国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

棉田不同菌型棉蚜體內(nèi)微生物多樣性分析

2024-12-31 00:00:00安哲牛瑞昌朱香鎮(zhèn)王麗張開(kāi)心李東陽(yáng)姬繼超牛林高雪珂雒珺瑜崔金杰馬德英
新疆農(nóng)業(yè)科學(xué) 2024年9期
關(guān)鍵詞:沙雷氏棉蚜漢密爾頓

摘要:【目的】研究不同菌型棉蚜體內(nèi)微生物種類與豐度的差異?!痉椒ā客ㄟ^(guò)HiSeq平臺(tái)對(duì)不同菌型棉田棉蚜體內(nèi)共生菌的16S rRNA基因V3~V4區(qū)進(jìn)行高通量測(cè)序,分析綠盲蝽體內(nèi)共生菌的種類與多樣性?!窘Y(jié)果】對(duì)照組與沙雷氏菌型、漢密爾頓菌型棉蚜的優(yōu)勢(shì)菌門均為變形菌門,相對(duì)物種豐度分別占97.42%、95.55%和92.78%。對(duì)照組與試驗(yàn)組的優(yōu)勢(shì)菌科均為腸桿菌科,但相對(duì)豐度有所差異,相對(duì)豐度分別占96.14%、81.285%和84.22%。漢密爾頓菌型棉蚜與沙雷氏菌型棉蚜其體內(nèi)漢密爾頓菌屬與沙雷氏菌屬微生物豐度與對(duì)照組相比顯著升高,分別占比77.40%和12.04%?!窘Y(jié)論】棉田中含有沙雷氏菌與漢密爾頓菌的棉蚜其體內(nèi)微生物豐度受到顯著影響,其體內(nèi)漢密爾頓菌屬與沙雷氏菌屬相對(duì)豐度顯著上升。

關(guān)鍵詞:16S rRNA;棉蚜;微生物;沙雷氏菌;漢密爾頓菌

中圖分類號(hào):S435.62文獻(xiàn)標(biāo)志碼:A文章編號(hào):1001-4330(2024)09-2277-08

0引 言

【研究意義】昆蟲中含有豐富的微生物種類,可占昆蟲生物量的1%~10%,兩者之間有著密不可分的關(guān)系。昆蟲體內(nèi)的微生物可以直接影響宿主體內(nèi)多種生命活動(dòng)[1]。微生物可以影響宿主與其他個(gè)體之間的接觸,微生物在昆蟲體內(nèi)有選擇的為宿主的適應(yīng)性提供幫助,增強(qiáng)其在個(gè)體之間的傳播效率,這些微生物通過(guò)改變昆蟲之間接觸時(shí)的信號(hào)素決定昆蟲配偶的選擇或者與其他個(gè)體接觸[2]。微生物還可以為宿主提供一些必需的氨基酸、維生素等營(yíng)養(yǎng)物質(zhì),幫助宿主占據(jù)較高的生態(tài)地位,這些功能在刺吸式害蟲胞內(nèi)原生共生菌與宿主協(xié)同進(jìn)化中發(fā)揮了重要作用[3,4]。微生物與昆蟲之間存在著密切的關(guān)系?!厩叭搜芯窟M(jìn)展】不同的昆蟲與其攜帶的共生細(xì)菌存在多種互利關(guān)系。昆蟲攜帶的共生菌分為初級(jí)共生菌和次級(jí)共生菌,又稱孤雌共生菌。初級(jí)共生菌在昆蟲的生長(zhǎng)發(fā)育中發(fā)揮著重要作用,初級(jí)共生菌Buchnera與蚜蟲共生,已成為蚜蟲不可分割的一部分[5],而當(dāng)蚜蟲喂食缺乏VB的食物時(shí),含有Buchnera的蚜蟲比不含Buchnera的蚜蟲更能滿足正常生長(zhǎng)發(fā)育的要求[6]。次生共生菌遍布宿主體腔、腸道和脂肪體的神經(jīng)和肌肉組織,如黑蠅中的立克次體分布于整個(gè)體腔,以及中腸[7]。目前在蚜蟲中發(fā)現(xiàn)的主要次生共生菌有9種,包括Hamiltonella defensa,Regiella insecticola,Serratia symbiotica,Rickettsia,Spiroplasma,Rickettsiella,PAXS Arsenophonus,Wolbachia pipientis[8-15]。漢密爾頓菌可以保護(hù)宿主免受寄生黃蜂的寄生[15]。次生共生細(xì)菌還可以改變宿主對(duì)不利環(huán)境的適應(yīng)能力,從而保護(hù)其種群規(guī)模。例如,當(dāng)豌豆蚜細(xì)胞在高溫環(huán)境下含有沙雷氏菌和立克次體時(shí),宿主對(duì)高溫的敏感度明顯低于不含該2種共生菌的豌豆蚜[16]?!颈狙芯壳腥朦c(diǎn)】棉蚜(Aphis gossypii Glover),是一種雜食性農(nóng)業(yè)害蟲,屬于半翅目(Hemiptera)蚜科(Aphididae),直接或間接危害寄主植物。當(dāng)棉蚜吸取植物汁液獲取養(yǎng)分時(shí),將引起植物葉片枯萎甚至壞死,進(jìn)而影響植物的生存,使植物的產(chǎn)量和品質(zhì)下降[17]。棉蚜分泌物在植物上的分布也阻礙了光合作用和呼吸作用,也為真菌菌絲體的生長(zhǎng)創(chuàng)造了條件,將導(dǎo)致棉花黑霉病的發(fā)生[18]。棉蚜還可以間接充當(dāng)多種植物病毒傳播的載體[19]。

在生物防治探索過(guò)程中,昆蟲體內(nèi)的共生菌與昆蟲抗性密切相關(guān)[20-22]。當(dāng)昆蟲感染沃爾巴克氏體和立克次體時(shí),這些生物體對(duì)殺蟲劑的敏感性通常會(huì)增加[23]。然而,感染相同共生菌的昆蟲對(duì)不同農(nóng)藥的抗藥性不同。感染沃爾巴克氏體的粉虱對(duì)啶蟲脒和多殺菌素的耐藥性顯著增加,但對(duì)百倍硫磷的耐藥性無(wú)明顯增加的趨勢(shì)[24]。同樣,立克次體侵染昆蟲的功能增強(qiáng)了煙螨對(duì)啶蟲脒的抗藥性,但對(duì)地芬太尼的抗藥性無(wú)變化[24,25]。

因此,棉花種植過(guò)程中需要積極防治棉蚜。由于棉蚜世代數(shù)多、每年發(fā)生次數(shù)多[20],因此生物防治是較好的選擇?!緮M解決的關(guān)鍵問(wèn)題】通過(guò)HiSeq平臺(tái)對(duì)不同菌型棉田棉蚜體內(nèi)共生菌的16S rRNA基因V3~V4區(qū)進(jìn)行高通量測(cè)序,測(cè)定微生物的類型和豐度,分析共生菌與微生物之間的群落結(jié)構(gòu)關(guān)系,為害蟲綠色生物防治策略提供參考。

1材料與方法

1.1材 料

棉蚜采集于中國(guó)農(nóng)業(yè)科學(xué)院棉花研究所東場(chǎng)試驗(yàn)田棉花植株(安陽(yáng)縣,36° 5′34.8″ N,114° 31′47.19″ E)在人工智能光照培養(yǎng)箱((26±1)℃,L∶D=14∶10 h,RH = 70%±5%)中飼養(yǎng),建立種群。根據(jù)文獻(xiàn)特異性引物[26],采用QPCR方法檢測(cè)單頭棉蚜體內(nèi)的共生菌的感染情況。沙雷氏菌[16,27,28]和漢密爾頓氏菌[29,30]在抵抗天敵的過(guò)程中發(fā)揮著重要作用。篩選出蚜蟲體內(nèi)優(yōu)勢(shì)菌為沙雷氏菌(B)、漢密爾頓菌(C)的棉蚜進(jìn)行擴(kuò)繁。

1.2方 法

1.2.1試驗(yàn)設(shè)計(jì)

設(shè)置對(duì)照組(A),對(duì)照組棉蚜為體內(nèi)所有類型共生菌拷貝數(shù)均低于水的種群。

1.2.2DNA的提取

提取DNA之前,先用75%酒精和紫外燈對(duì)試驗(yàn)臺(tái)進(jìn)行消毒,準(zhǔn)備好試劑和耗材備用。將收集好的蚜蟲樣本用75%酒精消毒30 s,使用滅菌后的ddH2O反復(fù)洗滌3次,將殘余酒精完全沖洗干凈,用移液器將剩余的ddH2O吸出,放入冰盒備用。蚜蟲體表消毒完成后,使用Fast DNA@SPIN Kit for Soil試劑盒提取蚜蟲樣品的總DNA。2種菌型和對(duì)照組的蚜蟲分別設(shè)置5個(gè)重復(fù),以及1個(gè)對(duì)照均在生物安全柜中操作。

1.2.3數(shù)據(jù)庫(kù)建立

用簡(jiǎn)并PCR引物341F(5′-ACTCCTACGGGGAGGGCAGAG-3′)和806R(5′-GGACTACHVGGGTWTCTAAT-3′)擴(kuò)增細(xì)菌16S rRNA基因的可變區(qū)V3-V4。正向和反向引物均標(biāo)記有Illumina適配器、pad和連接子序列。在含有30 ng模板、融合PCR引物和PCR主混合物的50 μL反應(yīng)中進(jìn)行PCR富集。PCR循環(huán)條件如下:94℃循環(huán)3 min,30次94℃循環(huán)30 s,56℃循環(huán)45 s,72℃循環(huán)45 s,最后在72℃條件下延長(zhǎng)10 min,持續(xù)10 min。PCR產(chǎn)物用Amplexp珠純化并在洗脫緩沖液中洗脫。庫(kù)由安捷倫2100生物分析儀(安捷倫,美國(guó))鑒定。在Illumina MiSeq平臺(tái)(中國(guó)深圳BGI)上,按照Illumina的標(biāo)準(zhǔn)管道,使用經(jīng)驗(yàn)證的文庫(kù)進(jìn)行測(cè)序,并生成2×300 bp配對(duì)末端讀碼。

1.3數(shù)據(jù)處理

對(duì)原始讀取進(jìn)行過(guò)濾,以去除適配器和低質(zhì)量且不明確的堿基,通過(guò)快速長(zhǎng)度調(diào)整短讀取程序(FLASH,v1.2.11)[31]將成對(duì)的末端讀取添加到標(biāo)簽中,以獲得標(biāo)簽。使用UPARSE軟件(v7.0.1090)[32]將這些標(biāo)簽聚集到截止值為97%的OTU中,并使用UCHIME(v4.2.40)[33]將嵌合序列與Gold數(shù)據(jù)庫(kù)進(jìn)行比較。之后,使用核糖體數(shù)據(jù)庫(kù)項(xiàng)目(RDP)分類器v.2.2對(duì)OTU代表性序列進(jìn)行分類,最小置信閾值為0.6,并由QIIME v1.8.0[34]在綠色基因數(shù)據(jù)庫(kù)v201305上進(jìn)行訓(xùn)練。使用USEARCH_global[35]將所有標(biāo)簽與OTU進(jìn)行比較,得到每個(gè)樣本的OTU豐度統(tǒng)計(jì)表。α和β多樣性分別由MOTHUR(v1.31.2)[36]和Qime(v1.8.0)[34]在OTU水平上估算。樣本聚類由QIIME(v1.8.0)[34]基于UPGMA進(jìn)行。使用PICRUSt軟件[37]預(yù)測(cè)KEGG和COG函數(shù)。用R軟件包v3繪制了不同分類級(jí)別的條形圖和熱圖。分別為4.1和R包“gplots”。

2結(jié)果與分析

2.116S rRNA基因測(cè)序結(jié)果概述

研究表明,共獲得1 610 899條拼接序列,拼接序列的平均長(zhǎng)度為253 bp。基于97%的物種相似性,將拼接標(biāo)簽聚類到OTU中,測(cè)序數(shù)量的質(zhì)量和可信度。圖1

對(duì)照組的Chao指數(shù)與ACE指數(shù)大部分低于試驗(yàn)組(反映樣品中群落的豐富度),試驗(yàn)組的微生物豐度均高于對(duì)照組,測(cè)序深度已經(jīng)基本覆蓋到樣品中所有的物種,不存在未被測(cè)序檢測(cè)到的物種。對(duì)照組的Shannon指數(shù)均低于試驗(yàn)組,而Simpson指數(shù)均高于試驗(yàn)組,反映群落的多樣性,不同菌型棉蚜群落微生物多樣性高于對(duì)照種群。Coverage對(duì)所有樣本的覆蓋率均在99%以上。表1

2.2不同菌型棉蚜體內(nèi)微生物在門水平上的群落組成

研究表明,對(duì)照組與試驗(yàn)組的優(yōu)勢(shì)菌門均為變形菌門,沙雷氏菌型、漢密爾頓菌型棉蚜種群中的優(yōu)勢(shì)菌門相對(duì)物種豐度占比分別為95.55%和92.78%,對(duì)照組的相對(duì)物種豐富度占97.42%。其中C組樣本中,藍(lán)藻門的相對(duì)豐度顯著高于其他樣本,占6.73%。圖2

2.3不同菌型棉蚜體內(nèi)微生物在科水平上的群落組成

研究表明,在科水平上,對(duì)照組與試驗(yàn)組的優(yōu)勢(shì)菌科均為腸桿菌科,但相對(duì)豐度有所差異,A、B、C三組中腸桿菌科的相對(duì)豐度分別占96.14%、81.285%和84.22%。且與試驗(yàn)組相比,對(duì)照組中除腸桿菌科外,其他菌門所占比例均低于2個(gè)試驗(yàn)組。圖3

2.4不同菌型棉蚜體內(nèi)微生物在屬水平上的群落組成

研究表明,測(cè)序樣本在屬水平的差異性顯著,其中,對(duì)照組、沙雷氏菌菌型的棉蚜種群優(yōu)勢(shì)菌屬均為布赫納氏菌屬,相對(duì)豐度分別占84.17%、62.10%,漢密爾頓菌型棉蚜種群優(yōu)勢(shì)菌屬為漢密爾頓菌屬,物種豐富度占77.40%,布赫納氏菌屬的相對(duì)豐度僅占6.78%。B組中沙雷氏菌屬物種豐富度顯著上升,占12.04%。圖4

2.5不同微生物型棉蚜體內(nèi)微生物多樣性比較

研究表明,不同菌型棉蚜體內(nèi)微生物特有的微生物種類數(shù)量,A、B、C 3組樣本中注釋到的OTU種類數(shù)目分別為357、440和283,相同的OTU數(shù)量為151。沙雷氏菌型的棉蚜微生物種類數(shù)目最多,且樣本中特有的OTU數(shù)量也是最高的一組,數(shù)量為135。漢密爾頓菌型的棉蚜微生物種類數(shù)量最少,OTU數(shù)量為283,且特有OTU數(shù)量為39,是所有樣本中最少的。圖5

對(duì)所有微生物群落進(jìn)行PCA分析。樣品中,微生物群落越相似,在坐標(biāo)中距離越近,PC1所占比例為59.01%,PC2所占的比例為16.13%,兩者總占比75.14%,PC1和PC2總微生物群落差異的75.14%。A和B 二組樣品中的微生物群落相似度較高,和C組的微生物群落距離較遠(yuǎn),存在顯著差異。沙雷氏菌型棉蚜與對(duì)照組棉蚜微生物群落組成相似,其微生物群落結(jié)構(gòu)和漢密爾頓菌型所構(gòu)成的差異明顯。圖6

3討 論

3.1

微生物普遍存在于昆蟲體內(nèi),其中共生菌除了在昆蟲的營(yíng)養(yǎng)和發(fā)育中發(fā)揮重要作用外,共生菌還能產(chǎn)生一些生物活性化合物,保護(hù)宿主免受不利環(huán)境條件、捕食者或競(jìng)爭(zhēng)對(duì)手的侵害[38],試驗(yàn)研究中,通過(guò)篩選不同菌型棉蚜并對(duì)含有沙雷氏菌、漢密爾頓菌型的棉蚜種群進(jìn)行16S rRNA高通量測(cè)序分析,結(jié)果表明,含有該3類不同菌型的棉蚜與對(duì)照組相比,其優(yōu)勢(shì)菌門均為變形菌門。但所占比例略有差異,分別為97.6%、93.7%和90.6%。昆蟲體內(nèi)微生物的優(yōu)勢(shì)菌門以變形菌門或厚壁菌門為主。例如,鞘翅目的天牛Saperda vestita Say[39],雙翅目的地中海實(shí)蠅Ceratitis capitata Wiedemann[40]等,與試驗(yàn)研究測(cè)序結(jié)果是一致的。在科水平上,對(duì)照菌群與3個(gè)樣本的優(yōu)勢(shì)菌群菌為腸桿菌科。在屬水平上對(duì)照組與沙雷氏菌型的棉蚜優(yōu)勢(shì)菌群均為布赫納氏菌屬,分別占比81.2%、64.5%,其優(yōu)勢(shì)菌屬為漢密爾頓菌屬,相對(duì)豐度為77.5%,與其他群體形成顯著差異。

棉蚜體內(nèi)的優(yōu)勢(shì)共生菌在不同地方具有很大差異,在我國(guó)北方,自然棉蚜種群中優(yōu)勢(shì)菌屬為布赫納氏菌屬、殺雄菌屬、漢密爾頓菌屬和不動(dòng)桿菌屬[41]。布赫納氏菌、殺雄菌、不動(dòng)桿菌為優(yōu)勢(shì)菌,其他共生菌的相對(duì)豐度均在0.5%以下,但有些蚜蟲體內(nèi)的優(yōu)勢(shì)菌還包括漢密爾頓菌,如扁蚜科[42]。在南美地區(qū),蚜蟲種群中兼性共生菌結(jié)構(gòu)組成包括沙雷氏屬、漢密爾頓菌、殺雄菌[43]。在法國(guó),蚜蟲體內(nèi)共生菌占主導(dǎo)地位的包括螺原體屬、立克次氏體,布赫納氏屬,其他共生菌相對(duì)豐度小于2%[44]。在日本豌豆蚜中,共生菌群落組成為布赫納氏屬、沙雷氏屬、R.insecticola(PAUS,U型)、立克次氏體、螺原體屬[45]。試驗(yàn)的3個(gè)樣本中,篩選出以漢密爾頓菌為優(yōu)勢(shì)菌的棉蚜種群其漢密爾頓菌屬的相對(duì)豐度顯著高于對(duì)照組,布赫納氏菌屬與對(duì)照相比顯著下降,根據(jù)前人的研究結(jié)果,辛硫磷處理后的棉蚜微生物群落發(fā)生了變化,布赫納氏菌相對(duì)豐度降低和漢密爾頓菌豐度升高[41],漢密爾頓菌對(duì)布赫納氏菌豐度具有負(fù)面影響,與試驗(yàn)研究測(cè)序結(jié)果完全吻合。布赫納氏菌是蚜蟲體內(nèi)的初級(jí)共生菌,與蚜蟲的生命活動(dòng)緊密相連,Buchnera共生菌能合成蚜蟲必須的氨基酸,這些氨基酸是蚜蟲生長(zhǎng)發(fā)育與繁殖必不可少的[46],失去原生共生菌的蚜蟲生長(zhǎng)發(fā)育變遲緩,生殖能力降低甚至完全喪失[47]。

3.2

昆蟲體內(nèi)的共生菌對(duì)昆蟲的抗性增強(qiáng)會(huì)發(fā)揮很大的作用,包括次級(jí)共生菌,其中漢密爾頓菌就是一個(gè)典型的例子,通過(guò)阻止寄生蜂的發(fā)育來(lái)保護(hù)蚜蟲免受寄生蜂的侵?jǐn)_[48]。感染Hamiltonella的小麥蚜蟲對(duì)殺蟲劑敏感性降低[49]。原因是低豐度的漢密爾頓菌感染可以通過(guò)增加宿主體的解毒酶活性,從而降低蚜蟲對(duì)殺蟲劑的敏感性[49],漢密爾頓氏菌感染的蚜蟲抑制了植物中水楊酸和茉莉酸相關(guān)的防御途徑,抑制多酚氧化酶和過(guò)氧化物酶的活性,參與植物防御反應(yīng)[50]。

4結(jié) 論

4.1漢密爾頓菌型棉蚜與沙雷氏菌型棉蚜其體內(nèi)漢密爾頓菌屬與沙雷氏菌屬微生物豐度與對(duì)照組相比顯著升高,分別占比77.40%和12.04%。

4.2對(duì)照組與試驗(yàn)組的優(yōu)勢(shì)菌科均為腸桿菌科,但相對(duì)豐度有所差異,分別占96.14%、81.285%和84.22%。

4.3在門水平上,對(duì)照組與試驗(yàn)組的優(yōu)勢(shì)菌門均為變形菌門,對(duì)照組中優(yōu)勢(shì)菌門相對(duì)物種豐富度占97.42%,試驗(yàn)組沙雷氏菌型、漢密爾頓菌型棉蚜種群中的優(yōu)勢(shì)菌門相對(duì)物種豐度占比分別為95.55%和92.78%。

參考文獻(xiàn)(References)

[1]Crotti E, Balloi A, Hamdi C, et al. Microbial symbionts: a resource for the management of insect-related problems[J]. Microbial Biotechnology, 2012, 5(3): 307-317.

[2] Engl T, Kaltenpoth M. Influence of microbial symbionts on insect pheromones[J]. Natural Product Reports, 2018, 35(5): 386-397.

[3] Baumann P. Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects[J]. Annual Review of Microbiology, 2005, (59): 155-189.

[4] Gündüz E A, Douglas A E. Symbiotic bacteria enable insect to use a nutritionally inadequate diet[J]. Proceedings Biological Sciences, 2009, 276(1658): 987-991.

[5] Von Dohlen C D, Moran N A. Molecular data support a rapid radiation of aphids in the Cretaceous and multiple origins of host alternation[J]. Biological Journal of the Linnean Society, 2000, 71(4): 689-717.

[6] Nakabachi A, Ishikawa H. Provision of riboflavin to the host aphid, Acyrthosiphonpisum, by endosymbiotic bacteria, Buchnera[J]. Journal of Insect Physiology, 1999, 45(1): 1-6.

[7] Fukatsu T, Hosokawa T. Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacoptapunctatissima[J]. Applied and Environmental Microbiology, 2002, 68(1): 389-396.

[8] Chen D Q, Purcell A H. Occurrence and transmission of facultative endosymbionts in aphids[J]. Current Microbiology, 1997, 34(4): 220-225.

[9] Tsuchida T, Koga R, Fujiwara A, et al. Phenotypic effect of “CandidatusRickettsiellaviridis,” a facultative symbiont of the pea aphid (Acyrthosiphonpisum), and its interaction with a coexisting symbiont[J]. Applied and Environmental Microbiology, 2014, 80(2): 525-533.

[10] Heyworth E R, Ferrari J. A facultative endosymbiont in aphids can provide diverse ecological benefits[J]. Journal of Evolutionary Biology, 2015, 28(10): 1753-1760.

[11] West S A, Cook J M, Werren J H, et al. Wolbachia in two insect host–parasitoid communities[J]. Molecular Ecology, 1998, 7(11): 1457-1465.

[12] Fukatsu T, Tsuchida T, Nikoh N, et al. Spiroplasma symbiont of the pea aphid, Acyrthosiphonpisum (Insecta: Homoptera)[J]. Applied and Environmental Microbiology, 2001, 67(3): 1284-1291.

[13] Jousselin E, Curd’Acier A, Vanlerberghe-Masutti F, et al. Evolution and diversity of Arsenophonus endosymbionts in aphids[J]. Molecular Ecology, 2013, 22(1): 260-270.

[14] Chen D Q, Campbell B C, Purcell A H. A new rickettsia from a herbivorous insect, the pea aphid Acyrthosiphonpisum (Harris)[J]. Current Microbiology, 1996, 33(2): 123-128.

[15]N., A., Moran, et al. Evolutionary Relationships of Three New Species of Enterobacteriaceae Living as Symbionts of Aphids and Other Insects [J]. Applied and Environmental Microbiology, 2005, 71(6): 3302-3310.

[16] Montllor C B, Maxmen A, Purcell A H. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphonpisum under heat stress[J]. Ecological Entomology, 2002, 27(2): 189-195.

[17] Slosser J E, Pinchak W E, Rummel D. A review of known and potential factors affecting the population dynamics of the cotton aphid[J]. Southwestern Entomologist, 1989.

[18] Jacobson R J, Croft P. Strategies for the control of Aphis gossypii glover (Hom.: Aphididae) with Aphidiuscolemaniviereck (Hym.: Braconidae) in protected cucumbers[J]. Biocontrol Science and Technology, 1998, 8(3): 377-387.

[19] Hullé M, Chaubet B, Turpeau E, et al. Encyclop’Aphid: a website on aphids and their natural enemies[J]. EntomologiaGeneralis, 2020, 40(1): 97-101.

[20] Balabanidou V, Grigoraki L, Vontas J. Insect cuticle: a critical determinant of insecticide resistance[J]. Current Opinion in Insect Science, 2018, (27): 68-74.

[21] Broderick N A, Raffa K F, Handelsman J. Midgut bacteria required for Bacillus thuringiensis insecticidal activity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(41): 15196-15199.

[22] Kikuchi Y, Hayatsu M, Hosokawa T, et al. Symbiont-mediated insecticide resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(22): 8618-8622.

[23] Liu X D, Guo H F. Importance of endosymbionts Wolbachia and Rickettsia in insect resistance development[J]. Current Opinion in Insect Science, 2019, (33): 84-90.

[24] Ghanim M, Kontsedalov S. Susceptibility to insecticides in the Q biotype of Bemisiatabaci is correlated with bacterial symbiont densities[J]. Pest Management Science, 2009, 65(9): 939-942.

[25] Kontsedalov S, Zchori-Fein E, Chiel E, et al. The presence of Rickettsia is associated with increased susceptibility of Bemisiatabaci (Homoptera: Aleyrodidae) to insecticides[J]. Pest Management Science, 2008, 64(8): 789-792.

[26] Zhang S, Su H H, Jiang W L, et al. Symbiotic microbial studies in diverse populations of Aphis gossypii, existing on altered host plants in different localities during different times[J]. Ecology and Evolution, 2021, 11(20): 13948-13960.

[27] Oliver K M, Degnan P H, Burke G R, et al. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits[J]. Annual Review of Entomology, 2010, (55): 247-266.

[28] Meseguer A S, Manzano-Marín A, Coeur d’Acier A, et al. Buchnera has changed flatmate but the repeated replacement of co-obligate symbionts is not associated with the ecological expansions of their aphid hosts[J]. Molecular Ecology, 2017, 26(8): 2363-2378.

[29] Oliver K M, Russell J A, Moran N A, et al. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(4): 1803-1807.

[30] Russell J A, Moran N A. Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures[J]. ProceedingsBiological Sciences, 2006, 273(1586): 603-610.

[31] Mago T, Salzberg S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963.

[32] Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998.

[33] Edgar R C, Haas B J, Clemente J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194-2200.

[34] Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, (7): 335-336.

[35] Edgar R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19): 2460-2461.

[36] Schloss P D, Westcott S L, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541.

[37] Wilkinson T J, Huws S A, Edwards J E, et al. CowPI: a rumen microbiome focussed version of the PICRUSt functional inference software[J]. Frontiers in Microbiology, 2018, (9): 1095.

[38] Chaves S, Neto M, Tenreiro R. Insect-symbiont systems: from complex relationships to biotechnological applications[J]. Biotechnology Journal, 2009, 4(12): 1753-1765.

[39] Schloss P D, Delalibera I Jr, Handelsman J, et al. Bacteria associated with the guts of two wood-boring beetles: Anoplophoraglabripennis and Saperdavestita (Cerambycidae)[J]. Environmental Entomology, 2006, 35(3): 625-629.

[40] Behar A, Yuval B, Jurkevitch E. Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity[J]. Journal of Insect Physiology, 2008, 54(9): 1377-1383.

[41] Zhang S, Luo J Y, Wang L, et al. Bacterial communities in natural versus pesticide-treated Aphis gossypii populations in North China[J]. MicrobiologyOpen, 2019, 8(3): 652-657.

[42] Xu T T, Chen J, Jiang L Y, et al. Diversity of bacteria associated with Hormaphidinae aphids (Hemiptera: Aphididae)[J]. Insect Science, 2021, 28(1): 165-179.

[43] Arneodo J D, Ortego J. Exploring the bacterial microbiota associated with native South American species ofAphis(Hemiptera: Aphididae)[J]. Environmental Entomology, 2014, 43(3): 589-594.

[44] Gauthier J P, Outreman Y, Mieuzet L, et al. Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA[J]. PLoS One, 2015, 10(3): e0120664.

[45] Tsuchida T, Koga R, Shibao H, et al. Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphonpisum[J]. Molecular Ecology, 2002, 11(10): 2123-2135.

[46] Hansen A K, Moran N A. Aphid genome expression reveals host-symbiont cooperation in the production of amino acids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(7): 2849-2854.

[47] Koga R, Tsuchida T, Fukatsu T. Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid[J]. ProceedingsBiological Sciences, 2003, 270(1533): 2543-2550.

[48] Oliver K M, Higashi C H. Variations on a protective theme: Hamiltonelladefensa infections in aphids variably impact parasitoid success[J]. Current Opinion in Insect Science, 2019, (32): 1-7.

[49] Li Q, Sun J X, Qin Y G, et al. Reduced insecticide susceptibility of the wheat aphid Sitobion miscanthi after infection by the secondary bacterial symbiont Hamiltonelladefensa[J]. Pest Management Science, 2021, 77(4): 1936-1944.

[50] Li Q, Fan J, Sun J X, et al. Anti-plant defense response strategies mediated by the secondary symbiont Hamiltonelladefensa in the wheat aphid Sitobion miscanthi[J]. Frontiers in Microbiology, 2019, (10): 2419.

Analyze the microbial diversity of cotton aphids with different bacterial types in cotton fields

AN Zhe1,2, NIU Ruichang2, ZHU Xiangzhen2, WANG Li 2, ZHANG Kaixin2, LI Dongyang2, JI Jichao2, NIU Lin2, GAO Xueke2, LUO Junyu2, CUI Jinjie2, MA Deying1

(1. Key Laboratory of Monitoring and Safety Prevention and Control of Agriculture and Forest Pests, College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; 2. State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang Henan 455000, China)

Abstract:【Objective】 To explore the differences of microbial species and abundance in different types of Aphis gossypii Glove.

【Methods】 "The V3-V4 region of 16SrRNA gene of symbiotic bacteria in different types of A. gossypii in cotton fields was sequenced by HiSeq platform, and the species and diversity of symbiotic bacteria in green bug bugs were analyzed.

【Results】 The dominant phylum of A. gossypii in the control group, serratia and Hamiltonella A. gossypii was Proteus, and the relative species abundance accounted for 97.42%, 95.55% and 92.78%, respectively. The dominant bacteria in the control group and the experimental group were Enterobacteriaceae, but the relative abundance was different, accounting for 96.14%, 81.285% and 84.22%, respectively. Compared with the control group, the microbial abundance of Hamiltonella and Serratia increased significantly, accounting for 77.40% and 12.04%, respectively.

【Conclusion】 "The microbial abundance of A. gossypii containing Serratia and Hamiltonella in cotton field is significantly affected, and the relative abundance of Hamiltonella and Serratia increased significantly.

Key words:16S rRNA; Aphis gossypii Glove; symbiotic bacteria; Hamiltonella spp.; Serratia spp.

Fund projects:The Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (ZB2021046)

Correspondence author:MA Deying(1968-), female, from Urumqi,Xinjiang, "professor, doctoral supervisor, research direction: green prevention and control of pests, (E-mail)mdynd@163.com

CUI Jinjie(1968-), male,researcher, doctoral supervisor, research direction: Agricultural insects and Pest Control, (E-mail)Cuijinjie@126.com

收稿日期(Received):2024-02-20

基金項(xiàng)目:中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(ZB2021046)

作者簡(jiǎn)介:安哲(1996-),女,內(nèi)蒙古烏蘭察布人,碩士研究生,研究方向?yàn)檗r(nóng)業(yè)昆蟲與害蟲防治,(E-mail)anzhe1206@126.com

通訊作者:馬德英(1968-),女,新疆烏魯木齊人,教授,博士,碩士生/博士生導(dǎo)師,研究方向?yàn)橛泻ι锞G色防控,(E-mal)mdynd@163.com

崔金杰(1968-),男,研究員,碩士生/博士生導(dǎo)師,研究方向?yàn)檗r(nóng)業(yè)昆蟲與害蟲防治,(E-mail)Cuijinjie@126.com

猜你喜歡
沙雷氏棉蚜漢密爾頓
Hap1型棉蚜在5種春季雜草上的生長(zhǎng)發(fā)育情況
低劑量啶蟲脒和雙丙環(huán)蟲酯對(duì)棉蚜繭蜂寄生功能的影響
黏質(zhì)沙雷氏菌對(duì)稀土廢水中Dy(Ⅲ)的生物吸附性能及吸附機(jī)理分析*
棉蚜取食被棉長(zhǎng)管蚜危害棉花后其相關(guān)酶的活性
沙雷氏蛋白酶及其專一性抑制劑的研究進(jìn)展
黏質(zhì)沙雷氏菌plaA及plaS的生物信息學(xué)分析
沙雷氏菌PFMP-5發(fā)酵條件的優(yōu)化
棉蚜田間藥效試驗(yàn)篩選
一類特殊三正則圖漢密爾頓回路存在性的證明
夢(mèng)境追蹤
故事會(huì)(2007年1期)2007-03-07 03:07:24
祥云县| 平邑县| 高州市| 房山区| 芦山县| 凤阳县| 曲松县| 双鸭山市| 遂昌县| 阳江市| 台南县| 嘉荫县| 广元市| 柯坪县| 康平县| 封开县| 许昌市| 昌邑市| 昆山市| 亳州市| 喜德县| 徐闻县| 资溪县| 呼伦贝尔市| 泰州市| 双鸭山市| 顺义区| 华容县| 永安市| 西和县| 罗甸县| 梨树县| 麻江县| 巴彦淖尔市| 平塘县| 阳泉市| 平果县| 册亨县| 衡阳县| 洪湖市| 洞头县|