国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

非小細(xì)胞肺癌中免疫檢查點(diǎn)及免疫治療中細(xì)胞亞群的異質(zhì)性

2024-11-25 00:00:00楊燕陳丹朱紅革
關(guān)鍵詞:檢查點(diǎn)免疫治療肺癌

[摘 要]目的 鑒定非小細(xì)胞肺癌(NSCLC)中分子失調(diào)機(jī)制、免疫檢查點(diǎn)異常以及反應(yīng)于免疫治療的免疫細(xì)胞。方法 收集GSE81089,GSE120622和TCGA數(shù)據(jù)庫(kù)中NSCLC和對(duì)照的基因表達(dá)數(shù)據(jù)并進(jìn)行差異表達(dá)和富集分析。鑒定差異表達(dá)的免疫檢查點(diǎn)對(duì)總體生存的影響。收集2022年6月—2023年5月于新疆醫(yī)科大學(xué)附屬腫瘤醫(yī)院接受新輔助治療的NSCLC患者的腫瘤和癌旁對(duì)照組織以及血液樣本,利用qRT-PCR檢測(cè)腫瘤和癌旁對(duì)照組織中免疫檢查點(diǎn)的表達(dá)。另外,在GSE207422單細(xì)胞數(shù)據(jù)集中鑒定新輔助治療后主要病理緩解(MPR)和非主要病理緩解(NMPR)之間免疫細(xì)胞的差異,進(jìn)一步通過(guò)流式細(xì)胞術(shù)檢測(cè)MPR和NMPR之間免疫細(xì)胞的豐度差異。結(jié)果 在GSE81089,GSE120622和TCGA中鑒定了2 505個(gè)差異表達(dá)基因的交集,富集分析發(fā)現(xiàn)交集基因主要參與神經(jīng)活性配體-受體相互作用、PI3K-Akt信號(hào)通路和細(xì)胞因子-細(xì)胞因子受體相互作用等信號(hào)通路;此外,有6個(gè)免疫檢查點(diǎn)在NSCLC中差異表達(dá),CD40LG、CD160、VTCN1、TDO2顯著影響患者的總體生存。與癌旁對(duì)照組比較,qRT-PCR檢測(cè)證實(shí)了CD40LG和CD160在NSCLC中顯著低表達(dá)(P<0.05),而VTCN1和TDO2顯著高表達(dá)(P<0.05)。通過(guò)整合GSE207422單細(xì)胞數(shù)據(jù),將32個(gè)細(xì)胞群分為13種細(xì)胞亞型,其中CD4、CD8、B細(xì)胞、NK和M2巨噬細(xì)胞在MPR中明顯富集,流式細(xì)胞術(shù)檢測(cè)證實(shí)了這些免疫細(xì)胞在MPR中的豐度明顯高于NMPR。結(jié)論 免疫檢查點(diǎn)與NSCLC患者總體生存顯著相關(guān),并確認(rèn)了MPR中富集的免疫細(xì)胞。這些發(fā)現(xiàn)為NSCLC的免疫治療提供了新的生物學(xué)見(jiàn)解和潛在的治療靶點(diǎn)。

[關(guān)鍵詞]非小細(xì)胞肺癌;免疫檢查點(diǎn);主要病理緩解;免疫細(xì)胞" doi:10.3969/j.issn.1674-7593.2024.06.003

Study on the Heterogeneity of Cell Subpopulations in Immunotherapy and

Immune Checkpoints in Non-small Cell Lung Cancer

Yang Yan1, Chen Dan2, Zhu Hongge1

**1Department of Pulmonary Medicine, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi 830011;

2School of Public Health, Xinjiang Medical University, Urumqi 830054

**Corresponding author:Zhu Hongge, email: 1056923979@qq.com

[Abstract] Objective To identify molecular dysregulation mechanisms, immune checkpoint abnormalities, and immune cells responsive to immunotherapy in non-small cell lung cancer (NSCLC). Methods Gene expression data for NSCLC and controls from the GSE81089, GSE120622, and TCGA databases were collected and subjected to differential expression and enrichment analysis. The impact of differentially expressed immune checkpoints on overall survival was identified. Tumor tissues, adjacent control tissues, and blood samples were collected from NSCLC patients who received neoadjuvant therapy at Cancer Hospital Affiliated to Xinjiang Medical University from June 2022 to May 2023, the expression of immune checkpoints in tumor and adjacent control tissues was detected using qRT-PCR. Additionally, in the GSE207422 single-cell dataset, differences in immune cells between major pathological remission (MPR) and non-major pathological remission (NMPR) after neoadjuvant therapy were identified. The abundance differences of immune cells between MPR and NMPR were further detected by flow cytometry. Results In the GSE81089, GSE120622, and TCGA datasets, an intersection of 2 505 differentially expressed genes was identified. Enrichment analysis revealed that these intersecting genes are primarily involved in neuroactive ligand-receptor interaction, the PI3K-Akt signaling pathway, and cytokine-cytokine receptor interaction, among other signaling pathways. Additionally, six immune checkpoints were differentially expressed in NSCLC, with CD40LG, CD160, VTCN1, and TDO2 significantly impacting overall patient survival. Compared to the control group, qRT-PCR confirmed that CD40LG and CD160 were significantly downregulated in NSCLC(Plt;0.05), while VTCN1 and TDO2 were significantly upregulated (Plt;0.05). By integrating the GSE207422 single-cell dataset, 32 cell clusters were classified into 13 cell subtypes. Comparisons revealed a significant enrichment of CD4, CD8, B cells, NK cells, and M2 macrophages in MPR. Flow cytometry confirmed that the abundance of these immune cells was higher in MPR than in NMPR. Conclusion Immune checkpoints were significantly associated with the overall survival of NSCLC patients, and the enrichment of immune cells in MPR was confirmed. These findings offer new biological insights and potential therapeutic targets for the immunotherapy of NSCLC.

[Key words] Non-small cell lung cancer; Immune checkpoint; Major pathological remission; Immune cells

肺癌是人類癌癥死亡的主要原因之一,據(jù)估計(jì)每年約180萬(wàn)人因肺癌死亡,造成巨大的社會(huì)負(fù)擔(dān)和經(jīng)濟(jì)損失[1。非小細(xì)胞肺癌(Non-small cell lung cancer, NSCLC)是最常見(jiàn)的肺癌亞型,約占肺癌病例的85%[2。對(duì)于NSCLC早期患者,手術(shù)是治療的最佳選擇,部分患者通過(guò)手術(shù)可以實(shí)現(xiàn)治愈,但仍有高達(dá)30%的患者術(shù)后復(fù)發(fā)[3。20世紀(jì)80年代至今,NSCLC的診斷和治療領(lǐng)域得到快速發(fā)展,但患者總體五年生存率仍然很低,主要?dú)w因于大多數(shù)患者診斷時(shí)已經(jīng)處于疾病晚期,限制了治療選擇和總體生存率[4。因此,針對(duì)NSCLC疾病特征探索新型治療策略和臨床用藥方案對(duì)于改善患者預(yù)后至關(guān)重要。近年來(lái),隨著對(duì)腫瘤微環(huán)境和宿主免疫應(yīng)答的認(rèn)識(shí)不斷深入,免疫療法已經(jīng)成為癌癥治療中最引人關(guān)注的前沿領(lǐng)域,特別是免疫檢查點(diǎn)抑制劑,如程序性死亡1(Programmed cell death protein 1, PD-1)或程序性死亡配體1(Programmed cell death 1 ligand 1, PD-L1)抑制劑,已經(jīng)在多種實(shí)體瘤中顯示出顯著的抗腫瘤活性,包括NSCLC[5。腫瘤細(xì)胞過(guò)度表達(dá)PD-L1,與PD-1結(jié)合并誘導(dǎo)免疫抑制性腫瘤微環(huán)境,幫助癌細(xì)胞免疫逃逸[6。免疫檢查點(diǎn)抑制劑的出現(xiàn)為NSCLC治療提供了新的希望。對(duì)于早期疾病,新近研究證實(shí)靶向治療和免疫治療結(jié)合可降低復(fù)發(fā)率[7。另有初步臨床試驗(yàn)結(jié)果顯示,與傳統(tǒng)化療相比,部分患者接受免疫檢查點(diǎn)抑制劑治療可以實(shí)現(xiàn)更長(zhǎng)的總生存期,而其他患者并未產(chǎn)生持久的反應(yīng),可能不會(huì)受益于此,甚至可能出現(xiàn)嚴(yán)重的副作用8-9。提高免疫檢查點(diǎn)治療的反應(yīng)效率和鑒定有效的生物標(biāo)記已成為當(dāng)前免疫療法的主要挑戰(zhàn)。因此,深入了解NSCLC中的免疫細(xì)胞與免疫檢查點(diǎn)之間的相互作用,以及這種相互作用如何影響治療反應(yīng),對(duì)于優(yōu)化免疫療法、實(shí)施個(gè)體化治療策略至關(guān)重要。本研究擬探討NSCLC中影響患者預(yù)后的免疫檢查點(diǎn),探索免疫細(xì)胞在免疫治療中的異質(zhì)性特征,以期更好地理解NSCLC患者免疫檢查點(diǎn)異常的臨床意義和應(yīng)對(duì)策略,提升免疫治療效果。

1 對(duì)象與方法

1.1 網(wǎng)絡(luò)研究

1.1.1 基因表達(dá)數(shù)據(jù)集 從基因表達(dá)綜合數(shù)據(jù)庫(kù)(Gene expression omnibus, GEO, https://www.ncbi. nlm.nih.gov/geo/)下載GSE81089、GSE120622和GSE207422數(shù)據(jù)集。GSE81089中包括199例診斷為NSCLC的患者腫瘤組織和19例正常對(duì)照肺組織的高通量測(cè)序基因表達(dá)譜。GSE120622中包括81例NSCLC組織和19例癌旁對(duì)照肺組織的高通量測(cè)序基因表達(dá)譜。癌癥基因組圖譜計(jì)劃(The cancer genome atlas, TCGA)數(shù)據(jù)中包含1 017例NSCLC組織和110例癌旁對(duì)照肺組織的高通量測(cè)序基因表達(dá)譜。

1.1.2 數(shù)據(jù)分析 使用DEseq2軟件包對(duì)NSCLC和對(duì)照進(jìn)行差異表達(dá)分析,log2 Flod Change≥1且P≤0.05作為篩選條件獲得顯著的差異表達(dá)基因(Differentially expressed genes, DEGs)。對(duì)3套數(shù)據(jù)的DEGs進(jìn)行交集分析。通過(guò)clusterprofiler軟件包對(duì)交集DEGs進(jìn)行富集分析,包括基因本體(Gene ontology, GO)和京都基因與基因組百科全書(Kyoto encyclopedia of genes and genomes, KEGG)信號(hào)通路。GO分析包括生物過(guò)程(Biological process, BP)、分子功能(Molecular function, MF)和細(xì)胞組分(Cellular component, CC)。另外,從公開(kāi)文獻(xiàn)和數(shù)據(jù)庫(kù)中收集已知的免疫檢查點(diǎn)基因,在交集DEGs中鑒定差異表達(dá)的免疫檢查點(diǎn)。進(jìn)一步繪制Kaplan-Meier(K-M)生存曲線分析免疫檢查點(diǎn)的表達(dá)與患者總體生存之間的關(guān)系。

1.1.3 單細(xì)胞數(shù)據(jù)收集及處理 GSE207422數(shù)據(jù)集包含12例NSCLC患者新輔助治療(PD-1抗體+以鉑類為基礎(chǔ)的化療)后切除的肺組織單細(xì)胞RNA測(cè)序(Single cell RNA sequencing, scRNA-seq)數(shù)據(jù)。NSCLC患者分為主要病理緩解(Major pathological remission, MPR)4例和非主要病理緩解(Non-major pathological remission, NMPR)8例。MPR被定義為PD-1阻斷聯(lián)合化療治療后常規(guī)蘇木素-伊紅染色顯示殘留的存活腫瘤細(xì)胞不超過(guò)10%。通過(guò)Seurat軟件包分析每個(gè)樣品中每個(gè)基因的讀數(shù)矩陣。使用質(zhì)量控制排除低質(zhì)量讀數(shù):①<500個(gè)表達(dá)基因;②>20%的線粒體基因;③>50%的核糖體基因。使用一致流形逼近和投影(Uniform manifold approximation and projection, UMAP)方法對(duì)數(shù)據(jù)進(jìn)行降維,以進(jìn)行二維可視化,進(jìn)一步使用Leiden算法進(jìn)行細(xì)胞聚類。使用FindAllMarkers軟件包對(duì)每個(gè)細(xì)胞群進(jìn)行細(xì)胞類型注釋。

1.2 臨床研究

1.2.1 患者和組織樣本 本研究選取了20例于2022年6月—2023年5月在新疆醫(yī)科大學(xué)附屬腫瘤醫(yī)院接受新輔助治療的NSCLC患者,包含10例MPR和10例NMPR,所有患者均具有明確的NSCLC病理診斷。收集患者的NSCLC組織和癌旁對(duì)照(Normal control, NC)組織,以及外周血樣本。NC組織樣本取自腫瘤切除邊緣至少2 cm的正常肺組織。本研究由新疆醫(yī)科大學(xué)附屬腫瘤醫(yī)院研究倫理委員會(huì)批準(zhǔn)(k-2022016)?;颊呒捌浼覍偻獠⒑炇鹬橥鈺?。納入標(biāo)準(zhǔn):①年齡≥60歲;②接受腫瘤切除手術(shù)治療。排除標(biāo)準(zhǔn):①合并其他癌癥的病史;②在其他醫(yī)院接受過(guò)新輔助治療或其他癌癥治療;③存在嚴(yán)重的心、肝、腎等器官功能不全。

1.2.2 qRT-PCR檢測(cè) 在液氮中加入Trizol并研磨組織樣本,提取總RNA。使用Nanodrop測(cè)定RNA的濃度和純度?;旌峡俁NA、隨機(jī)引物、逆轉(zhuǎn)錄緩沖液、dNTP、RNase抑制劑和逆轉(zhuǎn)錄酶進(jìn)行逆轉(zhuǎn)錄反應(yīng)。反應(yīng)條件:42 ℃ 30 min,85 ℃ 5 min。隨后將cDNA、特異性引物、SYBR Green qPCR Master Mix(Thermo Fisher,型號(hào)K0221)混合,進(jìn)行qRT-PCR反應(yīng)。反應(yīng)條件:95 ℃ 10 min;94 ℃ 30 s,58 ℃ 30 s,72 ℃ 30 s,40個(gè)循環(huán);72℃ 10 min。以GAPDH為內(nèi)參基因,用2-ΔΔCT方法計(jì)算基因相對(duì)表達(dá)水平。特異性引物序列:TDO2(5′-GGA-TGCACCGAGTGTCAGTGATC-3′,5′-GAAGTCCAAGG-CTGTCATCGTCTC-3′);VTCN1(5′-TGACCA-GGGAGCCAACTTCTCG-3′,5′-AGAGCACAGACACAA-CCTTCATGG-3′);CD160(5′-TGTTGTGCCAGAA-GCCAGAAGTC-3′,5′-CAATCCCGTCACTGTGTAGTTCCC-3′);CD40LG(5′-AATACCCACAGTTCCGCCA-AACC-3′,5′-CATTGACAAACACCGAAGCACCTG-3′);GAPDH(5′-GTGTTCCTACCCCCAATGTGT-3′,5′-ATTGTCATACCAGGAAATGAGCTT-3′)。

1.2.3 流式細(xì)胞術(shù) 熒光標(biāo)記方案:PC5.5-CD3和FITC-CD4抗體標(biāo)記CD4+T細(xì)胞;PC5.5-CD3和PE-CD8抗體標(biāo)記CD8+T細(xì)胞;FITC-CD19抗體標(biāo)記B細(xì)胞;PE-CD56抗體標(biāo)記NK細(xì)胞;APC-CD14和PC5.5-CD206抗體標(biāo)記M2巨噬細(xì)胞。使用紅細(xì)胞裂解液去除血液樣本中的紅細(xì)胞,得到白細(xì)胞懸液。使用細(xì)胞計(jì)數(shù)器計(jì)算細(xì)胞濃度,并調(diào)整細(xì)胞密度為1×106細(xì)胞/mL。將熒光標(biāo)記的抗體加入到細(xì)胞懸液中,于4 ℃中孵育30 min。使用磷酸鹽緩沖液洗滌細(xì)胞,去除未結(jié)合的抗體。將染色后的細(xì)胞樣本在流式細(xì)胞儀(美國(guó)BD公司,型號(hào)FACSAria Ⅱ)中進(jìn)行數(shù)據(jù)采集。使用FlowJo進(jìn)行數(shù)據(jù)分析。

1.3 統(tǒng)計(jì)學(xué)方法

采用GraphPad Prism 9.3.0進(jìn)行統(tǒng)計(jì)學(xué)分析,所有實(shí)驗(yàn)至少重復(fù)3次。正態(tài)分布及方差齊性的計(jì)量資料以x±s表示,采用t檢驗(yàn);非正態(tài)分布或方差不齊的定量資料以M(P1,P3)表示,采用Mann Whitney U檢驗(yàn);P<0.05為差異有統(tǒng)計(jì)學(xué)意義。

2 結(jié)果

2.1 網(wǎng)絡(luò)研究結(jié)果

2.1.1 NSCLC的差異表達(dá)基因" 在NSCLC和對(duì)照組間的差異表達(dá)分析結(jié)果中,GSE81089中鑒定了4 713個(gè)DEGs(圖1A),GSE120622中鑒定了6 223個(gè)DEGs(圖1B),TCGA中鑒定了5 238個(gè)DEGs(圖1C)。通過(guò)交集分析鑒定出了2 505個(gè)交集DEGs(圖1D)。

富集分析顯示,交集DEGs主要富集于系統(tǒng)開(kāi)發(fā)、細(xì)胞分化、鈣離子結(jié)合等GO功能(圖2A),以及神經(jīng)活性配體-受體相互作用、PI3K-Akt信號(hào)通路和細(xì)胞因子-細(xì)胞因子受體相互作用等KEGG信號(hào)通路(圖2B)。

2.1.2 免疫檢查點(diǎn)的差異表達(dá) 在NSCLC的交集DEGs中發(fā)現(xiàn)了6個(gè)免疫檢查點(diǎn)表達(dá)差異顯著(圖3A)。在GSE81089(圖3B)、GSE120622(圖3C)和TCGA(圖3D)中TNFRSF18、VTCN1和TDO2在NSCLC中的表達(dá)高于對(duì)照組,CD160、CD244和CD40LG的表達(dá)則低于對(duì)照組(P<0.05)。

2.1.3 免疫檢查點(diǎn)影響NSCLC患者預(yù)后 K-M曲線分析顯示,在TCGA中CD40LG、CD160和VTCN1的高表達(dá)與患者的預(yù)后良好有關(guān)(圖4A),GSE81089中CD40LG和VTCN1的高表達(dá)與患者的預(yù)后良好有關(guān)(圖4B),GSE120622中TDO2的高表達(dá)與預(yù)后不良有關(guān),VTCN1的高表達(dá)與患者的預(yù)后良好顯著相關(guān)(圖4C)。通過(guò)qRT-PCR實(shí)驗(yàn)檢測(cè)發(fā)現(xiàn),與NC相比,CD40LG和CD160在NSCLC中低表達(dá)(P<0.05),而TDO2和VTCN1則高表達(dá)(P<0.05),見(jiàn)圖5。

2.1.4 單細(xì)胞數(shù)據(jù)的整合分析 利用GSE207422單細(xì)胞數(shù)據(jù)集對(duì)新輔助治療NSCLC中的細(xì)胞異質(zhì)性進(jìn)行了深入研究。通過(guò)UMAP聚類分析,細(xì)胞被分為32個(gè)不同的細(xì)胞群(圖6A),進(jìn)一步根據(jù)細(xì)胞標(biāo)志物的表達(dá)鑒定為13種細(xì)胞亞型(圖6B和圖6C)。在對(duì)MPR和NMPR患者進(jìn)行比較時(shí),研究發(fā)現(xiàn)CD4、CD8、B細(xì)胞、NK細(xì)胞和M2巨噬細(xì)胞在MPR中明顯富集(圖6D)。此外,在MPR中顯示出CD160和CD40LG的富集(圖6E)。

2.2 臨床研究的流式細(xì)胞術(shù)驗(yàn)證

為了驗(yàn)證單細(xì)胞數(shù)據(jù)的結(jié)果,本研究使用流式細(xì)胞術(shù)對(duì)MPR和NMPR患者中的免疫細(xì)胞進(jìn)行了分析。結(jié)果證實(shí)了CD4、CD8、B細(xì)胞、NK細(xì)胞和M2巨噬細(xì)胞在MPR患者中的豐度明顯高于NMPR患者,見(jiàn)圖7。

3 討論

免疫檢查點(diǎn)抑制劑在治療黑色素瘤和白血病方面成效顯著,但對(duì)常見(jiàn)實(shí)體癌的療效尚不理想[10。盡管免疫檢查點(diǎn)阻斷療法用于晚期NSCLC臨床實(shí)踐多年,但對(duì)部分患者的療效并不顯著[11。本研究利用GSE81089、GSE120622和TCGA數(shù)據(jù)集對(duì)NSCLC進(jìn)行了深入基因表達(dá)分析,揭示NSCLC相關(guān)生物學(xué)過(guò)程,篩選出差異表達(dá)的免疫檢查點(diǎn)。此外,本研究還對(duì)NSCLC中檢查點(diǎn)阻斷療法的免疫細(xì)胞異質(zhì)性進(jìn)行詳細(xì)研究,為NSCLC免疫治療提供了新見(jiàn)解。

本研究通過(guò)差異分析在3個(gè)數(shù)據(jù)集中鑒定出了2 505個(gè)交集DEGs,這些基因可能在NSCLC發(fā)病過(guò)程中起到關(guān)鍵作用。富集分析發(fā)現(xiàn)交集DEGs主要富集于系統(tǒng)開(kāi)發(fā)、細(xì)胞分化和鈣離子結(jié)合等GO功能。上述功能與細(xì)胞增殖、遷移和侵襲等腫瘤相關(guān)過(guò)程密切相關(guān),提示交集DEGs可能是NSCLC發(fā)病機(jī)制的關(guān)鍵環(huán)節(jié)[12-14。此外,KEGG富集分析還揭示了這些基因主要參與的信號(hào)通路,如神經(jīng)活性配體-受體相互作用、PI3K-Akt信號(hào)通路和細(xì)胞因子-細(xì)胞因子受體相互作用等。既往研究顯示,神經(jīng)活性配體-受體相互作用參與NSCLC的發(fā)生和發(fā)展[15-16。PI3K-Akt信號(hào)通路最近被認(rèn)為是NSCLC惡性腫瘤中改變最大的分子通路之一。NSCLC中PI3K-Akt軸激活與腫瘤發(fā)生和疾病進(jìn)展密切相關(guān)[17。PI3K-Akt途徑調(diào)節(jié)肺癌中多種細(xì)胞過(guò)程,如存活、增殖、遷移、轉(zhuǎn)移、血管生成、細(xì)胞代謝、細(xì)胞衰老、基因組完整性和干細(xì)胞自我更新[18。新近發(fā)現(xiàn)免疫檢查點(diǎn)(PD-L1/PD-1)阻斷了癌癥中抗體和細(xì)胞因子產(chǎn)生,從而削弱了免疫細(xì)胞的激活能力,降低了對(duì)腫瘤細(xì)胞的免疫應(yīng)答[19。結(jié)合本研究的結(jié)果,提示交集DEGs可能通過(guò)多層次信號(hào)通路在NSCLC中發(fā)揮調(diào)控作用。

此外,本研究發(fā)現(xiàn)了6個(gè)在NSCLC中差異表達(dá)的免疫檢查點(diǎn)。其中,CD40LG和CD160的低表達(dá)以及TDO2和VTCN1的高表達(dá)可能與NSCLC患者不良預(yù)后有關(guān)。提示他們可能在NSCLC的免疫逃逸和免疫治療反應(yīng)中起關(guān)鍵作用。CD40LG是腫瘤壞死因子超家族成員之一,其在T細(xì)胞依賴性B細(xì)胞分化和活化中起關(guān)鍵作用,并在介導(dǎo)T細(xì)胞和巨噬細(xì)胞之間的雙向互作中起關(guān)鍵作用[20。CD40/CD40LG信號(hào)可以將M2表型巨噬細(xì)胞再分化為M1,靶向CD40/CD40LG是癌癥免疫治療中的常見(jiàn)策略[21。升高的CD160反映了更高豐度的循環(huán)NK細(xì)胞和CD8+‐幼稚T細(xì)胞,表明更活躍的宿主免疫,也與肺腺癌患者的良好預(yù)后相關(guān)[22。CD4+T細(xì)胞的抑制性受體(CD160和PD-1)表達(dá)的增加導(dǎo)致T細(xì)胞效應(yīng)自活性的快速下降[23。順鉑耐藥的NSCLC細(xì)胞利用TDO2酶存活,并介導(dǎo)犬尿氨酸代謝而逃避免疫監(jiān)測(cè)[24。抑制TDO2減弱T細(xì)胞的抑制狀態(tài),恢復(fù)T細(xì)胞抗腫瘤反應(yīng),防止腫瘤惡化[25。VTCN1與其他共抑制分子在炎癥小體的風(fēng)險(xiǎn)評(píng)分系統(tǒng)中上調(diào)共同形成免疫抑制表型,影響免疫檢查點(diǎn)抑制劑的療效[26。VTCN1被鑒定為T細(xì)胞活化和細(xì)胞因子產(chǎn)生的負(fù)調(diào)節(jié)因子,肺癌中VTCN1表達(dá)的上調(diào)與淋巴結(jié)轉(zhuǎn)移和TNM分期密切相關(guān),促進(jìn)腫瘤細(xì)胞的生長(zhǎng)和增殖[27。本研究還發(fā)現(xiàn)CD160和CD40LG在MPR中的富集,進(jìn)一步證實(shí)了上述差異表達(dá)的免疫檢查點(diǎn)對(duì)NSCLC免疫治療具有重要意義。

通過(guò)單細(xì)胞數(shù)據(jù)分析,本研究對(duì)NSCLC中的細(xì)胞異質(zhì)性有了更深入的了解。CD4、CD8、B細(xì)胞、NK細(xì)胞和M2巨噬細(xì)胞在MPR的患者中明顯富集,提示這些免疫細(xì)胞的富集在成功的抗癌免疫反應(yīng)中的重要性。PD-1免疫檢查點(diǎn)治療通過(guò)PD-L1/PD-1途徑破壞腫瘤細(xì)胞并重新激活效應(yīng)T細(xì)胞,延長(zhǎng)長(zhǎng)期總體生存,是肺癌治療的一個(gè)重要里程碑[28??筆D-1單一療法可減少T細(xì)胞凋亡并改善中性粒細(xì)胞和單核細(xì)胞功能[29。CD20+B細(xì)胞浸潤(rùn)在NSCLC中有積極的預(yù)后作用[30。在富含B細(xì)胞腫瘤的NSCLC患者表現(xiàn)出顯著的生存改善31。PD-1/PD-L1抑制劑可以在很大程度上改善和恢復(fù)衰竭T細(xì)胞的功能,增強(qiáng)NK細(xì)胞和巨噬細(xì)胞的抗腫瘤效果[32。在NSCLC中,NK細(xì)胞的頻率和功能受損;因此,恢復(fù)NK細(xì)胞的助力免疫應(yīng)答是理想的治療方案[33。M2巨噬細(xì)胞在NSCLC間質(zhì)中積聚,促進(jìn)腫瘤附近的血管生成和淋巴管生成,與預(yù)后不良相關(guān)[34。然而,本研究發(fā)現(xiàn)M2巨噬細(xì)胞在MPR患者中明顯富集,這與既往其他研究組的結(jié)論不一致;鑒于NSCLC患者群體的異質(zhì)性特征,本課題組認(rèn)為M2巨噬細(xì)胞在MPR患者中富集可能與M2巨噬細(xì)胞在NSCLC的免疫微環(huán)境中其他未知功能相關(guān),其潛在機(jī)制仍待進(jìn)一步研究證實(shí)。

綜上所述,本研究揭示了NSCLC中的關(guān)鍵差異表達(dá)基因和相關(guān)的生物學(xué)過(guò)程,為NSCLC免疫治療提供了新的見(jiàn)解。正確識(shí)別這些分子改變對(duì)于探索重置癌癥免疫微環(huán)境新策略至關(guān)重要。本研究的發(fā)現(xiàn)有助于為NSCLC治療提供新的靶點(diǎn)和潛在策略。

參考文獻(xiàn)

[1] Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021,71(3):209-249.

[2] Boch T, K hler J, Janning M, et al. Targeting the EGF receptor family in non-small cell lung cancer-increased complexity and future perspectives[J]. Cancer Biol Med, 2022,19(11):1543-1564.

[3] Parker A L, Bowman E, Zingone A, et al. Extracellular matrix profiles determine risk and prognosis of the squamous cell carcinoma subtype of non-small cell lung carcinoma[J]. Genome Med, 2022,14(1):126.

[4] Lahiri A, Maji A, Potdar P D, et al. Lung cancer immunotherapy: progress, pitfalls, and promises[J]. Mol Cancer, 2023,22(1):40.

[5] Guo H, Zhang J, Qin C, et al. Biomarker-targeted therapies in non-small cell lung cancer: current status and perspectives[J]. Cells, 2022,11(20):3200.

[6] Mortezaee K, Majidpoor J. Anti-PD-(L)1 therapy of non-small cell lung cancer-A summary of clinical trials and current progresses[J]. Heliyon, 2023,9(3):e14566.

[7] Li M, Mok K, Mok T. Developments in targeted therapy amp; immunotherapy-how non-small cell lung cancer management will change in the next decade: a narrative review[J]. Ann Transl Med, 2023,11(10):358.

[8] Johnson M L, Cho B C, Luft A, et al. Durvalumab with or without tremelimumab in combination with chemotherapy as first-line therapy for metastatic non-small-cell lung cancer: the phase Ⅲ POSEIDON study[J]. J Clin Oncol, 2023,41(6):1213-1227.

[9] Capaccione K M, Valiplackal J P, Huang A, et al. Checkpoint inhibitor immune-related adverse events: a multimodality pictorial review[J]. Acad Radiol, 2022,29(12):1869-1884.

[10]Chen J, Tan Y, Sun F, et al. Single-cell transcriptome and antigen-immunoglobin analysis reveals the diversity of B cells in non-small cell lung cancer[J]. Genome Biol, 2020,21(1):152.

[11]Hu J, Zhang L, Xia H, et al. Tumor microenvironment remodeling after neoadjuvant immunotherapy in non-small cell lung cancer revealed by single-cell RNA sequencing[J]. Genome Med, 2023,15(1):14.

[12]Padinharayil H, Varghese J, John M C, et al. Non-small cell lung carcinoma (NSCLC): implications on molecular pathology and advances in early diagnostics and therapeutics[J]. Genes Dis, 2023,10(3):960-989.

[13]Smok-Kalwat J, Mertowska P, Mertowski S, et al. The importance of the immune system and molecular cell signaling pathways in the pathogenesis and progression of lung cancer[J]. Int J Mol Sci, 2023,24(2):1506.

[14]Xu X, Zhang Y, Qu D, et al. Osthole induces G2/M arrest and apoptosis in lung cancer A549 cells by modulating PI3K/Akt pathway[J]. J Exp Clin Cancer Res, 2011,30(1):33.

[15]Tang M, Sun J, Cai Z. PCK2 inhibits lung adenocarcinoma tumor cell immune escape through oxidative stress-induced senescence as a potential therapeutic target[J]. J Thorac Dis, 2023,15(5):2601-2615.

[16]Liu X, Zhao D, Shan Y, et al. Development and validation of a novel immune-related prognostic signature in lung squamous cell carcinoma patients[J]. Sci Rep, 2022,12(1):20737.

[17]Sanaei M J, Razi S, Pourbagheri-Sigaroodi A, et al. The PI3K/Akt/mTOR pathway in lung cancer; oncogenic alterations, therapeutic opportunities, challenges, and a glance at the application of nanoparticles[J]. Transl Oncol, 2022,18:101364.

[18]Losuwannarak N, Maiuthed A, Kitkumthorn N, et al. Gigantol targets cancer stem cells and destabilizes tumors via the suppression of the PI3K/AKT and JAK/STAT pathways in ectopic lung cancer xenografts[J]. Cancers (Basel), 2019,11(12):2032.

[19]Huang Y, Xia L, Tan X, et al. Molecular mechanism of lncRNA SNHG12 in immune escape of non-small cell lung cancer through the HuR/PD-L1/USP8 axis[J]. Cell Mol Biol Lett, 2022,27(1):43.

[20]Tang T, Cheng X, Truong B, et al. Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint[J]. Pharmacol Ther, 2021,219:107709.

[21]Sedighzadeh S S, Khoshbin A P, Razi S, et al. A narrative review of tumor-associated macrophages in lung cancer: regulation of macrophage polarization and therapeutic implications[J]. Transl Lung Cancer Res, 2021,10(4):1889-1916.

[22]Liao J, Lai H, Liu C, et al. Plasma extracellular vesicle transcriptomics identifies CD160 for predicting immunochemotherapy efficacy in lung cancer[J]. Cancer Sci, 2023,114(7):2774-2786.

[23]Wu Y, Yuan M, Wang C, et al. T lymphocyte cell: a pivotal player in lung cancer[J]. Front Immunol, 2023,14:1102778.

[24]Wu C, Spector S A, Theodoropoulos G, et al. Dual inhibition of IDO1/TDO2 enhances anti-tumor immunity in platinum-resistant non-small cell lung cancer[J]. Cancer Metab, 2023,11(1):7.

[25]Hu S, Lu H, Xie W, et al. TDO2+ myofibroblasts mediate immune suppression in malignant transformation of squamous cell carcinoma[J]. J Clin Invest, 2022,132(19):e157649.

[26]Tsao C C, Wu H H, Wang Y F, et al. Novel inflammasome-based risk score for predicting survival and efficacy to immunotherapy in early-stage non-small cell lung cancer[J]. Biomedicines, 2022,10(7):1539.

[27]Tang X Y, Shi A P, Xiong Y L, et al. Clinical research on the mechanisms underlying immune checkpoints and tumor metastasis[J]. Front Oncol, 2021,11:693321.

[28]Liu S M, Zheng M M, Pan Y, et al. Emerging evidence and treatment paradigm of non-small cell lung cancer[J]. J Hematol Oncol, 2023,16(1):40.

[29]Zhang C L, Gao M Q, Jiang X C, et al. Research progress and value of albumin-related inflammatory markers in the prognosis of non-small cell lung cancer: a review of clinical evidence[J]. Ann Med, 2023,55(1):1294-1307.

[30]Patel A J, Richter A, Drayson M T, et al. The role of B lymphocytes in the immuno-biology of non-small-cell lung cancer[J]. Cancer Immunol Immunother, 2020,69(3):325-342.

[31]Salcher S, Sturm G, Horvath L, et al. High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer[J]. Cancer Cell, 2022,40(12):1503-1520.e8.

[32]Qu J, Mei Q, Liu L, et al. The progress and challenge of anti-PD-1/PD-L1 immunotherapy in treating non-small cell lung cancer[J]. Ther Adv Med Oncol, 2021,13:1758835921992968.

[33]Russell ", Conroy M J, Barr M P. Harnessing natural killer cells in non-small cell lung cancer[J]. Cells, 2022,11(4):605.

[34]Balá ová K, Clevers H, Dost A. The role of macrophages in non-small cell lung cancer and advancements in 3D co-cultures[J]. Elife, 2023,12:e82998.

(2024-01-24收稿)

猜你喜歡
檢查點(diǎn)免疫治療肺癌
中醫(yī)防治肺癌術(shù)后并發(fā)癥
對(duì)比增強(qiáng)磁敏感加權(quán)成像對(duì)肺癌腦轉(zhuǎn)移瘤檢出的研究
Spark效用感知的檢查點(diǎn)緩存并行清理策略①
免疫檢查點(diǎn)抑制劑相關(guān)內(nèi)分泌代謝疾病
腫瘤免疫治療發(fā)現(xiàn)新潛在靶點(diǎn)
免疫檢查點(diǎn)抑制劑在腫瘤治療中的不良反應(yīng)及毒性管理
腎癌生物免疫治療進(jìn)展
分布式任務(wù)管理系統(tǒng)中檢查點(diǎn)的設(shè)計(jì)
microRNA-205在人非小細(xì)胞肺癌中的表達(dá)及臨床意義
基于肺癌CT的決策樹模型在肺癌診斷中的應(yīng)用
涟水县| 商水县| 陆丰市| 泽州县| 霍州市| 浑源县| 美姑县| 通榆县| 盐亭县| 五大连池市| 永安市| 昂仁县| 扎兰屯市| 那曲县| 黄浦区| 竹溪县| 吴川市| 瓮安县| 乌鲁木齐县| 盘锦市| 沂水县| 广昌县| 铅山县| 池州市| 盐源县| 民权县| 大同县| 沙雅县| 布拖县| 东丰县| 双流县| 安远县| 明星| 遵义市| 浦城县| 甘泉县| 九江市| 临潭县| 锡林郭勒盟| 九龙县| 成都市|