摘 要: 旨在探究調(diào)整豬精液稀釋液酸堿性聯(lián)合一水肌酸(ceatine monohydrate, CMH)對(duì)豬X、Y精子的分離效果。本研究使用8頭2~4歲健康的杜洛克公豬采集精液,通過(guò)調(diào)整精液稀釋液Beltsville(BTS)的pH,使用精子計(jì)算機(jī)輔助分析系統(tǒng)(CASA)檢測(cè)精子活率和運(yùn)動(dòng)軌跡確定X、Y精子分選體系最適pH,利用CASA檢測(cè)精子運(yùn)動(dòng)性能確定一水肌酸最適添加濃度。通過(guò)免疫熒光染色和流式細(xì)胞術(shù)評(píng)估X、Y精子分選效果,利用熒光標(biāo)記法、精子活性氧MitoSOX Red染色等方法檢測(cè)精子頂體、質(zhì)膜完整性、活性氧含量等精子質(zhì)量指標(biāo)。結(jié)果表明,當(dāng)稀釋液pH為6.4和7.1時(shí),孵育60 min對(duì)精子活率無(wú)顯著影響(P>0.05),上層精子前向性運(yùn)動(dòng)占比極顯著高于下層(P<0.01)。稀釋液中添加750 μmol·L-1一水肌酸孵育60 min時(shí)顯著提高了精子活力、直線運(yùn)動(dòng)速率、曲線運(yùn)動(dòng)速率和擺動(dòng)性(P<0.05)。使用酸性稀釋液聯(lián)合一水肌酸分選豬X、Y精子,分選后上層精液X精子占比達(dá)63.32%;堿性稀釋液聯(lián)合一水肌酸分選豬X、Y精子,分選后上層精液Y精子占比達(dá)到67.19%。進(jìn)一步研究發(fā)現(xiàn),分選后頂體完整性、質(zhì)膜完整性和ROS水平同對(duì)照組相比無(wú)顯著差異(P>0.05),ATP水平、線粒體膜電位和運(yùn)動(dòng)性能顯著高于對(duì)照組(P<0.05)。綜上,本研究通過(guò)調(diào)整稀釋液酸堿性并聯(lián)合一水肌酸建立了一種簡(jiǎn)便、價(jià)廉和快捷的豬X、Y精子分選體系,該方法不影響分選后精子質(zhì)量并提高精子運(yùn)動(dòng)性能,進(jìn)一步為豬性控精液新技術(shù)研發(fā)提供試驗(yàn)依據(jù)。
關(guān)鍵詞: 豬精子;酸堿性稀釋液;一水肌酸;性控精液;X、Y精子分選
中圖分類號(hào):S828.3
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0366-6964(2024)10-4443-12
收稿日期:2024-02-01
基金項(xiàng)目:國(guó)家生豬產(chǎn)業(yè)技術(shù)體系(CARS-35-PIG);陜西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022ZDLNY01-04)
作者簡(jiǎn)介:胡冰艷(1998-),女,河南周口人,碩士生,主要從事公豬繁殖生物學(xué)與繁殖技術(shù)研究,E-mail:huby@nwafu.edu.cn
*通信作者:龐衛(wèi)軍,主要從事生豬遺傳改良和繁殖技術(shù)研究,E-mail:pwj1226@nwafu.edu.cn
Study on the Separation Effect of Pig X,Y Sperm of Different Acid-Base Diluents Combined
with Creatine Monohydrate
HU" Bingyan, LIU" Qihao, CAO" Chaoyue, LI" Mengxuan, PANG" Weijun*
(Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal
Science and Technology, Northwest Aamp;F University, Yangling 712100," China)
Abstract:" The study aimed to explore the separation effect of" porcine X,Y sperm by adjusting the acidity and alkalinity of porcine semen diluent combined with creatine monohydrate (CMH). In this study, eight healthy Duroc boars aged 2-4 years were used to collect semen. By adjusting the pH of semen diluent Beltsville (BTS), the optimal pH of the X,Y sperm sorting system was determined by sperm computer-aided analysis system (CASA), and the optimal concentration of creatine monohydrate was determined by CASA. The effect of X,Y sperm sorting was evaluated by immunofluorescence staining and flow cytometry, and sperm quality indexes such as acrosome, plasma membrane integrity, and reactive oxygen species content (ROS) were detected by fluorescence labeling and MitoSOX Red staining of sperm ROS. The results showed that when the pH of the diluent was 6.4 and 7.1, there was no significant effect on sperm viability after incubation for 60 min (Pgt;0.05), and the proportion of sperm in the upper layer moving forward was significantly higher than that in the lower layer (Plt;0.01). Adding 750 μmol·L-1 creatine monohydrate to the diluent and incubating for 60min significantly improved sperm motility, linear movement rate, curve movement rate, and wobble (Plt;0.05). Using acid diluent combined with creatine monohydrate to separate pig X,Y sperm, the proportion of X sperm in the upper semen after separation was 63.32%. Alkaline diluent combined with creatine monohydrate was used to separate pig X,Y sperm. After separation, the proportion of Y sperm in the upper semen reached 67.19%. Further study showed that there was no significant difference in acrosome integrity, plasma membrane integrity, and ROS level between the two groups (Pgt;0.05), while ATP level, mitochondrial membrane potential, and exercise performance were significantly higher than those of the control group (Plt;0.05) after separation. To sum up, this study established a simple and effective separation system of X and Y sperm in pigs by adjusting the acidity and alkalinity of the diluent in parallel with creatine monohydrate. This method did not affect the quality of sperm and improved the motility of sperm after separation, which further provided a theoretical basis for the research and development of new technologies for controlling semen in pigs.
Key words: pig sperm; acid and alkaline diluent; creatine monohydrate; sexually controlled semen; X,Y sperm sorting
*Corresponding author: PANG Weijun, E-mail: pwj1226@nwafu.edu.cn
2023年,我國(guó)生豬出欄7.27億頭,是世界上最大的豬肉生產(chǎn)國(guó)和消費(fèi)國(guó),為推動(dòng)生豬業(yè)持續(xù)發(fā)展,提高生產(chǎn)性能和養(yǎng)殖效益,控制生豬性別比例尤為重要[1]。隨著“種業(yè)計(jì)劃”推出,加快新品種培育的步伐對(duì)豬生產(chǎn)至關(guān)重要,性別控制技術(shù)是擴(kuò)大種群規(guī)模有效的方法[2]。在母豬擴(kuò)繁場(chǎng)中,單一飼養(yǎng)母豬能提高擴(kuò)繁場(chǎng)的利用效率,加快優(yōu)質(zhì)母豬的繁殖,縮短品種改良時(shí)間[3]。在種公豬站,可提供更多具備優(yōu)質(zhì)性狀的公豬用于配種,提高良種繁殖效率[4]。目前,性別控制往往通過(guò)受精前調(diào)控與受精后調(diào)控來(lái)實(shí)現(xiàn)[5],受精后調(diào)控雖準(zhǔn)確率高,但費(fèi)時(shí)費(fèi)力,不適用于畜牧生產(chǎn),因此受精前將X、Y精子進(jìn)行分離是最直接、有效的方法[6]。在生豬產(chǎn)業(yè)中,基于X、Y精子的DNA含量差異可利用流式細(xì)胞術(shù)進(jìn)行分選,其X精子純度可達(dá)70%以上,Y精子純度可達(dá)68%以上[7]。Johnson[8]的研究發(fā)現(xiàn),流式細(xì)胞術(shù)分選后的精子經(jīng)人工受精后,其母豬性別比例為74%,公豬為68%。然而,由于豬X、Y精子DNA 含量差異小,豬精子膜不飽和脂肪酸含量較高,這種方法對(duì)豬的X、Y精子進(jìn)行分選存在一定弊端,精子在染色和分選后活力和質(zhì)量會(huì)大大降低、設(shè)備昂貴且分選時(shí)間較長(zhǎng),無(wú)法在規(guī)模化豬場(chǎng)中投入使用[9-11]。因此,亟需建立一種簡(jiǎn)便、價(jià)廉和快捷的且不影響分選后精子質(zhì)量的豬X、Y精子分選體系。
精液所處環(huán)境的pH會(huì)影響精子的運(yùn)動(dòng)和代謝,哺乳動(dòng)物X、Y精子在不同的pH條件下具有不同的運(yùn)動(dòng)活性[12-14]。弱酸性條件下,Y精子的運(yùn)動(dòng)受到抑制,幾乎處于休眠狀態(tài),而X精子受到的影響很小,且運(yùn)動(dòng)能力得到激活,前向性運(yùn)動(dòng)能力顯著加強(qiáng)。相反的,在弱堿性條件下,X精子的運(yùn)動(dòng)能力受到抑制[15]。許多研究表明,通過(guò)改變精液環(huán)境pH,并利用精子本身逆重力向上游動(dòng)的特性可以達(dá)到分離X、Y精子的目的[16-18]。有研究表明,通過(guò)調(diào)整人類精子環(huán)境的酸堿性,發(fā)現(xiàn)在酸性環(huán)境中提高上層精液中X精子占比,在堿性環(huán)境中提高上層精液中Y精子占比,且精子運(yùn)動(dòng)性能提高[19]。奶山羊精液在弱堿性稀釋液中孵育時(shí)同樣可以提高上層精液中X精子占比[15]。在豬精液分選的研究中,豬精子在酸性稀釋液中的X、Y比例提高到了1.2∶1[20]。然而,通過(guò)只改變精液環(huán)境的pH,還不能提高豬X、Y精子間的運(yùn)動(dòng)差異,分離豬X、Y精子的效率與其他物種相比仍存在較大差距。
肌酸是動(dòng)物細(xì)胞中重要的能量?jī)?chǔ)存物質(zhì),一水肌酸(creatine monohydrate, CMH)是它的一水化合物和主要添加形式[21-23]。精子中的肌酸主要參與線粒體中的ATP運(yùn)送,維持精子運(yùn)動(dòng)和其他代謝反應(yīng)[24]。研究表明,精液冷凍保存劑中補(bǔ)充肌酸可以增強(qiáng)精子的活力和運(yùn)動(dòng)速度[25]。Umehara等[26]在對(duì)牛和鼠的X、Y精子進(jìn)行分離時(shí),為了增加精子向上游動(dòng)的數(shù)量,在分離體系中添加了500 μmol·L-1的一水肌酸,上層精子數(shù)量超過(guò)50%,使分選效率大大提升。因此,本研究通過(guò)調(diào)整豬精液稀釋液的酸堿性分選豬X、Y精子,聯(lián)合一水肌酸提高分選效率,并對(duì)分選后精子的質(zhì)量和運(yùn)動(dòng)性能進(jìn)行測(cè)定,旨在為豬性控精液新技術(shù)的研發(fā)提供試驗(yàn)依據(jù)。
1 材料與方法
1.1 試驗(yàn)材料
熒光染料Hoechest33342、誘惑紅40購(gòu)于南京固予生物有限公司;精子頂體形態(tài)花生凝集素?zé)晒鈽?biāo)記(PNA-FITC)染色試劑盒、精子質(zhì)膜完整性雙重?zé)晒猓⊿YBR14/PI)檢測(cè)試劑盒購(gòu)自美國(guó)Genmed Scientific Inc公司;線粒體膜電位檢測(cè)試劑盒(JC-1)購(gòu)自上海碧云天生物技術(shù)有限公司;ATP檢測(cè)試劑盒購(gòu)自上海百奧泰生物科技有限公司;MitoSOX Red購(gòu)自美國(guó)Med Chem Express公司;SRY-box 2 抗體購(gòu)自武漢三鷹生物技術(shù)有限公司。
1.2 精液采集
試驗(yàn)公豬選擇8頭年齡為2~4歲、體質(zhì)健康、體況良好、性欲旺盛且性成熟的杜洛克公豬。試驗(yàn)所使用的公豬在相同溫度、濕度和光照條件按照標(biāo)準(zhǔn)日糧飼喂,手握法采集精液。采精時(shí)丟棄前后的稀精及凝膠部分,收集中間段乳白色精液于37℃預(yù)熱過(guò)的無(wú)菌集精杯中,快速運(yùn)回至實(shí)驗(yàn)室檢測(cè)精子活力。為滿足試驗(yàn)需求,精液稀釋前使用計(jì)算機(jī)輔助分析系統(tǒng)(CASA)對(duì)采集的精液進(jìn)行常規(guī)品質(zhì)檢查,選取濃度5×108 spz·mL-1以上,精子活率80%以上,畸形率小于20%的精液樣本用于后續(xù)試驗(yàn)。
1.3 精液稀釋和處理
稱取葡萄糖(37.15 g)、EDTA (1.25 g)、氯化鉀(0.75 g)、檸檬酸二鈉(6.00 g)和碳酸氫鈉(1.25 g)溶解在1.00 L的超純水中,作為豬精液基礎(chǔ)稀釋液Beltsville(BTS)。BTS自然狀態(tài)時(shí)pH為6.8,利用pH高精度測(cè)量?jī)x(雷磁PSH-25)測(cè)量稀釋液pH,使用HCl將稀釋液pH分別調(diào)整為6.3、6.4、6.5、6.6和6.7,使用NaOH將稀釋液pH分別調(diào)整為6.9、7.0、7.1、7.2和7.3。使用時(shí)將配置好的稀釋液提前在37℃水浴鍋中預(yù)熱,再緩緩倒入原精中,調(diào)整精液密度為2×107spz·mL-1用于后續(xù)試驗(yàn)。
1.4 精子活力和運(yùn)動(dòng)參數(shù)檢測(cè)
將100 μL待檢測(cè)精液樣本于滅菌的1.5 mL離心管中,在37℃恒溫水浴鍋中孵育5 min,取出10 μL精液滴加到提前預(yù)熱的載玻片上,蓋上蓋玻片,靜置片刻后利用計(jì)算機(jī)輔助分析系統(tǒng)檢測(cè)精子活力、運(yùn)動(dòng)軌跡和運(yùn)動(dòng)參數(shù),待檢測(cè)精子運(yùn)動(dòng)參數(shù)包括精子直線運(yùn)動(dòng)速率(VSL)、曲線運(yùn)動(dòng)速率(CMS)和擺動(dòng)性(WOB)。隨機(jī)選擇5個(gè)視野進(jìn)行測(cè)定,每個(gè)視野中至少包含200個(gè)精子。
1.5 免疫熒光染色
取40 μL待檢測(cè)精液樣本均勻涂抹在干凈的載玻片上,自然風(fēng)干,用200 μL 4%組織細(xì)胞固定液固定20 min,PBS清洗3次。用0.5%Trpmiton X-100通透10 min后PBS清洗3次,再用5% BSA封閉樣本30 min,PBS清洗3遍,每次5 min。將一抗SRY-box 2 按照1∶300的比例稀釋后,滴加于精子上,在濕盒內(nèi)4℃避光孵育過(guò)夜。吸去一抗并用PBS清洗3次后,室溫下滴加對(duì)應(yīng)的熒光二抗,在濕盒中避光孵育2 h,吸去二抗并用PBS清洗3次后在熒光顯微鏡下觀察拍照。拍攝圖像時(shí),選擇至少5個(gè)清晰的視野。
1.6 流式細(xì)胞術(shù)測(cè)定X、Y精子比例
取500 μL分選后獲得的精液樣本,1 337 r·min-1離心10 min,棄上清,用PBS稀釋精液至2×107 spz·mL-1,隨后加入7.5 μL Hoechst 33342(濃度為5 mg·mL-1)熒光染料,在37℃水浴鍋中避光孵育50 min,每隔10 min混勻一次。水浴結(jié)束后,在熒光染色后的精液中加入25 μg·mL-1的誘惑紅40,室溫避光染色2 min后,立即使用高速分選型流式細(xì)胞儀(BD FACSAriaTM Ⅲ)對(duì)X、Y精子比例進(jìn)行檢測(cè)。
1.7 精子頂體完整性檢測(cè)
豬精子頂體完整性使用花生凝集素?zé)晒鈽?biāo)記(FITC-PNA)染色法進(jìn)行檢測(cè)。隨機(jī)吸取30 μL分選后的精液,在干凈的載玻片上進(jìn)行涂片,自然風(fēng)干后在4%組織細(xì)胞固定液中固定20 min,隨后取30 μL FITC-PNA染色液滴加在樣品載玻片上,37℃濕盒中避光孵育30 min,PBS清洗3次,每次10 min,在熒光顯微鏡400×鏡下觀察拍照。拍照時(shí)使用488 nm藍(lán)色激發(fā)光,精子頂體部呈完整綠色帽狀熒光的被認(rèn)為具有完整的頂體,無(wú)熒光的被認(rèn)為是頂體不完整或頂體破損精子。即“精子頂體完整性(%)=頭部有綠色帽狀熒光的精子數(shù)/視野內(nèi)總精子數(shù)×100%”,拍攝圖像時(shí),選擇至少5個(gè)清晰的視野,每個(gè)視野中至少包含200個(gè)精子。
1.8 精子質(zhì)膜完整性檢測(cè)
使用質(zhì)膜完整性雙重?zé)晒猓⊿YBR-14/PI)法對(duì)精子質(zhì)膜完整性進(jìn)行評(píng)估。隨機(jī)吸取100 μL分選后的精液于1.5 mL離心管中,在37℃恒溫培養(yǎng)箱中孵育30 min,然后加入0.2 μL SYBR-14染色液與樣本充分混勻,置于37℃恒溫培養(yǎng)箱中孵育10 min,再加入0.1 μL PI染色液混勻,置于37℃恒溫培養(yǎng)箱中孵育10 min,在熒光顯微鏡400×鏡下拍照觀察。拍照時(shí)分別使用488 nm藍(lán)色激發(fā)光和525 nm綠色激發(fā)光觀察,具有完整質(zhì)膜的精子顯示綠色熒光,質(zhì)膜受損的精子顯示紅色熒光。即“精子質(zhì)膜完整性(%)=綠色熒光精子數(shù)/視野內(nèi)總精子數(shù)×100%”,拍攝圖像時(shí),選擇至少5個(gè)清晰的視野,每個(gè)視野中至少包含200個(gè)精子,試驗(yàn)全程避光操作。
1.9 精子中ROS水平檢測(cè)
取500 μL待檢測(cè)精液樣本于1.5 mL離心管中,室溫下1 000 g離心5 min,棄上清,在精子沉淀中加入相同體積的1 μmol·L-1 MitoSOX Red染色液和100 nmol·L-1的MitoTracker green染色液重懸精子,室溫下避光共同孵育15 min,隨后使用PBS洗滌兩遍,立刻在熒光顯微鏡下觀察拍照,選擇至少5個(gè)清晰的視野,每個(gè)視野中至少包含200個(gè)精子,將圖片通過(guò)ImageJ軟件進(jìn)行光密度分析。
1.10 精子ATP水平檢測(cè)
使用ATP檢測(cè)試劑盒測(cè)定精子樣本中的ATP含量。首先,制備ATP的標(biāo)準(zhǔn)曲線,在冰上稀釋ATP標(biāo)準(zhǔn)溶液以獲得0.01、0.05、0.1、0.5、1和5 μmol·L-1的ATP標(biāo)準(zhǔn)溶液。然后將精液樣本用PBS清洗兩次,調(diào)整樣本濃度為5×107spz·mL-1,加入200 μL預(yù)冷的裂解液冰上裂解15 min以釋放細(xì)胞內(nèi)ATP,期間使用超聲波破碎儀破碎30 s,裂解的精液在4℃下以12 000 g離心10 min,收集上清液。將20 μL待測(cè)樣品和100 μL ATP檢測(cè)工作液加入96孔板中,混勻后使用多功能酶標(biāo)儀(BioTek,Synergy H1,美國(guó))測(cè)量自發(fā)光,最后根據(jù)標(biāo)準(zhǔn)曲線計(jì)算出樣本的ATP濃度。
1.11 精子線粒體膜電位檢測(cè)
使用線粒體膜電位檢測(cè)試劑盒(JC-1)測(cè)定精液樣本中線粒體膜電位水平。將精液樣本用PBS清洗兩次,調(diào)整樣本濃度為1×106 spz·mL-1,加入500μL JC-1染色液顛倒混勻,在37℃恒溫培養(yǎng)箱中避光孵育20 min。隨后在4℃下以600 g離心3 min,棄上清,用JC-1染色液清洗2次后加入1 mL JC-1染色液重懸細(xì)胞,重復(fù)兩次,使用流式細(xì)胞儀檢測(cè),使用FlowJo 8.0進(jìn)行數(shù)據(jù)分析。
1.12 數(shù)據(jù)處理與統(tǒng)計(jì)分析
本試驗(yàn)所有數(shù)據(jù)使用SPSS 21.0進(jìn)行統(tǒng)計(jì)和分析,數(shù)據(jù)分析使用單因素方差分析(One-way ANOVA),比較多組之間的差異使用Tukey檢驗(yàn)。使用GraphPad Prism 8軟件制圖,所有結(jié)果用“平均值±標(biāo)準(zhǔn)誤差(Mean±SEM)”表示,P<0.05表示差異顯著,P<0.01表示差異極顯著,P>0.05表示差異不顯著。
2 結(jié) 果
2.1 不同pH稀釋液在不同時(shí)間下對(duì)豬精子活率及運(yùn)動(dòng)軌跡的影響
精液在不同酸堿性稀釋液中孵育30、60、90和120 min時(shí),使用CASA系統(tǒng)檢測(cè)精子活率。結(jié)果發(fā)現(xiàn),在酸性條件下,精子活率隨稀釋液pH降低而降低,在孵育60 min以內(nèi)時(shí),pH≥6.4的稀釋液對(duì)精子活率無(wú)顯著影響(P>0.05,圖1A)。在堿性條件下,精子活率隨稀釋液pH升高而降低,在孵育60 min以內(nèi)時(shí),pH≤7.1的稀釋液對(duì)精子活率無(wú)顯著影響(P>0.05,圖1B)。當(dāng)稀釋液pH為6.4和7.1時(shí),上、下層精子的運(yùn)動(dòng)軌跡與對(duì)照組不同,改變稀釋液酸堿性后上層精子的前向性運(yùn)動(dòng)精子占比極顯著高于下層(P<0.01,圖2)。以上結(jié)果說(shuō)明,選擇pH為6.4和7.1的稀釋液不影響精子活率,更適合分選豬X、Y精子,且上層精子運(yùn)動(dòng)性能更好。
2.2 稀釋液中添加一水肌酸促進(jìn)精子運(yùn)動(dòng)能力
在精液稀釋液中添加濃度為0、250、500、750和1 000 μmol·L-1的一水肌酸,使用CASA系統(tǒng)檢測(cè)精子在不同時(shí)間下的運(yùn)動(dòng)參數(shù)。結(jié)果發(fā)現(xiàn),精子直線運(yùn)動(dòng)速率、曲線運(yùn)動(dòng)速率和擺動(dòng)性隨一水肌酸濃度的增加呈先升高后降低的趨勢(shì),精子活力隨時(shí)間呈降低趨勢(shì)。當(dāng)精子在添加750 μmol·L-1一水肌酸的稀釋液中孵育60 min時(shí),精子活力、直線運(yùn)動(dòng)速率、曲線運(yùn)動(dòng)速率和擺動(dòng)性顯著高于對(duì)照組(P<0.05,表1)。以上結(jié)果表明,在稀釋液中添加750 μmol·L-1一水肌酸能最有效提高精子的運(yùn)動(dòng)參數(shù),使精子運(yùn)動(dòng)能力加強(qiáng)。
2.3 豬X、Y精子分選體系的建立與效果評(píng)估
根據(jù)稀釋液最適pH和最適一水肌酸濃度,建立豬X、Y精子分選體系(圖 3)。將質(zhì)量合格的精液分別用pH為6.4和7.1的稀釋液稀釋,調(diào)整精液密度為2×107 spz·mL-1,分別向其中添加750 μmol·L-1一水肌酸,將上述精子懸液放置37℃含有5% CO2的無(wú)菌培養(yǎng)箱中傾斜45°孵育60 min,分別收集上層30%的精子轉(zhuǎn)移至新管,離心后用基礎(chǔ)稀釋液重懸,即獲得分選的精子。
由于SRY蛋白只在Y精子上表達(dá)[27],通過(guò)對(duì)分選精子SRY蛋白免疫熒光染色可確定X、Y精子比例,結(jié)果發(fā)現(xiàn)在pH為6.8的對(duì)照組中,溶液中49.78%的精子上沒(méi)有特異性蛋白SRY,50.12%的精子頭部含有Y精子上特異性蛋白SRY(P>0.05)。當(dāng)稀釋液pH為弱酸性6.4時(shí),分選體系上層精液中有63.32%的精子頭部沒(méi)有SRY蛋白,為X精子(P<0.01,圖4);稀釋液pH為弱堿性7.1時(shí),分選體系上層精液中有67.19%的精子頭部含有SRY蛋白,為Y精子(P<0.01,圖4)。根據(jù)豬X、Y精子的DNA含量差異,使用流式細(xì)胞儀檢測(cè)分選精液中X、Y精子比例,試驗(yàn)結(jié)果表明,精液稀釋液pH為6.4時(shí),分選體系上層精液中X精子占比達(dá)63.01%(P<0.01,圖5);稀釋液pH為7.1時(shí),分選體系上層精液中Y精子占比達(dá)65.97%(P<0.01,圖5),以上結(jié)果說(shuō)明建立的分選體系能有效將豬X、Y精子進(jìn)行分離。
2.4 分選體系不影響分選后精子的質(zhì)量
為評(píng)價(jià)分選后精子的質(zhì)量,我們對(duì)分選后精子進(jìn)行了頂體完整性、質(zhì)膜完整性和ROS水平檢測(cè)。
結(jié)果發(fā)現(xiàn),本分選體系分選出的精子頂體完整性和質(zhì)膜完整性與對(duì)照組相比有降低趨勢(shì),但無(wú)顯著差異(P>0.05,圖6),精子ROS水平與對(duì)照組相比也無(wú)顯著差異(P>0.05,圖7),以上結(jié)果表明本分選體系不影響分選后X、Y精子的質(zhì)量。
2.5 分選體系提高了分選后精子的運(yùn)動(dòng)性
根據(jù)ATP檢測(cè)試劑盒的使用說(shuō)明,建立精子ATP檢測(cè)標(biāo)準(zhǔn)曲線為y=0.1932x+0.7436,R2=0.9947。結(jié)果發(fā)現(xiàn),分選后精子內(nèi)部ATP含量顯著高于對(duì)照組(P<0.05,表2)。通過(guò)JC-1結(jié)合流式細(xì)胞術(shù)檢測(cè)分選后精子線粒體膜電位的變化,線粒體膜電位較高時(shí),JC-1聚集在線粒體的基質(zhì)中,產(chǎn)生紅色熒光;線粒體膜電位較低時(shí),JC-1不能聚集在線粒體基質(zhì)中,產(chǎn)生綠色熒光,通過(guò)流式細(xì)胞術(shù)檢測(cè)不同熒光顏色,可推測(cè)線粒體膜電位水平,試驗(yàn)結(jié)果發(fā)現(xiàn)精子線粒體活性顯著高于對(duì)照組(P<0.05,圖8)。通過(guò)CASA系統(tǒng)對(duì)分選后的精子進(jìn)行運(yùn)動(dòng)指標(biāo)檢測(cè),結(jié)果發(fā)現(xiàn)精子活力、直線運(yùn)動(dòng)速率,曲線運(yùn)動(dòng)速率和擺動(dòng)性顯著高于對(duì)照組(P<0.05,表2)。
3 討 論
豬X、Y精子高效分選對(duì)豬性別控制技術(shù)至關(guān)重要,然而在豬常規(guī)輸精過(guò)程中,需要至少18億個(gè)前向運(yùn)動(dòng)的精子才能達(dá)到輸精要求,遠(yuǎn)超于牛、羊等哺乳動(dòng)物輸精所需精子量[28-30]。目前,在豬生產(chǎn)中所使用的X、Y精子分選方法存在分選時(shí)間長(zhǎng)、效率低、損傷嚴(yán)重等弊端[31-32],亟需開(kāi)發(fā)一種能廣泛應(yīng)用于生豬領(lǐng)域的高效精子分選技術(shù)。本研究通過(guò)調(diào)整豬精液稀釋液酸堿性并聯(lián)合一水肌酸對(duì)豬精子進(jìn)行分離,X、Y精子分選效果分別達(dá)到63.32%和67.19%,且分選后不損害精子質(zhì)量并提高精子運(yùn)動(dòng)性能,建立了一種新型豬X、Y精子分選體系。
精子外部環(huán)境對(duì)其生物活性至關(guān)重要[33],目前已有很多研究通過(guò)改變精子外部環(huán)境來(lái)分離X、Y精子[34-36]。Madrid-Bury等[37]使用上游法分離荷斯坦公牛中X、Y精子,在孵育150 min后,上層精液中Y精子的占比顯著降低;Azizeddin等[38]利用是影響精子運(yùn)動(dòng)性能的重要因素之一,X、Y精子在不同酸堿性稀釋液中運(yùn)動(dòng)能力不同,這可能與X、Y精子體內(nèi)的乳酸脫氫酶含量差異有關(guān),酸性條件下,X精子乳酸脫氫酶活性升高,能量代謝加快,促進(jìn)ATP的產(chǎn)生,從而增強(qiáng)X精子運(yùn)動(dòng)性能[39-41]。此前,改變豬精液環(huán)境pH為弱酸性僅能富集55%的X精子[20],因此,我們?cè)噲D優(yōu)化利用不同酸堿性稀釋液分離豬X、Y精子的分選體系。本研究發(fā)現(xiàn),豬精子在不同pH環(huán)境中孵育60 min以內(nèi)時(shí)對(duì)精子活率無(wú)顯著影響,CASA系統(tǒng)捕獲豬精液在不同pH時(shí)上、下層精子的運(yùn)動(dòng)軌跡,發(fā)現(xiàn)當(dāng)精液pH為6.4和7.1時(shí),上層精子前向性運(yùn)動(dòng)所占比例最大。因此認(rèn)為,改變稀釋液pH可以促進(jìn)特定精子向上游動(dòng),我們還發(fā)現(xiàn)上層精液中精子運(yùn)動(dòng)性能好,而下層精子運(yùn)動(dòng)性能降低,這可能是因?yàn)榫豪锊糠痔囟ň踊盍Ρ灰种?,也可能是由于分選體系導(dǎo)致部分精子質(zhì)量下降,沉積或聚集在下層稀釋液中。因此,為了確保分選后的X、Y精子質(zhì)量不受影響,本研究只選擇分選體系上層精子進(jìn)行下一步探究。
此前已有研究發(fā)現(xiàn),在精液中外源補(bǔ)充一水肌酸能維持精子運(yùn)動(dòng)和能量代謝,肌酸作為精子本身具有的儲(chǔ)能物質(zhì),不會(huì)對(duì)精子產(chǎn)生其他負(fù)面作用[24,42-44]。本研究在豬精液稀釋液中添加一水肌酸后同樣顯著提高了精子的運(yùn)動(dòng)性能,同時(shí)精子擺動(dòng)性增強(qiáng),這說(shuō)明精子被激活,能量代謝加強(qiáng),促使精子更容易向上層游動(dòng),從而更有利于X、Y精子的分離。此外,一水肌酸有利于維持體外保存期間的精子質(zhì)量[43],這可能是本體系分選后精子運(yùn)動(dòng)性能被提高的原因之一??傊?,本試驗(yàn)發(fā)現(xiàn)在豬X、Y精子分選過(guò)程中補(bǔ)充一水肌酸有利于提高分選效果并保護(hù)精子質(zhì)量。
目前已使用的X、Y精子分選方法會(huì)對(duì)精子質(zhì)量產(chǎn)生一定損害,如造成精子質(zhì)膜、頂體損傷和活性氧累積等,這主要是由于分選操作對(duì)精子造成的損害,包括離心、孵育、高壓、激光和電荷等[45-47]。精子質(zhì)膜和頂體的完整性對(duì)于卵細(xì)胞的成功受精至關(guān)重要,精子質(zhì)膜的損傷會(huì)導(dǎo)致精子內(nèi)環(huán)境失衡,降低精子的存活率,而精子頂體在精子獲能、頂體反應(yīng)和透明帶結(jié)合中起重要作用[48-50],此外,雖然正常生理水平的活性氧能調(diào)節(jié)精子成熟、能量獲取、頂體反應(yīng)和精子卵融合過(guò)程,但過(guò)量的活性氧會(huì)導(dǎo)致精子病理反應(yīng),如自由基誘導(dǎo)的脂質(zhì)過(guò)氧化、DNA損傷和凋亡現(xiàn)象[51-52]。本研究結(jié)果顯示,利用不同酸堿性聯(lián)合一水肌酸分選豬X、Y精子對(duì)精子質(zhì)量并無(wú)顯著影響,這可能是由于在分選體系建立時(shí)篩選了最合適的pH以及未選取對(duì)精液本身造成損傷的添加物。然而,本方法的分選效果仍存在改進(jìn)空間,下一步將繼續(xù)優(yōu)化分選體系,如調(diào)整稀釋液溫度、離心條件和精子密度等。
豬人工授精對(duì)精液的需求量遠(yuǎn)高于牛、羊等動(dòng)物[27,53],在分選用于規(guī)?;i場(chǎng)所需的性控精液時(shí)應(yīng)注重操作的難易程度、分選后的精液質(zhì)量。本研究通過(guò)調(diào)整稀釋液酸堿性并聯(lián)合一水肌酸建立了一種新型豬X、Y精子分選體系,相較于此前的分選方法,本方法具有操作簡(jiǎn)便、成本低廉和分選快捷的優(yōu)點(diǎn)。因此,有望在豬生產(chǎn)中廣泛應(yīng)用。
4 結(jié) 論
綜上,本研究建立了一種簡(jiǎn)便、價(jià)廉和快捷的豬X、Y精子分選體系,當(dāng)調(diào)整精液稀釋液pH為6.4并添加750 μmol·L-1一水肌酸時(shí),上層精液X精子占比達(dá)63.32%;調(diào)整pH為7.1并添加750 μmol·L-1一水肌酸時(shí),上層精液Y精子占比達(dá)67.19%。分選后不損害精子質(zhì)量并提高精子運(yùn)動(dòng)性能,具有在規(guī)模化豬場(chǎng)廣泛應(yīng)用的潛在價(jià)值,進(jìn)一步為豬性控精液新技術(shù)研發(fā)提供試驗(yàn)依據(jù)。
參考文獻(xiàn)(References):
[1] XIE Y S,WU C H,LI Z C,et al.Early gonadal development and sex determination in mammal[J].Int J Mol Sci,2022,23(14):7500.
[2] KNOX R V.Impact of swine reproductive technologies on pig and global food production[M]∥LAMB G C,DILORENZO N.Current and Future Reproductive Technologies and World Food Production.New York:Springer,2014:131-160.
[3] ROCA J,PARRILLA I,RODRIGUEZ-MARTINEZ H,et al.Approaches towards efficient use of boar semen in the pig industry[J].Reprod Domest Anim,2011,46(S2):79-83.
[4] ALKMIN D V,PARRILLA I,TARANTINI T,et al.Seminal plasma affects sperm sex sorting in boars[J].Reprod Fertil Dev,2016,28(5):556-564.
[5] XIE Y S,XU Z Q,WU Z F,et al.Sex manipulation technologies progress in livestock:a review[J].Front Vet Sci,2020,7:481.
[6] RAHMAN M S,PANG M G.New biological insights on X and Y chromosome-bearing spermatozoa[J].Front Cell Dev Biol,2020,21:388.
[7] 曾有權(quán),陸陽(yáng)清,牛金濤,等.流式細(xì)胞儀在豬性別控制中的應(yīng)用初探[J].安徽農(nóng)業(yè)科學(xué),2006,34(18):4594-4596.
ZENG Y Q,LU Y Q,NIU J T,et al.Primary study on the production of sex pre-selected piglet[J].Journal of Anhui Agricultural Sciences,2006,34(18):4594-4596.(in Chinese)
[8] JOHNSON L A.Sex preselection in swine:altered sex ratios in offspring following surgical insemination of flow sorted X-and Y-bearing sperm[J].Reprod Domest Anim,1991;26(6):309-314.
[9] 陳虹宇,魏雅婷,李若璽,等.動(dòng)物性別控制技術(shù)研究進(jìn)展[J].畜牧獸醫(yī)學(xué)報(bào),2024,55(4):1370-1380.
CHEN H Y,WEI Y T,LI R X,et al.Advances in animals sperm sexing techniques[J].Acta Veterinaria et Zootechnica Sinica,2024,55(4):1370-1380.(in Chinese)
[10] ALKMIN D V,PARRILLA I,TARANTINI T,et al.Intra-and interboar variability in flow cytometric sperm sex sorting[J].Theriogenology,2014,82(3):501-508.
[11] DEL OLMO D,PARRILLA I,GIL M A,et al.Handling of boar spermatozoa during and after flow cytometric sex-sorting process to improve their in vitro fertilizing ability[J].Theriogenology,2013,80(4):350-356.
[12] ZHOU J,CHEN L,LI J,et al.The Semen pH affects sperm motility and capacitation[J].PLoS One,2015,10(7):e0132974.
[13] SHI Z D,ZHANG Y P,ZHAI L P,et al.Sperm parameters,ASAs and apoptosis after processing by the double tube and swim up methods[J].Am J Mens Health,2021,15(2):15579883211001202.
[14] RAVAL N P,SHAH T M,GEORGE L B,et al.Effect of the pH in the enrichment of X or Y sex chromosome-bearing sperm in bovine[J].Vet World,2019,12(8):1299-1303.
[15] HE Q F,WU S H,GAO F,et al.Diluent pH affects sperm motility via GSK3 α/β-hexokinase pathway for the efficient enrichment of X-sperm to increase the female kids rate of dairy goats[J].Theriogenology,2023,201:1-11.
[16] DE OLIVEIRA PALUDO F J,DE BITTENCOURT PASQUALI M A,DE VARGAS A R,et al.Influences of the polymorphisms of the Sod2 gene (rs4880) on the motility and vigor of X-and Y-bearing sperm at different pH values[J].Biomed Pharmacother,2021,142:111993.
[17] HUANG M,CAO X Y,HE Q F,et al.Alkaline semen diluent combined with R848 for separation and enrichment of dairy goat X-sperm[J].J Dairy Sci,2022,105(12):10020-10032.
[18] HE Q F,GAO F,WU S H,et al.Alkaline dilution alters sperm motility in dairy goat by affecting sAC/cAMP/PKA pathway activity[J].Int J Mol Sci,2023,24(2):1771.
[19] OYEYIPO I P,VAN DER LINDE M,DU PLESSIS S S.Environmental exposure of sperm sex-chromosomes:a gender selection technique[J].Toxicol Res,2017,33(4):315-323.
[20] PARK Y J,KWON K J,SONG W H,et al.New technique of sex preselection for increasing female ratio in boar sperm model[J].Reprod Domest Anim,2021,56(2):333-341.
[21] FERNNDEZ-LANDA J,SANTIBAEZ-GUTIERREZ A,TODOROVIC N,et al.Effects of creatine monohydrate on endurance performance in a trained population:a systematic review and meta-analysis[J].Sports Med,2023,53(5):1017-1027.
[22] LANHERS C,PEREIRA B,NAUGHTON G,et al.Creatine supplementation and upper limb strength performance:a systematic review and meta-analysis[J].Sports Med,2017,47(1):163-173.
[23] FERNNDEZ-LANDA J,CALLEJA-GONZLEZ J,LEóN-GUEREO P,et al.Effect of the combination of creatine monohydrate plus HMB supplementation on sports performance,body composition,markers of muscle damage and hormone status:a systematic review[J].Nutrients,2019,11(10):2528.
[24] OSTOJIC S M,STEA T H,ENGESET D.Creatine as a promising component of paternal preconception diet[J].Nutrients,2022,14(3):586.
[25] WANG H C,GUO M H,LI T F,et al.Phosphocreatine addition to extender enhances the quality and antioxidant capacity of cryopreserved boar sperm[J].Reprod Domest Anim,2023,58(8):1087-1096.
[26] UMEHARA T,KAWAI T,GOTO M,et al.Creatine enhances the duration of sperm capacitation:a novel factor for improving in vitro fertilization with small numbers of sperm[J].Hum Reprod,2018,33(6):1117-1129.
[27] LI C J,SUN Y F,YI K L,et al.Detection of the SRY transcript and protein in bovine ejaculated spermatozoa[J].Asian-Aust J Anim Sci,2011,10(24):1358-1364.
[28] MELLAGI A P G,WILL K J,QUIRINO M,et al.Update on artificial insemination:semen,techniques,and sow fertility[J].Mol Reprod Dev,2023,90(7):601-611.
[29] MERCADANTE V R G,LAMB G C.Implementing fixed-time artificial insemination programs in beef herds[J].Vet Clin North Am Food Anim Pract,2024,40(1):141-156.
[30] WEAVER A C,KELLY J M,SWINBOURNE A M,et al.Strategies to improve the success of fixed-time artificial insemination in the ewe[J].Reprod Domest Anim,2023,58(10):1359-1367.
[31] VAZQUEZ J M,PARRILLA I,ROCA J,et al.Sex-sorting sperm by flow cytometry in pigs:issues and perspectives[J]. Theriogenology, 2009,71(1):80-88.
[32] RATH D,TIEDEMANN D,GAMRAD L,et al.Sex-sorted boar sperm-an update on related production methods[J].Reprod Domest Anim, 2015,5(2):56-60.
[33] MISHRA A K,KUMAR A,YADAV S,et al.Functional insights into voltage gated proton channel (Hv1) in bull spermatozoa[J]. Theriogenology,2019,136:118-130.
[34] ASMA-UL-HUSNA,AWAN M A,MEHMOOD A,et al.Sperm sexing in Nili-Ravi buffalo through modified swim up:validation using SYBR? green real-time PCR[J].Anim Reprod Sci,2017,182:69-76.
[35] HASHIMOTO H,ETO T,SUEMIZU H,et al.Application of a new convenience gender sorting method for mouse spermatozoa to mouse reproductive engineering technology[J].J Vet Med Sci,2013,75(2):231-235.
[36] HE Q F,WU S H,HUANG M,et al.Effects of diluent pH on enrichment and performance of dairy goat X/Y sperm[J].Front Cell Dev Biol,2021,9:747722.
[37] MADRID-BURY N,F(xiàn)ERNNDEZ R,JIMéNEZ A,et al.Effect of ejaculate,bull,and a double swim-up sperm processing method on sperm sex ratio[J].Zygote,2003,11(3):229-235.
[38] AZIZEDDIN A,ASHKAR F A,KING W A,et al.Enrichment of Y-chromosome-bearing bull spermatozoa by swim-up through a column[J].Reprod Domest Anim,2014,49(1):e1-e4.
[39] GOLDBERG E.The sperm-specific form of lactate dehydrogenase is required for fertility and is an attractive target for male contraception (a review)[J].Biol Reprod,2021,104(3):521-526.
[40] FERNNDEZ S,CóRDOBA M.A membrane-associated adenylate cyclase modulates lactate dehydrogenase and creatine kinase activities required for bull sperm capacitation induced by hyaluronic acid[J].Anim Reprod Sci,2017,179:80-87.
[41] GUO H D,CHANG Z L,ZHANG Z L,et al.Extracellular ATPs produced in seminal plasma exosomes regulate boar sperm motility and mitochondrial metabolism[J].Theriogenology,2019,139:113-120.
[42] UMEHARA T,TSUJITA N,GOTO M,et al.Methyl-beta cyclodextrin and creatine work synergistically under hypoxic conditions to improve the fertilization ability of boar ejaculated sperm[J].Anim Sci J,2020,91(1):e13493.
[43] UMEHARA T,KAWAI T,GOTO M,et al.Creatine enhances the duration of sperm capacitation:a novel factor for improving in vitro fertilization with small numbers of sperm[J].Hum Reprod,2018,33(6):1117-1129.
[44] NASRALLAH F,HAMMAMI M B,OMAR S,et al.Semen creatine and creatine kinase activity as an indicator of sperm quality[J]. Clin Lab,2020,66(9),doi:10.7754/Clin.Lab.2020.191248.
[45] HE Q F,HUANG M,CAO X Y,et al.Advancements in mammalian X and Y sperm differences and sex control technology[J]. Zygote,2022,30(4):423-430.
[46] BERMEJO-LVAREZ P,RIZOS D,RATH D,et al.Epigenetic differences between male and female bovine blastocysts produced in vitro[J].Physiol ""Genomics,2008,32(2):264-272.
[47] 孫 偉,郭雅欣,吳 蒙,等.荷斯坦種公牛X-性控精液對(duì)體內(nèi)胚胎生產(chǎn)效率的影響[J].中國(guó)畜牧雜志,2023,59(11):214-218.
SUN W,GUO Y X,WU M,et al.Effect of X-sex-controlled semen on in vivo embryo production efficiency in Holstein bulls production efficiency[J].Chinese Journal of Animal Science,2023,59(11):214-218.(in Chinese)
[48] VAN DER HORST G.Status of sperm functionality assessment in wildlife species:from fish to primates[J].Animals (Basel),2021,11(6):1491.
[49] RAAD G,BAKOS H W,BAZZI M,et al.Differential impact of four sperm preparation techniques on sperm motility, morphology, DNA fragmentation,acrosome status,oxidative stress,and mitochondrial activity:a prospective study[J]. Andrology, 2021,9(5):1549-1559.
[50] NESCI S,SPINACI M,GALEATI G,et al.Sperm function and mitochondrial activity:an insight on boar sperm metabolism[J]. Theriogenology,2020,144:82-88.
[51] AITKEN R J.Reactive oxygen species as mediators of sperm capacitation and pathological damage[J].Mol Reprod Dev,2017, 84(10):1039-1052.
[52] ZHANG G W,YANG W,ZOU P,et al.Mitochondrial functionality modifies human sperm acrosin activity,acrosome reaction capability and chromatin integrity[J].Hum Reprod,2019,34(1):3-11.
[53] 國(guó)家市場(chǎng)監(jiān)督管理總局,國(guó)家標(biāo)準(zhǔn)化管理委員會(huì).GB 23238-2021 種豬常溫精液[S].北京:中國(guó)標(biāo)準(zhǔn)出版社,2021:2.
State Administration for Market Regulation,Standardization Administration.GB 23238-2021 Boar liquid semen[S].Beijing: Standards Press of China,2021:2.(in Chinese)
(編輯 郭云雁)