nonhuman primate pluripotent stem cells into functional keratinocytes[J]. Stem Cell Res Ther, 2017, 8(1):285.

[45] COX L A, OLIVIER M, SPRADLING-REEVES K, et al. Nonhuman primates and translational research—cardiovascular disease[J]. ILAR J, 2017, 58(2):235-250.

[46] LIANG P, SALLAM K, WU H D, et al. Patient-specific and genome-edited induced pluripotent stem cell-derived cardiomyocytes elucidate single-cell phenotype of Brugada Syndrome[J]. J Am Coll Cardiol, 2016, 68(19):2086-2096.

[47] HONG S G, WINKLER T, WU C F, et al. Path to the clinic:assessment of iPSC-based cell therapies in vivo in a nonhuman primate model[J]. Cell Rep, 2014, 7(4):1298-1309.

[48] D′SOUZA S S, MAUFORT J, KUMAR A, et al. GSK3β inhibition promotes efficient myeloid and lymphoid hematopoiesis from non-human primate-induced pluripotent stem cells[J]. Stem Cell Rep, 2016, 6(2):243-256.

[49] SHI Q, HODARA V, SIMERLY C R, et al. Ex vivo reconstitution of arterial endothelium by embryonic stem cell-derived endothelial progenitor cells in baboons[J]. Stem Cells Dev, 2013, 22(4):631-642.

[50] SHIBA Y, GOMIBUCHI T, SETO T, et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts[J]. Nature, 2016, 538(7625):388-391.

[51] IRIGUCHI S, KANEKO S. In vitro differentiation of T cells:from nonhuman primate-induced pluripotent stem cells[J]. Methods Mol Biol, 2019, 2048:93-106.

[52] LENDAHL U, ZIMMERMAN L B, MCKAY R D G. CNS stem cells express a new class of intermediate filament protein[J]. Cell, 1990, 60(4):585-595.

[53] SAKAKIBARA S, IMAI T, HAMAGUCHI K, et al. Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell[J]. Dev Biol, 1996, 176(2):230-242.

[54] MITALIPOV S, KUO H C, BYRNE J, et al. Isolation and characterization of novel rhesus monkey embryonic stem cell lines[J]. Stem Cells, 2006, 24(10):2177-2186.

[55] WEI R, YANG J, HOU W F, et al. Insulin-producing cells derived from human embryonic stem cells:comparison of definitive endoderm- and nestin-positive progenitor-based differentiation strategies[J]. PLoS ONE, 2013, 8(8):e72513.

[56] WANG Q L, WU H, HU J, et al. Nestin is required for spindle assembly and cell-cycle progression in glioblastoma cells[J]. Mol Cancer Res, 2021, 19(10):1651-1665.

[57] YANG J L, FAN H, FU F F, et al. Transient neurogenesis in ischemic cortex from Sox2+ astrocytes[J]. Neural Regen Res, 2023, 18(7):1521-1526.

[58] WATTERS A K, ROM S, HILL J D, et al. Identification and dynamic regulation of tight junction protein expression in human neural stem cells[J]. Stem Cells Dev, 2015, 24(12):1377-1389.

[59] KAWASAKI H, SUEMORI H, MIZUSEKI K, et al. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity[J]. Proc Natl Acad Sci U S A, 2002, 99(3):1580-1585.

[60] KAWASAKI H, MIZUSEKI K, SASAI Y. Selective neural induction from ES cells by stromal cell-derived inducing activity and its potential therapeutic application in Parkinson′s disease[J]. Methods Mol Biol, 2002, 185:217-227.

[61] WATANABE K, KAMIYA D, NISHIYAMA A, et al. Directed differentiation of telencephalic precursors from embryonic stem cells[J]. Nat Neurosci, 2005, 8(3):288-296.

[62] RADTKE N D, ARAMANT R B, SEILER M J, et al. Vision change after sheet transplant of fetal retina with retinal pigment epithelium to a patient with retinitis pigmentosa[J]. Arch Ophthalmol, 2004, 122(8):1159-1165.

[63] LIU Y, LEE R K. Cell transplantation to replace retinal ganglion cells faces challenges - the Switchboard Dilemma[J]. Neural Regen Res, 2021, 16(6):1138-1143.

[64] LAMBA D A, KARL M O, WARE C B, et al. Efficient generation of retinal progenitor cells from human embryonic stem cells[J]. Proc Natl Acad Sci U S A, 2006, 103(34):12769-12774.

[65] IKEDA H, OSAKADA F, WATANABE K, et al. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells[J]. Proc Natl Acad Sci U S A, 2005, 102(32):11331-11336.

[66] OSAKADA F, IKEDA H, MANDAI M, et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells[J]. Nat Biotechnol, 2008, 26(2):215-224.

[67] HIKABE O, HAMAZAKI N, NAGAMATSU G, et al. Reconstitution in vitro of the entire cycle of the mouse female germ line[J]. Nature, 2016, 539(7628):299-303.

[68] ISHIKURA Y, OHTA H, SATO T, et al. In vitro reconstitution of the whole male germ-cell development from mouse pluripotent stem cells[J]. Cell Stem Cell, 2021, 28(12):2167-2179, e9.

[69] OIKAWA M, KOBAYASHI H, SANBO M, et al. Functional primordial germ cell-like cells from pluripotent stem cells in rats[J]. Science, 2022, 376(6589):176-179.

[70] SAITOU M, YAMAJI M. Primordial germ cells in mice[J]. Cold Spring Harb Perspect Biol, 2012, 4(11):a008375.

[71] SAITOU M, MIYAUCHI H. Gametogenesis from pluripotent stem cells[J]. Cell Stem Cell, 2016, 18(6):721-735.

[72] ARAMAKI S, HAYASHI K, KURIMOTO K, et al. A mesodermal factor, T, specifies mouse germ cell fate by directly activating germline determinants[J]. Dev Cell, 2013, 27(5):516-529.

[73] SASAKI K, YOKOBAYASHI S, NAKAMURA T, et al. Robust in vitro induction of human germ cell fate from pluripotent stem cells[J]. Cell Stem Cell, 2015, 17(2):178-194.

[74] IRIE N, WEINBERGER L, TANG W W C, et al. SOX17 is a critical specifier of human primordial germ cell fate[J]. Cell, 2015, 160(1/2):253-268.

[75] CAO J, LI W J, LI J, et al. Live birth of chimeric monkey with high contribution from embryonic stem cells[J]. Cell, 2023, 186(23):4996-5014, e24.

[76] MACCARTHY C M, WU G M, MALIK V, et al. Highly cooperative chimeric super-SOX induces naive pluripotency across species[J]. Cell Stem Cell, 2024, 31(1):127-147, e9.

[77] SAKAI Y, NAKAMURA T, OKAMOTO I, et al. Induction of the germ cell fate from pluripotent stem cells in cynomolgus monkeys[J]. Biol Reprod, 2020, 102(3):620-638.

[78] YOSHIMATSU S, NAKAJIMA M, IGUCHI A, et al. Non-viral induction of transgene-free iPSCs from somatic fibroblasts of multiple mammalian species[J]. Stem Cell Reports, 2021, 16(4):754-770.

[79] SEITA Y, CHENG K R, MCCARREY J R, et al. Efficient generation of marmoset primordial germ cell-like cells using induced pluripotent stem cells[J]. Elife, 2023, 12:e82263.

[80] SHONO M, KISHIMOTO K, HIKABE O, et al. Induction of primordial germ cell-like cells from common marmoset embryonic stem cells by inhibition of WNT and retinoic acid signaling[J]. Sci Rep, 2023, 13(1):3186.

[81] FANG R G, LIU K, ZHAO Y, et al. Generation of naive induced pluripotent stem cells from rhesus monkey fibroblasts[J]. Cell Stem Cell, 2014, 15(4):488-497.

[82] ZHANG P Y, XUE S R, GUO R R, et al. Mapping developmental paths of monkey primordial germ-like cells differentiation from pluripotent stem cells by single cell ribonucleic acid sequencing analysis[J]. Biol Reprod, 2022, 107(1):237-249.

[83] YU D C W, WU F C, WU C E, et al. Human pluripotent stem cell-derived DDX4 and KRT-8 positive cells participate in ovarian follicle-like structure formation[J]. iScience, 2021, 24(1):102003.

[84] GKOUNTELA S, LI Z W, VINCENT J J, et al. The ontogeny of cKIT+ human primordial germ cells proves to be a resource for human germ line reprogramming, imprint erasure and in vitro differentiation[J]. Nat Cell Biol, 2013, 15(1):113-122.

[85] SOSA E, CHEN D, ROJAS E J, et al. Differentiation of primate primordial germ cell-like cells following transplantation into the adult gonadal niche[J]. Nat Commun, 2018, 9(1):5339.

[86] EASLEY C A, PHILLIPS B T, MCGUIRE M M, et al. Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells[J]. Cell Rep, 2012, 2(3):440-446.

[87] KHAMPANG S, CHO I K, PUNYAWAI K, et al. Blastocyst development after fertilization with in vitro spermatids derived from nonhuman primate embryonic stem cells[J]. F S Sci, 2021, 2(4):365-375.

[88] ZHANG D H, JIANG W, LIU M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells[J]. Cell Res, 2009, 19(4):429-438.

[89] MAEHR R, CHEN S B, SNITOW M, et al. Generation of pluripotent stem cells from patients with type 1 diabetes[J]. Proc Natl Acad Sci U S A, 2009, 106(37):15768-15773.

[90] TATEISHI K, HE J, TARANOVA O, et al. Generation of insulin-secreting islet-like clusters from human skin fibroblasts[J]. J Biol Chem, 2008, 283(46):31601-31607.

[91] KAGAWA H, JAVALI A, KHOEI H H, et al. Human blastoids model blastocyst development and implantation[J]. Nature, 2022, 601(7894):600-605.

[92] YU L Q, WEI Y L, DUAN J L, et al. Blastocyst-like structures generated from human pluripotent stem cells[J]. Nature, 2021, 591(7851):620-626.

[93] YANAGIDA A, SPINDLOW D, NICHOLS J, et al. Naive stem cell blastocyst model captures human embryo lineage segregation[J]. Cell Stem Cell, 2021, 28(6):1016-1022. e4.

[94] FAN Y, MIN Z Y, ALSOLAMI S, et al. Generation of human blastocyst-like structures from pluripotent stem cells[J]. Cell Discov, 2021, 7(1):81.

[95] MAZID M A, WARD C, LUO Z W, et al. Rolling back human pluripotent stem cells to an eight-cell embryo-like stage[J]. Nature, 2022, 605(7909):315-324.

[96] MOMOSE Y, MATSUNAGA T, MURAI K, et al. Differentiation of monkey embryonic stem cells into hepatocytes and mRNA expression of cytochrome p450 enzymes responsible for drug metabolism:comparison of embryoid body formation conditions and matrices[J]. Biol Pharm Bull, 2009, 32(4):619-626.

[97] TSUKADA H, TAKADA T, SHIOMI H, et al. Acidic fibroblast growth factor promotes hepatic differentiation of monkey embryonic stem cells[J]. In Vitro Cell Dev Biol Anim, 2006, 42(3/4):83-88.

[98] KUAI X L, SHAO N, LU H, et al. Differentiation of nonhuman primate embryonic stem cells into hepatocyte-like cells[J]. J Dig Dis, 2014, 15(1):27-34.

[99] MA X C, DUAN Y Y, JUNG C J, et al. The differentiation of hepatocyte-like cells from monkey embryonic stem cells[J]. Cloning Stem Cells, 2008, 10(4):485-493.

[100] MARUYAMA J, MATSUNAGA T, YAMAORI S, et al. Differentiation of monkey embryonic stem cells to hepatocytes by feeder-free dispersion culture and expression analyses of cytochrome p450 enzymes responsible for drug metabolism[J]. Biol Pharm Bull, 2013, 36(2):292-298.

[101] ZHU F F, ZHANG P B, ZHANG D H, et al. Generation of pancreatic insulin-producing cells from rhesus monkey induced pluripotent stem cells[J]. Diabetologia, 2011, 54(9):2325-2336.

[102] BAIK J, ORTIZ-CORDERO C, MAGLI A, et al. Establishment of skeletal myogenic progenitors from non-human primate induced pluripotent stem cells[J]. Cells, 2023, 12(8):1147.

[103] LI J, ZHU Q Y, CAO J, et al. Cynomolgus monkey embryo model captures gastrulation and early pregnancy[J]. Cell Stem Cell, 2023, 30(4):362-377. e7.

[104] SMITH D, TRENNERY P, FARNINGHAM D, et al. The selection of marmoset monkeys (Callithrix jacchus) in pharmaceutical toxicology[J]. Lab Anim, 2001, 35(2):117-130.

[105] MANSFIELD K. Marmoset models commonly used in biomedical research[J]. Comp Med, 2003, 53(4):383-392.

[106] YANG X C, CHEN D C, SUN Q S, et al. A live-cell image-based machine learning strategy for reducing variability in PSC differentiation systems[J]. Cell Discov, 2023, 9(1):53.

(編輯 白永平)

革吉县| 将乐县| 虹口区| 谷城县| 临猗县| 格尔木市| 宽城| 抚顺县| 德格县| 芦溪县| 西宁市| 修水县| 巴东县| 民勤县| 嘉荫县| 衡山县| 镇巴县| 当雄县| 东光县| 土默特左旗| 昌乐县| 广丰县| 龙门县| 合山市| 祁门县| 英吉沙县| 三穗县| 金川县| 夏津县| 白山市| 固原市| 南阳市| 任丘市| 凤台县| 临潭县| 延边| 板桥市| 英超| 石台县| 呼伦贝尔市| 海宁市|