国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

羥基硅油增強(qiáng)反應(yīng)性聚氨酯涂層的制備及其性能

2024-12-31 00:00:00王淋張軍鋒何方王卓黃志超孫福戚棟明
現(xiàn)代紡織技術(shù) 2024年7期
關(guān)鍵詞:無(wú)溶劑有機(jī)硅涂層

摘 要:為改善聚氨酯(PU)材料的力學(xué)性能,以聚四氫呋喃醚二醇、蓖麻油、雙羥基封端聚二甲基硅氧烷(PDMS)為軟段,二苯基甲烷二異氰酸酯(MDI)為硬段,采用綠色環(huán)保的無(wú)溶劑體系制備了有機(jī)硅改性的反應(yīng)性聚氨酯(Si-PU)涂層,考察了PDMS質(zhì)量分?jǐn)?shù)對(duì)PU涂層的拉伸強(qiáng)度、斷裂伸長(zhǎng)率、高溫?zé)岱€(wěn)定性、耐低溫性能、手感等的影響。結(jié)果表明:與未改性PU涂層相比,Si-PU涂層的拉伸強(qiáng)度、斷裂伸長(zhǎng)率均得到明顯提升。當(dāng)PDMS質(zhì)量分?jǐn)?shù)為7.6%時(shí),改性涂層的拉伸強(qiáng)度較未改性PU涂層增長(zhǎng)了51.9%;當(dāng)PDMS質(zhì)量分?jǐn)?shù)為9.9%時(shí),改性涂層的斷裂伸長(zhǎng)率較未改性PU涂層增長(zhǎng)了99.3%;隨著PDMS質(zhì)量分?jǐn)?shù)提高,質(zhì)量損失速率最大的溫度有一定提高,涂層的玻璃化溫度逐漸降低,耐低溫性能提高,同時(shí)疏水性提高,手感變得更加柔軟,綜合性能得到顯著改善。

關(guān)鍵詞:反應(yīng)性聚氨酯;涂層;有機(jī)硅;無(wú)溶劑;微相分離

中圖分類號(hào):TQ334.1

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):1009-265X(2024)07-0108-08

聚氨酯合成革是一種外觀、性能與天然皮革相近的塑料制品,已被廣泛應(yīng)用于服裝、汽車座椅沙發(fā)等領(lǐng)域[1]。傳統(tǒng)合成革通常采用溶劑型聚氨酯或水性聚氨酯涂覆或貼合。溶劑型聚氨酯成品中一般殘留大量有機(jī)溶劑,可揮發(fā)有機(jī)物(VOCs)殘留高達(dá)1000 mg/kg以上[2]。水性聚氨酯只是減少了有機(jī)溶劑的用量,同時(shí)水作為溶劑會(huì)導(dǎo)致后期成膜耗能高。有機(jī)溶劑殘留不僅會(huì)造成環(huán)境污染,也會(huì)直接危害消費(fèi)者身體健康[3]。隨著人們環(huán)保意識(shí)的不斷增強(qiáng),以及國(guó)家“碳達(dá)峰”“碳中和”目標(biāo)的實(shí)施,生態(tài)環(huán)保在當(dāng)前越來(lái)越重要。無(wú)溶劑體系的反應(yīng)性聚氨酯由于沒(méi)有溶劑加入,從源頭上避免了因溶劑引起的環(huán)境污染和高耗能問(wèn)題,因此,反應(yīng)性聚氨酯合成革的開(kāi)發(fā)和應(yīng)用必將成為行業(yè)發(fā)展趨勢(shì)。

有機(jī)硅聚合物硅氧鍵的夾角約為142.5°,硅氧鍵旋轉(zhuǎn)勢(shì)壘低。同時(shí),有機(jī)硅聚合物具有良好的低溫柔順性和疏水性,被廣泛應(yīng)用于紡織、建筑、日化等領(lǐng)域[4]。硅氧鍵的柔性使得有機(jī)硅聚合物能夠有效地將低能甲基側(cè)基團(tuán)呈現(xiàn)給空氣界面[5],從而能夠提供低表面自由能,賦予涂層優(yōu)異的疏水性,常被用來(lái)改善聚氨酯的防水耐磨性。當(dāng)然,材料的耐低溫性能同樣重要,聚氨酯涂層材料服用環(huán)境溫度差異巨大,低溫環(huán)境下同樣要求材料具有良好的力學(xué)性能。綜上所述,采用有機(jī)硅改性制備反應(yīng)性聚氨酯涂層,不但可以提高聚氨酯材料的耐低溫性,而且可以減少有機(jī)溶劑的使用,提高涂層的綠色環(huán)保性。目前,關(guān)于有機(jī)硅改性聚氨酯多涉及水性聚氨酯體系[6],對(duì)于有機(jī)硅改性無(wú)溶劑體系的反應(yīng)性聚氨酯卻鮮有報(bào)道。

鑒于此,本文采用雙組分預(yù)聚法,選用雙羥基封端聚二甲基硅氧烷(PDMS)對(duì)反應(yīng)性聚氨酯進(jìn)行改性,繼而刮涂成型,研究PDMS含量對(duì)涂層力學(xué)、熱學(xué)性能、低溫性能、手感的影響。該研究可為緩解傳統(tǒng)產(chǎn)業(yè)所面臨的日益嚴(yán)峻的生態(tài)環(huán)保問(wèn)題提供有益探索。

1 實(shí)驗(yàn)

1.1 實(shí)驗(yàn)材料

二苯基甲烷二異氰酸酯(MDI,C15H10N2O2)、聚四氫呋喃醚二醇(PTMEG,Mn=1000 g/mol)、蓖麻油(CO,CP)、苯甲酰氯(AR)、1,3丙二醇(1,3-PDO)、二月桂酸二丁基錫(DBTDL,95%,丙酮稀釋100倍使用)、雙羥基封端聚二甲基硅氧烷(PDMS),均購(gòu)自上海阿拉丁生化科技股份有限公司;301催化劑(工業(yè)級(jí)),購(gòu)自浙江禾欣科技有限公司。

1.2 羥基(—OH)混合物A料的制備

將聚四氫呋喃醚二醇、蓖麻油在120 ℃下真空脫水4 h,降溫至約25 ℃形成備用物。將聚四氫呋喃醚二醇、PDMS、蓖麻油、1,3丙二醇、301催化劑、二月桂酸二丁基錫,于25 ℃、2200 r/min攪拌5 min混合均勻備用。

1.3 異氰酸酯基(—NCO)封端預(yù)聚物B料的制備

首先將聚四氫呋喃醚二醇、蓖麻油在120 ℃下真空脫水4 h,降溫至約25 ℃形成備用物;其次在三口燒瓶中加入苯甲酰氯,二苯基甲烷二異氰酸酯于75 ℃左右300 r/min攪拌10 min至二苯基甲烷二異氰酸酯為熔融狀態(tài);然后加入真空脫水的聚四氫呋喃醚二醇、蓖麻油于75 ℃左右500 r/min攪拌2 h得到預(yù)聚體B料,將預(yù)聚體降溫至25 ℃?zhèn)溆茫蛔詈蟛捎枚“贩ǖ味A(yù)聚物,控制—NCO含量約占20%。

1.4 無(wú)溶劑聚氨酯涂層的制備

聚氨酯復(fù)合材料的配方見(jiàn)表1。涂層制備時(shí),將B料加入到A料中,于25 ℃、2200 r/min攪拌50~90 s形成混合樹(shù)脂,然后將混合樹(shù)脂迅速傾倒在離型紙上,用軋輥刮涂,然后將離型紙置于100~130 ℃高溫熟化10~60 min。

1.5 測(cè)試與表征

1.5.1 化學(xué)結(jié)構(gòu)表征

采用Nicolet is20傅里葉紅外光譜儀(美國(guó)賽默飛世爾科技公司)測(cè)定PU涂層及PDMS改性的Si-PU涂層的紅外吸收光譜。掃描范圍為4000~500 cm-1。

1.5.2 原子力顯微鏡測(cè)試

采用XE-7原子力顯微鏡(韓國(guó) Park 原子力顯微鏡公司)掃描涂層的聚集態(tài)結(jié)構(gòu)。測(cè)試時(shí)選擇輕敲模式,掃描速率為1 Hz。

1.5.3 拉伸性能測(cè)試

采用電子拉力試驗(yàn)機(jī)(YG026Q)測(cè)定涂層的力學(xué)性能,按照ASTM D638標(biāo)準(zhǔn)進(jìn)行,試樣尺寸為50 mm×10 mm,拉伸速度恒定為40 mm/min。

1.5.4 熱穩(wěn)定性分析

采用TG209F1熱重分析儀(德國(guó) NETZSCH 公司)測(cè)定涂層的熱穩(wěn)定性。掃描范圍30~600 ℃,升溫速率10 ℃/min,氣體氛圍為氮?dú)狻?/p>

1.5.5 動(dòng)態(tài)熱力學(xué)熱機(jī)械分析

采用DMA1(METTLER TOLEDO)測(cè)定涂層的動(dòng)態(tài)力學(xué)熱機(jī)械性能。溫度范圍為-70~100 ℃,升溫速率5 ℃/min,頻率為1 Hz。

1.5.6 差示掃描量熱分析

通過(guò)DSC214 Polyma型差式掃描量熱儀(德國(guó) NETZSCH 公司)進(jìn)行涂層的熱性能測(cè)試,掃描范圍-60~100 ℃,升溫速率10 ℃/min,氣體氛圍為氮?dú)狻?/p>

1.5.7 接觸角測(cè)試

通過(guò)DSA25S接觸角測(cè)量?jī)x(德國(guó)KRUSS公司)對(duì)涂層的水接觸角進(jìn)行測(cè)試,設(shè)置水滴量為3 μL,水滴滴落速度為2.67 μL/s。

1.5.8 柔軟度測(cè)試

通過(guò)智能風(fēng)格儀(美國(guó) Nu Cybertek 公司)對(duì)涂層的柔軟度進(jìn)行測(cè)試,每個(gè)樣品測(cè)量3次,取平均值。

2 結(jié)果與討論

2.1 聚氨酯涂層的紅外吸收光譜分析

圖1為MDI、PU涂層和PDMS改性的Si-PU涂層的紅外光譜。其中,2270 cm-1處為—NCO基團(tuán)的伸縮振動(dòng)峰,1699 cm-1處為CO的拉伸振動(dòng)[7]。2270 cm-1處—NCO峰在MDI紅外光譜中出現(xiàn),在g0—g4紅外光譜中消失,以及1699 cm-1CO峰的出現(xiàn),都說(shuō)明異氰酸酯基已完全反應(yīng)為氨基甲酸酯基。2970~2869 cm-1處的吸收峰與—CH2的非對(duì)稱拉伸和對(duì)稱拉伸有關(guān)。隨著PDMS含量增加,1080 cm-1處Si—O—Si[8]吸收峰增強(qiáng),816 cm-1處Si—CH3吸收峰也增強(qiáng),表明成功制備了PDMS改性的無(wú)溶劑聚氨酯涂層。

2.2 原子力顯微鏡表征

原子力顯微鏡圖像中可以分辨出不同亮度的區(qū)域,PU涂層及Si-PU涂層的AFM照片如圖2所示。圖2中的亮白色區(qū)域?yàn)槟A枯^高的硬段相,深色區(qū)域?yàn)槟A枯^低的軟段相,且硬段分散在軟段之中[9-11]。在圖2 g0—g2中,兩個(gè)區(qū)域?qū)Ρ惹逦梢?jiàn),揭示了涂層較為明顯的相分離現(xiàn)象。對(duì)這些圖像的直觀觀察表明,隨著PDMS 含量的增加,大部分單個(gè)亮域的大小會(huì)減小,這表明軟段和硬段的混合程度得到了提高,其微相分離程度減弱[12]。

2.3 涂層力學(xué)性能分析

圖3是PU、Si-PU涂層的應(yīng)力應(yīng)變曲線,展示了涂層的拉伸強(qiáng)度和斷裂伸長(zhǎng)率隨PDMS含量的變化情況。從圖3中可以發(fā)現(xiàn),隨著PDMS在軟段中占比增加,涂層的拉伸強(qiáng)度呈現(xiàn)先逐漸上升后逐漸下降的趨勢(shì),斷裂伸長(zhǎng)率隨著PDMS含量上升逐漸增加。拉伸強(qiáng)度從g0的18.3 MPa增加到g3的27.8 MPa,增幅達(dá)51.9%,斷裂伸長(zhǎng)率從g0的288.4%增加到g4的574.7%,增幅達(dá)99.3%。

蓖麻油分子鏈段較長(zhǎng)且較柔軟,交聯(lián)點(diǎn)間隔較遠(yuǎn),鏈段極性相對(duì)較低,內(nèi)聚能較低,因此涂層的拉伸強(qiáng)度相對(duì)較差[13]。PDMS增加導(dǎo)致硅氧鍵增多,使得分子間更易形成氫鍵,提高分子間作用力,涂層的拉伸強(qiáng)度增強(qiáng)[14]。聚氨酯通常是由軟段、硬段組成的嵌段共聚物,硬段通過(guò)分子間極性、氫鍵締合形成物理交聯(lián)固定相,軟段在同一溫度下一般處于高彈態(tài)。當(dāng)PDMS含量進(jìn)一步增加(硬段含量降低),軟段與聚氨酯硬段之間的微相分離減弱(對(duì)硬段結(jié)晶產(chǎn)生阻礙),可以削弱硬段對(duì)力學(xué)的鞏固作用[11],使得拉伸強(qiáng)度下降。隨著體系PDMS含量增加,蓖麻油的含量必然減少,因此整體交聯(lián)網(wǎng)狀結(jié)構(gòu)下降,以及PDMS分子鏈柔順性較好,使得涂層斷裂伸長(zhǎng)率隨之增加,薄膜韌性增強(qiáng)[15-16]。

2.4 涂層熱穩(wěn)定性分析

圖4(a)和圖4(b)分別為涂層的熱重(TG)曲線和熱重微分(DTG)曲線。如圖4曲線所示,將PDMS引入到聚氨酯中,初始分解溫度T5%(質(zhì)量損失5%的溫度)和Tmax(質(zhì)量損失速率最大的溫度)均有一定提高。這是由于Si—O(450 kJ/mol)能量遠(yuǎn)高于C—C(355 kJ/mol)和C—O(351 kJ/mol)[16],以及Si—O的存在使分子間形成更多的氫鍵。分子間作用力的增加,需要更多的能量來(lái)破壞氫鍵[17]。

從圖4(b)中可以看出,同種顏色的曲線有3個(gè)峰,即涂層熱分解的3個(gè)階段。第一階段240~300 ℃與聚氨酯涂層的緩慢脫水碳化有關(guān)。第二階段300~370 ℃與聚氨酯硬鏈段(脲鍵、氨基甲酸酯)分解有關(guān)[18],因?yàn)镃—N鍵比C—O和C—C鍵更容易斷裂[19-20]。第三階段370~510 ℃為軟段的降解斷裂[21]。以上可以發(fā)現(xiàn),PDMS的引入可以使涂層的熱分解過(guò)程向高溫方向移動(dòng),提高涂層的熱穩(wěn)定性。

2.5 涂層動(dòng)態(tài)力學(xué)熱機(jī)械性能分析

為探究PU涂層的動(dòng)態(tài)熱力學(xué)性能,對(duì)所制涂層進(jìn)行了DMA測(cè)試。圖5顯示出涂層的儲(chǔ)能模量和損耗因子隨溫度變化的曲線。由圖5(a)可以看出,涂層g4具有較高的儲(chǔ)能模量。隨著PDMS含量增高,涂層的儲(chǔ)能模量逐漸增加,儲(chǔ)能模量是材料剛度的體現(xiàn)[22-24]。從圖5(b)中可以看出,隨著PDMS含量增加,涂層的玻璃化溫度(Tg)逐漸降低,說(shuō)明涂層的耐低溫性能逐漸變好,鏈段運(yùn)動(dòng)更容易,涂層即使在較低溫度下也能處于高彈態(tài)狀態(tài)[25]。另外,從圖5(b)中也可以發(fā)現(xiàn),隨著PDMS含量逐漸增加,涂層的Tg峰個(gè)數(shù)呈現(xiàn)先增加后減少的趨勢(shì),說(shuō)明涂層的軟段微相分離先增加后減少。

2.6 涂層差示掃描量熱分析

圖6為涂層的DSC升溫曲線。從圖6中可以發(fā)現(xiàn),所有樣品的玻璃化轉(zhuǎn)變溫度均位于-30 ℃左右,明顯低于DMA所測(cè)涂層的玻璃化溫度[26]。隨著PDMS含量增加,對(duì)應(yīng)樣品的玻璃化溫度沒(méi)有明顯地向低溫方向移動(dòng)的趨勢(shì)及同一涂層出現(xiàn)多個(gè)Tg的情況。這是由于DSC測(cè)試的熱效應(yīng)隨樣品升溫速率、顆粒度、填裝方式等都有很大影響。DMA測(cè)試樣品模量或力學(xué)損耗隨溫度變化情況,結(jié)果受樣品厚度、測(cè)試頻率、升溫速率等影響。本文聚氨酯為交聯(lián)體系,交聯(lián)體系樹(shù)脂分子運(yùn)動(dòng)熱效應(yīng)小,發(fā)生玻璃化轉(zhuǎn)變時(shí)(DSC測(cè)試)材料熱熔變化不明顯,而材料模量會(huì)變化幾個(gè)數(shù)量級(jí),所以采用DMA比采用DSC測(cè)試Tg更可靠[27]。

2.7 接觸角分析

PU、Si-PU涂層的水接觸角的測(cè)試結(jié)果如圖7所示,所有涂層的水接觸角均大于111°。隨著PDMS含量提高,水接觸角總體呈現(xiàn)增大趨勢(shì),這是因?yàn)镻DMS的疏水烷基在表面富集,從而提高了涂層的疏水性[5]。類似于荷葉效應(yīng),一定的粗糙度會(huì)改變物體表面疏水性從而改變接觸角,g2接觸角略有減小可能是由于表面粗糙度變化引起的[9]。

2.8 柔軟度分析

圖8是PU及Si-PU涂層柔軟度隨PDMS含量變化的曲線。由圖8可知,隨著PDMS含量上升,涂層的柔軟度逐漸提高。硅氧鍵良好的柔性使得有機(jī)硅聚氨酯共聚物不但保留了聚氨酯的高強(qiáng)、耐磨性,同時(shí)又具有有機(jī)硅良好的柔性[28]。

3 結(jié)論

本文以聚四氫呋喃醚二醇、蓖麻油、雙羥基封端聚二甲基硅氧烷(PDMS)為軟段,二苯基甲烷二異氰酸酯、1,3丙二醇為硬段,采用綠色環(huán)保的無(wú)溶劑法制備了系列反應(yīng)性聚氨酯涂層,同時(shí)探討了PDMS含量對(duì)涂層機(jī)械性能、微相分離、熱穩(wěn)定性、耐低溫性、疏水性、手感等的影響,主要得出以下結(jié)論:

a)經(jīng)過(guò)有機(jī)硅改性的反應(yīng)性聚氨酯(Si-PU)涂層拉伸強(qiáng)度、斷裂伸長(zhǎng)率均得到有效提升,其拉伸強(qiáng)度最大提高51.9%,斷裂伸長(zhǎng)率最大提高99.3%;隨著PDMS質(zhì)量分?jǐn)?shù)提高,Si-PU的軟段、硬段的混合程度增加,微相分離程度減弱。

b)隨著PDMS質(zhì)量分?jǐn)?shù)提高,Tmax向高溫方向移動(dòng),涂層的熱穩(wěn)定性增強(qiáng);涂層的玻璃化溫度Tg逐漸降低,其耐低溫性能明顯提高;同時(shí)疏水性提高,手感變得更加柔軟,服用性能得到改善。

參考文獻(xiàn):

[1]高龍飛, 錢曉明, 王立晶, 等. 抗菌型超細(xì)纖維合成革復(fù)合材料的研究進(jìn)展[J]. 皮革科學(xué)與工程, 2022, 32(1): 40-45.

GAO Longfei, QIAN Xiaoming, WANG Lijing, et al. Research progress of antibacterial superfine fiber synthetic leather composite materials[J]. Leather Science and Engineering, 2022, 32(1): 40-45.

[2]嚴(yán)雪峰, 江敏, 胡苗苗. 聚氨酯合成革綠色清潔化生產(chǎn)發(fā)展趨勢(shì)分析[J]. 化工設(shè)計(jì)通訊, 2021, 47(2): 148-149.

YAN Xuefeng, JIANG Min, HU Miaomiao. Analysis on development trend of green and clean production of polyurethane synthetic leather[J]. Chemical Engineering Design Communications, 2021, 47(2): 148-149.

[3]李其原, 楊凱, 孫琰, 等. 無(wú)溶劑聚氨酯涂料的研究進(jìn)展[J]. 上海涂料, 2023, 61(5): 37-40.

LI Qiyuan, YANG Kai, SUN Yan, et al. Research progress of solvent-free polyurethane coatings[J]. Shanghai Coatings, 2023, 61(5): 37-40.

[4]蘇錦華, 伍川, 瞿志榮, 等. 含氟有機(jī)硅材料的制備及性能研究[J]. 化工生產(chǎn)與技術(shù), 2019, 25(1): 7-11.

SU Jinhua, WU Chuan, QU Zhirong, et al. Study on preparation and properties of fluorine organosilicon material[J]. Chemical Production and Technology, 2019, 25(1): 7-11.

[5]孫哲, 任松, 方劍, 等. 氟硅改性無(wú)溶劑聚氨酯涂層的制備及性能研究[J]. 皮革科學(xué)與工程, 2023, 33(1): 15-20.

SUN Zhe, REN Song, FANG Jian, et al. Preparation and property of fluorine-silicone modified solvent-free polyure-thane coating[J]. Leather Science and Engineering, 2023, 33(1): 15-20.

[6]李亞萍, 隋智慧, 郭制安, 等. 有機(jī)氟硅改性水性聚氨酯的合成及應(yīng)用[J]. 熱固性樹(shù)脂, 2021, 36(4): 15-19.

LI Yaping, SUI Zhihui, GUO Zhian, et al. Synthesis and application of organic fluorine-silicon modified waterborne polyurethane[J]. Thermosetting Resin, 2021, 36(4): 15-19.

[7]BARRIONI B R, DE CARVALHO S M, ORFICE R L, et al. Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications[J]. Materials Science and Engineering: C, 2015, 52: 22-30.

[8]謝子文, 李家煒, 汪芬萍, 等. 有機(jī)硅改性水性聚氨酯丙烯酸酯雜化膠乳的制備及其在涂料印花中的應(yīng)用[J]. 紡織學(xué)報(bào), 2022, 43(8): 119-125.

XIE Ziwen, LI Jiawei, WANG Fenping, et al. Preparation of polydimethylsiloxane modified waterborne polyurethane acrylate hybrid latex and its applications in pigment printing[J]. Journal of Textile Research, 2022, 43(8): 119-125.

[9]XI X, ZHANG Z, QI Y. Preparation and properties of PED-TDI polyurethane-modified silicone coatings[J]. Polymers, 2022, 14(15): 3212.

[10]LIU T, YANG X, ZHANG S, et al. Synthesis and properties of high performance thermoplastic polycarbonate polyurethane elastomers through a non-isocyanate route[J]. RSC Advances, 2022, 12(46): 30167-30173.

[11]LIU S, WANG X, NING N, et al. Preparation of high performance dielectric elastomers by tailoring the aggregation structure of polyurethane[J]. Acta Polymerica Sinica, 2023, 54(2): 266-276.

[12]XU X, YUAN Y, JIN S, et al. Study on polyurethane elastomer modification for improving low-temperature resistance of high-capacity polyurethane elastomeric bearing for bridges[J]. Construction and Building Materials, 2022, 347: 128625.

[13]梁圣榮, 李青飛, 覃秋菊. 交聯(lián)改性水性聚氨酯涂料的制備及性能研究[J]. 化工技術(shù)與開(kāi)發(fā), 2022, 51(12): 9-12.

LIANG Shengrong, LI Qingfei, QIN Qiuju. Preparation and properties of cross-linked modified waterborne polyurethane coatings[J]. Technology amp; Development of Chemical Industry, 2002, 51(12): 9-12.

[14]趙小亮, 高怡安, 陳海江. UV固化含氟聚硅氧烷改性水性聚氨酯的制備及性能研究[J]. 塑料科技, 2022, 50(9): 54-57.

ZHAO Xiaoliang, GAO Yian, CHEN Haijiang. Prepa-ration and properties of UV curable waterborne polyurethane modified by fluorinated polysiloxane[J]. Plastics Science and Technology, 202, 50(9): 54-57.

[15]呂斌, 張鶴年, 高黨鴿. PDMS改性蓖麻油基水性聚氨酯的制備及防污性能[J]. 精細(xì)化工, 2022, 39(3): 541-547.

LBin, ZHANG Henian, GAO Dangge. Preparation and antifouling performance of castor oil based waterborne polyurethane modified by PDMS[J]. Fine Chemicals, 2002, 39(3): 541-547.

[16]LI L, TIAN B, LI L, et al. Preparation and characterization of silicone oil modified polyurethane damping materials[J]. Journal of Applied Polymer Science, 2019, 136(22): 47579.

[17]FILIP D, MACOCINSCHI D, VLAD S. Thermo-gravimetric study for polyurethane materials for biomedical applications[J]. Composites Part B: Engineering, 2011, 42(6): 1474-1479.

[18]李鴿, 馬煜驕, 譚詩(shī)源, 等. 木質(zhì)素改性蓖麻油基水性聚氨酯的制備與性能[J]. 皮革科學(xué)與工程, 2024, 34(4): 28-35.

LI Ge, MA Yujiao, TAN Shiyuan, et al. Preparation and performance of lignin-modified castor oil-based waterborne polyurethane[J]. Leather Science and Engineering, 2024, 34(4): 28-35.

[19]STEFANOVI I S, PRKOV M, OSTOJI S, et al. Montmorillonite/poly (urethane-siloxane) nanocomposites: Morphological, thermal, mechanical and surface properties[J]. Applied Clay Science, 2017, 149: 136-146.

[20]劉若望, 柴玉葉, 張初銀, 等. 水性聚氨酯的無(wú)溶劑法合成與性能研究[J]. 皮革科學(xué)與工程, 2023, 33(1): 54-59.

LIU Ruowang, CHAI Yuye, ZHANG Chuyin, et al. Study on the solvent-free synthesis and properties of waterborne polyurethane[J]. Leather Science and Engineering, 2023, 33(1): 54-59.

[21]王勁松, 習(xí)智華. 水性聚氨酯的軟段阻燃改性及其性能測(cè)試[J]. 紡織高?;A(chǔ)科學(xué)學(xué)報(bào), 2021, 34(4): 19-25.

WANG Jinsong, XI Zhihua. Flame retardant modification of soft segment of waterborne polyurethane and its performance test[J]. Basic Sciences Journal of Textile Universities, 2021, 34 (4): 19-25.

[22]WANG Y, QIU F, XU B, et al. Preparation, mechanical properties and surface morphologies of waterborne fluorinated polyurethane-acrylate[J]. Progress in Organic Coatings, 2013, 76(5): 876-883.

[23]YI T, MA G, HOU C, et al. Polyurethane-acrylic hybrid emulsions with high acrylic/polyurethane ratios: Synthesis, characterization, and properties[J]. Journal of Applied Polymer Science, 2017, 134(8): 44488.

[24]YI T, MA G, HOU C, et al. Preparation and properties of poly(siloxane-ether-urethane)-acrylic hybrid emulsions[J]. Journal of Applied Polymer Science, 2017, 134(23):45532.

[25]HASSANAJILI S, KHADEMI M, KESHAVARZ P. Influence of various types of silica nanoparticles on permeation properties of polyurethane/silica mixed matrix membranes[J]. Journal of Membrane Science, 2014, 453: 369-383.

[26]XU C, TIAN Y, XIONG Z, et al. Fabrication of polydimethylsiloxane-based thermoplastic polyurethanes with excellent toughness and cold resistance[J]. ACS Applied Polymer Materials, 2022, 4(3): 1551-1558.

[27]李健豐, 徐亞娟. 測(cè)試方法對(duì)聚合物玻璃化溫度的影響[J]. 塑料科技, 2009, 37(2): 65-67.

LI Jianfeng, XU Yajuan. The effects of different measurement methods on the glass transition temperature of polymer[J]. Plastics Science and Technology, 2009, 37(2): 65-67.

[28]馮娜, 賀江平, 胡曉俠, 等. 有機(jī)硅-聚氨酯共聚物柔軟劑的合成研究[J]. 聚氨酯工業(yè), 2016,31(3):36-39.

FENG Na, HE Jiangping, HU Xiaoxia, et al. Study on synthesis of silicone polyurethane copolymer softening agent[J]. Polyurethane Industry, 2016, 31(3): 36-39.

Preparation of hydroxyl silicone oil reinforced reactive polyurethane

coatings and their properties

WANG" Lin1," ZHANG" Junfeng2," HE" Fang3," WANG" Zhuo1," HUANG" Zhichao1,4," SUN" Fu1," QI" Dongming1,4,5

(1.College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University,

Hangzhou 310018, China; 2.Hexin Kuraray Microfiber Leather (Jiaxing) Co., Ltd., Jiaxing 314000, China;

3.Huanggang Division, Hubei Province Fibre Product Test Center, Huanggang 438021, China;

4.Advanced Textile Technology Innovation Center (Jianhu Laboratory), Shaoxing 312030, China;

5.Zhejiang Provincial Key Laboratory of Green Cleaning Technology and Detergent, Lishui 323000," China)

Abstract:

Polyurethane, as an emerging organic synthetic polymer material, is known as the \"fifth largest plastic\" and is widely used in chemical, electronics, textile, medicine, construction, automobile, and many other fields because of its excellent performance. Polyurethane is broadly categorized as solvent-based one, water-based one and solvent-free one. Traditionally produced polyurethane is mostly solvent-based one. Solvent-based polyurethane seriously jeopardizes the physical and mental health of producers because of the addition of organic solvents such as N,N dimethylformamide and acetone to the production process, and the presence of residual organic solvents in the finished product may also be harmful to the physical and mental health of consumers. And water-based polyurethane replaces organic solvents with water, solving the problem of solvent pollution.

However, because of the existence of hydrophilic groups, the coating's water resistance decreases, which makes it easier to dissolve abd affects the mechanical properties. Meanwhile, the water evaporation is slow, resulting in a long drying time and heavy energy consumption. Solvent-free polyurethane (reactive polyurethanes) solves the above problems of polyurethane by virtue of the absence of solvent incorporation. Mechanical properties are an important index of coatings, and it is necessary for the article to investigate the effect of hydroxyl silicone oil on the mechanical properties of solvent-free polyurethane coatings.Polyurethane coatings with high strength, high-temperature thermal stability, low-temperature resistance, hydrophobicity, and softness were comprehensively designed. Diphenylmethane diisocyanate and 1,3 propylene glycol were used as hard segments, and poly(tetrahydrofuran ether diol), castor oil, and bis-hydroxy-capped polydimethylsiloxane (PDMS) were used as soft segments. The two-component method was used for prepolymerization, followed by mixing, scraping, and reaction molding. A series of solvent-free polyurethane coatings were synthesized by partially replacing castor oil with PDMS, and the effects of PDMS content on the mechanical and thermal properties, low-temperature resistance, hydrophobicity, and feel of the coatings were investigated. The effect of hydroxyl silicone oil on the mechanical properties of polyurethane was investigated in a solvent-free system. The tensile strength and elongation at break of reactive polyurethane (Si-PU) coatings modified by silicone were effectively enhanced, with a maximum increase of 51.9% in tensile strength and 99.3% in elongation at break. With the increase in PDMS mass fraction, the mixing degree of soft and hard segments of Si-PU increased, and the degree of microphase separation weakened. As the mass fraction of PDMS increased, Tmax moved toward high temperature, and the thermal stability of the coating was enhanced; the glass transition temperature (Tg) of the coating gradually decreased, and its low-temperature resistance was significantly improved; at the same time, the hydrophobicity was improved, and the handfeel became softer, thus the serviceability was improved.

The silicone-modified polyurethane coating prepared by the above method overcomes the shortcomings of solvent-based polyurethane and water-based polyurethane, and at the same time, its breaking strength, elongation at break, high-temperature thermal stability, low-temperature resistance, hydrophobicity, and softness have been improved to a certain extent. As the national requirements for environmental protection in the chemical industry become higher and higher, further research on solvent-free polyurethane technology is expected to be more in-depth and comprehensive in the future, so that it can be more widely used in various industries.

Keywords:

reactive polyurethane; coating; organosilicon; solvent free; microphase separation

猜你喜歡
無(wú)溶劑有機(jī)硅涂層
有機(jī)硅灌封材料對(duì)計(jì)控電子設(shè)備的保護(hù)應(yīng)用
山東冶金(2022年4期)2022-09-14 09:00:20
催化劑體系對(duì)有機(jī)硅單體合成的影響
云南化工(2021年11期)2022-01-12 06:06:06
塑料涂層的制備
上海建材(2018年4期)2018-11-13 01:08:52
SO42-/TiO2-SnO2固體超強(qiáng)酸無(wú)溶劑催化合成季戊四醇硬脂酸酯
淡水艙無(wú)溶劑環(huán)氧施工工藝研究
2015中國(guó)國(guó)際合成革展覽會(huì)刮起“無(wú)溶劑合成革”風(fēng)暴
西部皮革(2015年15期)2015-02-28 18:14:36
織物抗菌劑有機(jī)硅季銨鹽POASC和PFASC的制備及應(yīng)用
絲綢(2015年11期)2015-02-28 14:56:49
瓦克有機(jī)硅在新能源汽車領(lǐng)域的應(yīng)用
汽車零部件(2015年5期)2015-01-03 08:00:28
Federal—Mogul公司開(kāi)發(fā)的DuroGlide活塞環(huán)涂層
用于重型柴油機(jī)濺鍍軸承的新型聚合物涂層
吉安县| 栾城县| 东明县| 龙州县| 庐江县| 边坝县| 获嘉县| 青海省| 武城县| 定结县| 呼伦贝尔市| 库伦旗| 张家港市| 崇州市| 延安市| 永昌县| 房产| 道真| 洱源县| 河西区| 军事| 瑞丽市| 资阳市| 高要市| 滦平县| 郴州市| 垣曲县| 田阳县| 舒兰市| 瓮安县| 阜宁县| 古蔺县| 玛多县| 崇义县| 中江县| 新昌县| 无棣县| 资兴市| 大余县| 大宁县| 香河县|