摘""要:火龍果是海南省的特色熱帶水果,主要種植于海南省紅壤中,其交換性鎂常年流失,導(dǎo)致一些果園出現(xiàn)鎂缺乏現(xiàn)象,影響火龍果生長及產(chǎn)量。鎂參與了光合作用及其他代謝過程,為此本研究以國內(nèi)主要火龍果品種大紅為試驗材料,采用水培試驗,設(shè)置0、0.5、2.0、4.0"mmol/L"4個鎂濃度梯度,測定鎂對火龍果表觀形態(tài)、生物量以及景天酸代謝相關(guān)酶活性變化。結(jié)果表明:(1)不同鎂濃度處理對火龍果嫩莖長度、寬度、厚度、莖粗和鮮質(zhì)量產(chǎn)生很大影響,缺鎂或鎂過量時嫩莖長度、寬度、厚度、莖粗和鮮重均顯著小于2.0"mmol/L鎂處理,其中缺鎂會使火龍果長度、寬度、厚度、莖粗和鮮質(zhì)量明顯下降,以2.0"mmol/L鎂濃度條件最適合植株生長;(2)磷酸烯醇式丙酮酸羧化酶PEPC活性隨著鎂濃度增加呈先增后降趨勢,4.0"mmol/L鎂濃度處理PEPC活性低于2.0"mmol/L處理,但活性高于0.5、0"mmol/L處理。在第84天,2.0"mmol/L鎂濃度下,嫩莖和老莖PEPC活性較其他處理最高分別為90.44±1.40、92.77±0.67"nmol/(min·g),其初步固定CO2的能力遠高于其他處理;蘋果酸脫氫酶NAD-MDH活性在嫩莖中隨鎂濃度增加而呈下降趨勢,隨著處理時間的延長,鎂濃度對NAD-MDH的影響逐漸顯現(xiàn),首先在嫩莖中觀察到,然后逐漸影響老莖。在第"84"天,缺鎂處理嫩莖和老莖活性最大分別為(12631.82±286.04)nmol/(min·g)、(10500.16±108.34)nmol/(min·g);在2.0"mmol/L鎂濃度處理下火龍果嫩莖和老莖的蘋果酸酶NAD-ME活性均維持較高水平,總體平均達到28.41~"65.87"nmol/(min·g)。(3)缺鎂對嫩莖PEPC和NAD-MDH活性影響有顯著差異,缺鎂降低了PEPC活性,導(dǎo)致草酰乙酸含量減少,限制了CO2轉(zhuǎn)化為蘋果酸的過程。夜間蘋果酸積累減少,白天光合作用的原料不足,從而降低了有機物的積累能力。因此,國內(nèi)紅肉火龍果培養(yǎng)中最佳鎂濃度為2.0"mmol/L,當前火龍果種植區(qū)土壤中鎂濃度低于此值,因此建議在火龍果種植時合理增施鎂肥。
關(guān)鍵詞:鎂;火龍果;蘋果酸酶;蘋果酸脫氫酶;磷酸烯醇式丙酮酸羧化酶中圖分類號:S31""""""文獻標志碼:A
The"Influence"of"Magnesium"on"the"Growth"of"Red"Pitaya"and"the"Activity"of"Enzymes"Related"to"Citric"Acid"Metabolism
HU"Jingwen1,2,3,4,"HU"Wenbin2,3,4,"CHEN"Hui1,"ZHANG"Huiming1,"ZENG"Xiangyang1,2,3,4,"YANG"Fusun1*,"LI"Hongli2,3,4*
1."School"of"Tropical"Agriculture"and"Forestry,"Hainan"University,"Haikou,"Hainan"570228,"China;"2."Tropical"Crop"Genetic"Resources"Institute,"Chinese"Academy"of"Tropical"Agricultural"Sciences,"Haikou,"Hainan"571101,"China;"3."Key"Laboratory"of"Crop"Gene"Resources"and"Germplasm"Enhancement"in"Southern"China,"Ministry"of"Agriculture"and"Affairs,"Haikou,"Hainan"571101,"China;"4."Key"Laboratory"of"Tropical"Crops"Germplasm"Resources"Genetic"Improvement"and"Innovation"of"Hainan"Province,"Haikou,"Hainan"571101,"China
Abstract:"Pitaya"fruit"is"a"characteristic"tropical"fruit"of"Hainan"province,"mainly"cultivated"in"the"red"soil"of"Hainan"province."The"exchangeable"magnesium"is"lost"throughout"the"year,"leading"to"magnesium"deficiency"in"some"orchards,"which"affects"the"growth"and"yield"of"pitaya"fruit."Magnesium"is"involved"in"photosynthesis"and"other"metabolic"processes."Therefore,"this"study"took"the"main"domestic"variety"of"pitaya"Dahong"as"the"experimental"material,"using"hydroponic"experiments,"set"four"magnesium"concentration"gradients"of"0,"0.5,"2.0,"4.0"mmol/L,"to"determine"the"changes"in"the"apparent"morphology,"biomass,"and"the"activity"of"enzymes"related"to"crassulacean"acid"metabolism"in"pitaya"fruit."The"results"showed:"(1)"Different"magnesium"concentration"treatments"had"a"significant"impact"on"the"length,"width,"thickness,"stem"thickness,"and"fresh"weight"of"the"tender"stems"of"pitaya"fruit."When"magnesium"is"deficient"or"excessive,"the"length,"width,"thickness,"stem"thickness,"and"fresh"weight"of"the"tender"stems"are"also"significantly"less"than"those"treated"with"2.0"mmol/L."Magnesium"deficiency"can"significantly"reduce"the"length,"width,"thickness,"stem"thickness,"and"fresh"weight"of"pitaya"fruit."The"condition"of"2.0"mmol/L"magnesium"concentration"is"most"suitable"for"plant"growth;"(2)"The"activity"of"PEPC"first"increased"and"then"decreased"with"the"increase"of"magnesium"concentration."The"activity"of"PEPC"at"4"mmol/L"magnesium"concentration"was"lower"than"at"2.0"mmol/L"but"higher"than"at"0.5"mmol/L"and"0"mmol/L"treatments."after"84"days,"under"the"condition"of"2.0"mmol/L"magnesium"concentration,"the"PEPC"activity"in"tender"and"old"stems"was"the"highest"among"other"treatments,"at"90.44±1.40"and"92.77±0.67"nmol/(min·g),"respectively,"and"its"initial"CO2"fixation"ability"was"much"higher"than"other"treatments;"The"activity"of"NAD-MDH"in"tender"stems"decreased"with"the"increase"of"magnesium"concentration."With"the"extension"of"treatment"time,"the"impact"of"magnesium"concentration"on"NAD-MDH"gradually"appeared,"first"observed"in"tender"stems"and"then"gradually"affected"the"old"stems."The"maximum"activity"of"tender"and"old"stems"treated"with"magnesium"deficiency"after"84"days"was"(12631.82±"286.04)nmol/(min·g),"and"(10500.16±108.34)"nmol/(min·g),"respectively;"Under"the"treatment"of"2.0"mmol/L"magnesium"concentration,"the"activity"of"NAD-ME"in"both"tender"and"old"stems"of"pitaya"fruit"was"maintained"at"a"high"level,"with"an"overall"average"of"28.41~"65.87"nmol/min/g."(3)"Magnesium"deficiency"had"a"significant"effect"on"the"enzyme"activities"of"PEPC"and"NAD-MDH"in"tender"stems."Magnesium"deficiency"reduced"the"activity"of"PEPC,"leading"to"a"decrease"in"oxaloacetic"acid"content,"limiting"the"process"of"CO2"conversion"to"malate."The"accumulation"of"malate"at"night"is"reduced,"and"the"raw"materials"for"photosynthesis"are"insufficient"during"the"day,"thereby"reducing"the"accumulation"capacity"of"organic"matter."Conclusion:"The"optimal"magnesium"concentration"for"the"cultivation"of"domestic"red-fleshed"pitaya"is"2.0"mmol/L."The"magnesium"concentration"in"the"soil"of"the"current"pitaya"planting"area"is"lower"than"this"value,"so"it"is"recommended"to"reasonably"increase"the"application"of"magnesium"fertilizer"during"the"planting"of"pitaya.
Keywords:"magnesium;"pitaya;"malic"enzyme;"malate"dehydrogenase;"phosphoenolpyruvate"carboxylase
DOI:"10.3969/j.issn.1000-2561.2024.12.013
作物生長需17種必需元素[1],保證所有必需元素的平衡供應(yīng)才能實現(xiàn)作物高產(chǎn)高質(zhì)目標。長期以來,在國內(nèi)外生產(chǎn)中,大量施用氮磷鉀化肥而忽視其他養(yǎng)分投入的現(xiàn)象普遍存在。連續(xù)大量、甚至過量施用氮磷鉀化肥導(dǎo)致養(yǎng)分投入不平衡,不但影響作物產(chǎn)量和品質(zhì)、降低肥料利用率,還會增加生產(chǎn)成本、浪費資源,并帶來一系列環(huán)境問題。然而,鎂作為植物生長所必需的中量元素,在維持作物正常生長發(fā)育方面發(fā)揮著不可替代的作用[2-3]。然而在過去幾十年生產(chǎn)中一直忽視了鎂營養(yǎng)投入[4-6]。鎂在國內(nèi)外現(xiàn)代農(nóng)業(yè)生產(chǎn)中不受重視已普遍存在[7],導(dǎo)致實際生產(chǎn)中,作物缺鎂現(xiàn)象極為普遍且嚴重影響作物的產(chǎn)量與品質(zhì)。
當前我國21%土壤有效鎂含量嚴重缺乏,尤其是福建、云南、海南、廣西四?。▍^(qū))低于60"mg/kg[8],每年需要補充984萬t"MgO[9]。海南省為水力侵蝕較嚴重的南方紅壤區(qū),部分果園水土流失嚴重,加速了土壤中交換性鎂的流失,使鎂含量逐年降低[10-11]。據(jù)調(diào)查,火龍果軟枝大紅園區(qū)對交換鎂含量需求較大,而土壤中可利用Mg2+較少,植株生長受到抑制,衰老加速,造成生產(chǎn)力和質(zhì)量下降[12]?;瘕埞鳛楹D鲜〉奶厣珶釒?,種植面積逐年擴大[13]。因此,關(guān)注鎂對火龍果生長的影響,對于保障火龍果的產(chǎn)量和品質(zhì)具有重要意義。
火龍果(pitaya)屬于仙人掌科(Cactaceae)多年生攀緣植物,是典型的景天酸代謝途徑(CAM)植物[14-15]。在CAM中,夜間CO2由磷酸烯醇丙酮酸羧化酶(PEPC)催化完成,固定碳以蘋果酸的形式短暫儲存在液泡中,在光照期間脫羧[16]。CAM植物的儲備碳水化合物和可滴定酸度每天都會出現(xiàn)巨大的波動。PEPC反應(yīng)生成草酰乙酸(OAA),在蘋果酸脫氫酶(NAD-MDH)的催化下將其還原為蘋果酸。然后蘋果酸被輸送到液泡中。白天,蘋果酸從液泡中流出,為脫羧反應(yīng)提供底物,產(chǎn)生CO2被送入還原性磷酸戊糖途徑。在蘋果酸酶型CAM植物中,蘋果酸在脫酸期間被NAD依賴性蘋果酸酶(NAD-ME)脫羧,生成丙酮酸和CO2。因此,PEPC、NAD-MDH、NAD-ME是火龍果光合作用關(guān)鍵酶。這些酶在火龍果植物的碳代謝中發(fā)揮關(guān)鍵作用[17],并提高光合作用效率和水分利用效率[18]。鎂是構(gòu)成葉綠素的中心組成部分,對維持葉綠體結(jié)構(gòu)和功能發(fā)揮著不可替代的作用[19],對植物的光合作用、呼吸作用、糖酵解以及三羧酸循環(huán)等關(guān)鍵生理過程至關(guān)重要[20]。植物細胞中鎂的濃度在葉綠體中最高[21],而葉綠體是發(fā)生光合作用的細胞器。據(jù)報道,在鎂供應(yīng)不足的情況下,CO2同化率降低[22-24]。
科學(xué)家對煙草、巴西蕉、馬鈴薯等多數(shù)C3和C4作物因鎂的缺失或不足造成的作物形態(tài)特征、生理生化變化等進行了深入研究[25-28]。而對火龍果這種景天酸代謝途徑作物研究不夠深入,因此本研究通過水培試驗,采用不同鎂濃度處理,測定火龍果植株的生長形態(tài)、生物量以及景天酸代謝相關(guān)酶活性等指標變化規(guī)律,以揭示鎂對火龍果光合作用關(guān)鍵酶(PEPC、NAD-MDH、NAD-ME)活性的影響。分析出鎂元素在火龍果生長發(fā)育中的作用機制,為合理施用鎂肥,提高作物產(chǎn)量和品質(zhì),推動農(nóng)業(yè)綠色可持續(xù)發(fā)展提供實踐支持。
1.1""材料
于2023年10月在海南省儋州市中國熱帶農(nóng)業(yè)科學(xué)院熱帶作物品種資源研究所火龍果展示基地(110°73¢37.32″E,19°54¢37.21″N)進行試驗,供試火龍果品種為大紅,選取184株長勢一致的火龍果幼苗,殺菌風(fēng)干后移植于Hoagland營養(yǎng)液中進行前期培養(yǎng),待植株生長狀況穩(wěn)定75"d后進行鎂濃度梯度試驗。
試驗采用營養(yǎng)液水培方式,營養(yǎng)液為Hoagland溶液[22],營養(yǎng)液中的鎂為MgSO4·7H2O,鎂濃度設(shè)為0、0.5、2.0、4.0"mmol/L"4個處理,并通過添加Na2SO4保持各個處理之間的SO42-濃度平衡,進行單因素隨機區(qū)組試驗,4個處理,2次重復(fù),共8個區(qū)。營養(yǎng)液每30"d更新1次,電導(dǎo)度(EC)控制在2.1"ms/cm,并24"h不間斷充氣供氧。
1.2""方法
1.2.1""植株表型觀察及生物量測定""在處理后14、28、48、84"d取樣。再分別用不同供鎂濃度處理,拍照記錄植株表型,采用卷尺、直尺測定嫩莖長度、寬度、莖粗。植株生物量測定:收獲時沿莖基部剪下地上部,105"℃殺青30"min后60"℃烘干至恒重,用萬分之一天平準確稱取地上部干質(zhì)量。
1.2.2""光合色素含量測定""不同時間取樣,測定老莖和嫩莖的葉綠素,葉綠素含量測定參照95%無水乙醇浸提法[29]進行,暗處放置12~24"h,葉片全部變白后測定葉綠素含量。
1.2.3""景天酸代謝相關(guān)酶活性測定""不同時間取樣,切塊液氮速凍。將老莖和嫩莖打磨成粉,保存于50"mL離心管中,置于–80"℃超低溫冰箱保持備用。按照酶試劑盒說明書測定植株的蘋果酸酶(NAD-ME)、蘋果酸脫氫酶(NAD-MDH)和磷酸烯醇式丙酮酸羧化酶(PEPC)活性,重復(fù)"3"次,測定均使用蘇州科銘生物技術(shù)有限公司試劑盒。
1.3""數(shù)據(jù)處理
采用Excel"2021軟件進行數(shù)據(jù)整理,不同鎂濃度水平處理間植株形態(tài)、地上部生物量和酶活性均使用SPSS"27.0軟件進行分析,并利用Origin"9.0繪制圖表。
2.1""不同鎂處理對火龍果生長和生物量的影響
通過持續(xù)監(jiān)測火龍果表型,發(fā)現(xiàn)84"d缺鎂處理比前幾次采樣癥狀較為明顯,其大小、分枝、長勢、生物量有較大的的差異。同一采樣時間、不同鎂濃度處理后火龍果嫩莖長度、寬度、厚度、莖粗和鮮重均呈先升高后降低的趨勢,且在2.0"mmol/L處理下最大(表1),較其余處理增幅分別為19.38%~52.02%、14.69%~42.50%、47.01%~"185.08%、8.78%~15.03%和5.41%~42.97%,其嫩莖的厚度與其他處理達顯著水平。缺鎂和高濃度鎂均顯著抑制火龍果嫩莖的生長,但缺鎂對火龍果嫩莖的生長抑制程度明顯強于高濃度鎂。
火龍果嫩莖和老莖的生物量隨鎂濃度的增加均呈先升高后降低的變化趨勢(表2),在0"mmol/L和4.0"mmol/L處理下火龍果生物量顯著降低,以2.0"mmol/L處理嫩莖的生物量最高,與其他處理差異達顯著水平,較0"mmol/L處理增加41.25%,較4.0"mmol/L處理增加35.72%;老莖在2.0"mmol/L處理下生物量最高,較4.0"mmol/L處理增加25.02%,同時4.0"mmol/L處理下老莖較其余處理差異明顯。
2.2""不同鎂濃度處理對火龍果光合色素含量的影響
隨著處理時間的延長,0"mmol/L和0.5"mmol/L處理下嫩莖中葉綠素b含量均呈下降趨勢,2.0"mmol/L處理下嫩莖中葉綠素b含量卻呈平緩
上升趨勢,在第84天,葉綠素b含量達到最高,與其他處理差異顯著,較0"mmol/L處理增加21.29%,較0.5"mmol/L處理增加21.10%,較4.0"mmol/L處理增加11.97%(圖1A)。
在第84天,2".0mmol/L處理下老莖的葉綠素b含量顯著高于其他處理,較0"mmol/L處理增加11.02%,較0.5"mmol/L處理增加6.64%,較4.0"mmol/L處理增加21.80%(圖1B),且差異均達顯著水平。
2.3""不同鎂濃度處理對火龍果生理影響的相關(guān)性分析
不同鎂濃度處理對火龍果植株表型性狀、光合色素含量間相關(guān)性較高,嫩莖的長度、寬度與鎂濃度呈顯著正相關(guān),嫩莖的葉綠素a含量、葉綠素b含量與鎂濃度呈顯著正相關(guān),而老莖的葉綠素a含量、葉綠素b含量與鎂濃度呈顯著負相關(guān)(圖2)。鎂濃度對火龍果植株的表型性狀和光合色素含量具有顯著影響。不同濃度的鎂處理會顯著改變植株的嫩莖長度和寬度,同時對嫩莖和老莖的葉綠素含量產(chǎn)生相反的影響。
H為處理;TSL為嫩莖長度;TSW為嫩莖寬度;CATS為嫩莖葉綠素a;CBTS為嫩莖葉綠素b;"CAOS為老莖葉綠素a;CBOS為老莖葉綠素b;*為顯著相關(guān)。
H"stands"for"processing;"TSL"is"the"length"of"tender"stem."TSW"is"the"width"of"tender"stem;"CATS"is"chlorophyll"a"in"tender"stem;"CBTS"is"chlorophyll"b"in"tender"stem;"CAOS"is"old"stem"chlorophyll"a;"CBOS"is"old"stem"chlorophyll"b;"*"is"significant"correlation.
圖2""在第84天不同鎂濃度處理對火龍果表型及葉綠素影響的相關(guān)性Fig."2""Correlation"of"physiological"effects"of"different"magnesium"concentrations"on"pitaya"on"day"84
2.4""不同鎂濃度處理對火龍果景天酸代謝相關(guān)酶活性影響
2.4.1""磷酸烯醇式丙酮酸羧化酶(PEPC)活性""不同鎂濃度處理下嫩莖和老莖中PEPC活性存在顯著差異,總體呈現(xiàn)出先上升后下降的變化趨勢。在第84天,2.0"mmol/L處理下嫩莖中PEPC活性最高,達(90.44±1.40)nmol/(min·g),較其他處理增幅為33.84%~313.47%。在不同采樣時間內(nèi),0"mmol/L處理下嫩莖中PEPC活性始終保持最低水平,2.0"mmol/L處理下嫩莖中PEPC活性相對穩(wěn)定(圖3A)。隨處理時間的延長,在第48天,2.0"mmol/L處理下老莖的PEPC活性到達最高,達(123.78±2.15)"nmol/(min·g),較其他處理增幅為78.42%~196.15%(圖3B)。
火龍果嫩莖和老莖對鎂濃度的響應(yīng)呈現(xiàn)動態(tài)變化的趨勢,顯示出植物在不同生長階段可能對鎂濃度有不同的需求和適應(yīng)能力。適中的鎂濃度(2.0"mmol/L)有助于提高嫩莖和老莖中PEPC的活性,從而促進二氧化碳的固定和代謝過程。
2.4.2""蘋果酸脫氫酶(NAD-MDH)活性""夜間NAD-MDH的催化OAA還原為蘋果酸送到液泡中儲藏。在不同采樣時間內(nèi),火龍果嫩莖和老莖中NAD-MDH活性與鎂濃度之間存在顯著性差異。嫩莖和老莖的NAD-MDH活性隨著鎂濃度的增加呈下降的趨勢。在4.0"mmol/L處理下,嫩莖和老莖中NAD-MDH活性最低,0"mmol/L處理下嫩莖和老莖中NAD-MDH活性最高分別為(12631.82±"286.04)、(10500.16±108.34)nmol/(min·g)(圖4A、4B)。在第"14"天,嫩莖4個鎂濃度處理NAD-"MDH活性存在顯著差異,而老莖NAD-MDH活性差異相對較小均超過10"000"nmol/(min·g),隨著鎂濃度處理時間延長,NAD-MDH受影響逐漸明顯,先體現(xiàn)在嫩莖后逐漸影響老莖。
2.4.3""蘋果酸酶(NAD-ME)活性""不同鎂濃度處理嫩莖NAD-ME"活性在不同采樣時間內(nèi)均存在顯著性差異。0、0.5、4.0"mmol/L處理的嫩莖NAD-ME活性整體呈先上升后下降的趨勢,而2.0"mmol/L處理的嫩莖NAD-ME活性則表現(xiàn)為降-升-降模式,在第48天,2.0"mmol/L處理的嫩莖NAD-"ME活性達到最高,達(65.87±1.51)nmol/(min·g)(圖5A)。
采樣時間在14、28、48d,不同鎂濃度處理老莖中NAD-ME活性也存在顯著性差異,不同鎂濃度處理下的老莖NAD-ME活性均呈現(xiàn)下降趨勢,其中2.0"mmol/L處理時老莖的NAD-ME活性保持在較高水平,而0.5"mmol/L處理時老莖的NAD-ME活性則相對較低(圖5B)。4個采樣時間的嫩莖和老莖NAD-ME活性均維持較高水平,總體平均達到28.41~65.87"nmol/(min·g)。適中的鎂濃度(2.0"mmol/L)有助于提高嫩莖和老莖中NAD-"ME的活性,從而促進蘋果酸的分解和二氧化碳的生成,有利于光合作用。
2.4.4""景天酸代謝關(guān)鍵酶活相關(guān)性""不同鎂濃度處理對火龍果植株景天酸代謝關(guān)鍵酶活性間相關(guān)性較高,鎂濃度與嫩莖、老莖的PEPC活性均呈顯著正相關(guān);嫩莖和老莖的NAD-MDH活性與鎂濃度均呈顯著負相關(guān),嫩莖的NAD-ME和老莖的NAD-MDH活性呈顯著正相關(guān),而老莖PEPC活性和嫩莖的NAD-ME活性、老莖的NAD-MDH活性均呈顯著負相關(guān)(圖6)。
H為處理;TSMAE為嫩莖蘋果酸酶;TSMAHD為嫩莖蘋果酸脫氫酶;TSPEPC為嫩莖磷酸烯醇式丙酮酸羧化酶;OSMAE為老莖蘋果酸酶;OSMAHD為老莖蘋果酸脫氫酶;OSPEPC為老莖磷酸烯醇式丙酮酸羧化酶;*為顯著相關(guān)。
已有研究表明,鎂缺乏不僅會抑制植株的生長,減少分枝數(shù)和冠幅,而且會顯著降低植株的光合能力[30]。在草莓植株中,鎂缺乏會導(dǎo)致老葉邊緣和葉脈失綠,隨著癥狀的惡化,株高、葉面積、根長和單株重量均減少[31]。黃瓜苗期施用鎂肥能促進生長,花期施用對株高、葉面積和花序數(shù)有顯著影響,而在收獲期施用則能減少次果率[32]。而火龍果植株在鎂濃度為2.0"mmol/L時,生長狀態(tài)良好,長勢明顯優(yōu)于其余處理,缺鎂時火龍果植株莖厚度明顯變薄,出現(xiàn)枝條卷曲等癥狀。同時,生物量是反映植物體有機物積累狀況的主要指標,常被用來評估植物的生長狀況[33]。對苦瓜進行的研究顯示,缺乏或高濃度的鎂都會導(dǎo)致干物質(zhì)顯著降低,這表明鎂對苦瓜的生長有重要影響[34]。本研究中,在缺鎂處理下火龍果植株生物量顯著降低,植株明顯瘦弱,且4.0"mmol/L鎂處理的生物量明顯低于2.0"mmol/L鎂處理。這說明鎂缺乏或鎂濃度過高均會顯著影響火龍果嫩莖長度、寬度、厚度和生物量等各項參數(shù)。
鎂是葉綠素分子中唯一的金屬元素,參與葉綠素和色素的組成,約有10%的鎂結(jié)合在葉綠素a和葉綠體b中[35]。葉綠素作為植物進行光合作用的主要色素,其含量通常與光合作用呈正相關(guān)[36],而缺乏鎂則會導(dǎo)致植物葉綠素含量下降[37]?;瘕埞仓暝?.0"mmol/L鎂處理中,嫩莖和老莖的葉綠素b含量最高,顯著高于缺鎂和高鎂,同時缺鎂時,火龍果嫩莖失綠明顯,表明適當?shù)逆V濃度可以提高火龍果的光合色素含量,從而增強光合速率,促進植株生長,但缺鎂或高鎂會導(dǎo)致光合色素含量降低。
此外,鎂還是許多酶的輔助因子,幾乎所有的激酶和磷酸酶都需要鎂來活化[38]?;瘕埞ㄟ^景天酸代謝(CAM)途徑來同化CO2和H2O生成碳水化合物,在這個過程中,NAD-ME、NAD-MDH發(fā)揮催化作用[39]。PEPC主要催化磷酸烯醇式丙酮酸(PEP)生成OAA和無機磷[40],而NAD-MDH則將OAA氧化成蘋果酸,從而迅速降低OAA的量[41];缺鎂條件下通過增加NAD-MDH合成量來參與蘋果酸的合成是植物為了適應(yīng)環(huán)境壓力和維持代謝平衡,NAD-ME則主要催化蘋果酸生成丙酮酸,促進蘋果酸的降解,成熟蘋果果實中NAD-ME活性的增加能夠減少有機酸的量[42]。本研究發(fā)現(xiàn),不同鎂濃度處理對景天酸代謝相關(guān)酶活性有不同程度的影響?;瘕埞矍o和老莖在2.0"mmol/L鎂濃度下NAD-ME"活性相對較高,在4.0"mmol/L鎂濃度下,嫩莖和老莖的NAD-MDH活性最低?;瘕埞矍o的PEPC活性在缺鎂處理下始終保持最低水平,在2.0"mmol/L鎂濃度下PEPC活性最高。
在水培條件下,不同鎂濃度處理對火龍果植株的生長形態(tài)、生理過程存在明顯的相關(guān)性,即2.0"mmol/L鎂濃度條件下,火龍果植株的生長性狀和光合色素含量明顯提高,顯著高于缺鎂和高鎂,長勢最佳;同時不同鎂濃度處理對火龍果植株景天酸代謝關(guān)鍵酶活性間相關(guān)性較高,嫩莖和老莖的NAD-MDH活性與鎂濃度均呈顯著負相關(guān)?;瘕埞仓暝诓煌V濃度下NAD-ME和PEPC活性均存在顯著差異,且2.0"mmol/L鎂濃度下NAD-ME活性和PEPC活性最高。綜合考慮火龍果的生長特性和景天酸代謝相關(guān)酶的活性,得出火龍果在2.0"mmol/L鎂濃度中生長最佳。
參考文獻
[1]"Meharg"A."Marschner?s"mineral"nutrition"of"higher"plants[J]."Experimental"Agriculture,"2012,"48(2):"305-305.
[2]"Guo"W."Magnesium"homeostasis"mechanisms"and"magnesium"use"efficiency"in"plants[M]//Plant"macronutrient"use"efficiency."New"York:"Academic"Press,"2017:"197-213.
[3]"Kisters"K,"Gr?ber"U."Magnesium"in"health"and"disease[J]."Plant"and"Soil,"2013,"368(1/2):"155-165.
[4]"Cakmak"I,"Yazici"A"M."Magnesium:"a"forgotten"element"in"crop"production[J]."Better"Crops,"2010,"94(2):"23-25.
[5]"Rosanoff"A,"Weaver"C"M,"Rude"R"K."Suboptimal"magnesium"status"in"the"United"States:"are"the"health"consequences"underestimated?[J]."Nutrition"Reviews,"2012,"70(3):"153-164.
[6]"Shaul"O."Magnesium"transport"and"function"in"plants:"the"tip"of"the"iceberg[J]."Biometals,"2002,"15:"307-321.