国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

金絲桃苷通過調(diào)控Wnt3a/β-catenin通路對促進(jìn)皮膚成纖維細(xì)胞增殖和膠原合成的作用研究

2025-01-24 00:00:00范煒李燁
中國美容醫(yī)學(xué) 2025年1期
關(guān)鍵詞:增殖

[摘要]目的:探究金絲桃苷對促進(jìn)燒傷后皮膚成纖維細(xì)胞的增殖和膠原合成的作用及其潛在的調(diào)控機(jī)制。方法:利用高溫刺激皮膚成纖維細(xì)胞,利用金絲桃苷(0、0.5、1.0、1.5、2.0 mg/ml)處理皮膚成纖維細(xì)胞。CCK-8檢測細(xì)胞增殖能力;qRT-PCR COL1A1和COL3A1的表達(dá);檢測Western blot分析Collagen Ⅰ和Collagen Ⅲ的表達(dá);免疫熒光檢測Collagen Ⅰ和α-SMA的表達(dá)。結(jié)果:結(jié)果顯示金絲桃苷可以促進(jìn)高溫刺激的人真皮成纖維細(xì)胞活力。此外,金絲桃苷處理可以提高皮膚成纖維細(xì)胞中的膠原合酶表達(dá)(COL1A1和COL3A1),以及膠原蛋白Collagen Ⅰ和Collagen Ⅲ的表達(dá),進(jìn)而促進(jìn)膠原合成。金絲桃苷可以抑制高溫刺激的人真皮成纖維細(xì)胞中的Wnt3a/β-catenin通路活性。Wnt3a/β-catenin通路抑制劑ICG-001處理可以逆轉(zhuǎn)高溫刺激對成纖維細(xì)胞活力、膠原合成的抑制作用。結(jié)論:金絲桃苷通過抑制Wnt3a/β-catenin通路促進(jìn)燒傷后皮膚成纖維細(xì)胞的增殖和膠原合成。

[關(guān)鍵詞]金絲桃苷;Wnt3a/β-catenin通路;皮膚成纖維細(xì)胞;增殖;膠原合成

[中圖分類號]R285.5" " [文獻(xiàn)標(biāo)志碼]A" " [文章編號]1008-6455(2025)01-0015-05

Hypericin Promotes Proliferation and Collagen Synthesis of Skin Fibroblasts by Regulating the Wnt3a/β-catenin Pathway

FAN Wei1, LI Ye2

( 1.Hospital Office, 2.Department of Burn and Plastic, Baoding Fifth Hospital, Baoding 071000, Hebei,China )

Abstract: Objective" To explore the effect of hypericin on proliferation and collagen synthesis of skin fibroblasts after burn and its potential regulatory mechanism. Methods" Skin fibroblasts were stimulated by high temperature and treated with hypericin (0, 0.5, 1.0, 1.5, 2.0 mg/ml). CCK-8 was used to detect cell proliferation. The expression of COL1A1 and COL3A1 by qRT-PCR; The expressions of Collagen Ⅰ and Ⅲ were analyzed by Western blot. Collagen Ⅰ and α-SMA expressions were detected by immunofluorescence. Results" In this study, our results show that hypericin can promote the activity of human dermal fibroblasts stimulated by high temperature. In addition, hypericin treatment could enhance the expression of collagen synthase (COL1A1 and COL3A1) and Collagen Ⅰ and Ⅲ in skin fibroblasts, thus promoting collagen synthesis. Hypericin inhibits the Wnt3a/β-catenin pathway activity in heat-stimulated human dermal fibroblasts. Treatment with Wnt3a/β-catenin pathway inhibitor ICG-001 reversed the inhibitory effect of high temperature stimulation on fibroblast viability and collagen synthesis. Conclusion" In conclusion, hypericin promotes proliferation and collagen synthesis of skin fibroblasts after burn by inhibiting the Wnt3a/β-catenin pathway.

Key words: Hypericin; Wnt3a/β-catenin pathway; skin fibroblasts; proliferation; collagen synthesis

燒傷已成為最常見的創(chuàng)傷形式之一,會導(dǎo)致新陳代謝和水分流失增加,并擾亂免疫系統(tǒng)[1]。研究發(fā)現(xiàn)許多類型的細(xì)胞參與皮膚傷口愈合的細(xì)胞主要包括各種炎性細(xì)胞(中性粒細(xì)胞、巨噬細(xì)胞和肥大細(xì)胞)和組織修復(fù)細(xì)胞(血管內(nèi)皮細(xì)胞、表皮細(xì)胞和成纖維細(xì)胞)。其中,真皮成纖維細(xì)胞在分泌各種細(xì)胞因子方面發(fā)揮著重要作用,有助于促進(jìn)增殖、遷移和細(xì)胞外基質(zhì)的產(chǎn)生[2-3]。研究表明,真皮成纖維細(xì)胞在燒傷后的恢復(fù)過程中,細(xì)胞增殖、遷移和趨化性顯著增加[4]。因此,有必要探索影響燒傷后真皮成纖維細(xì)胞行為的新的分子靶點,這可以有效避免瘢痕的形成。

目前,許多研究表明,植物化學(xué)物質(zhì)可以通過靶向?qū)φ{(diào)節(jié)成纖維細(xì)胞至關(guān)重要的細(xì)胞途徑并減少炎癥因子來減緩甚至防止與皮膚損傷相關(guān)疾病的惡化[5-7]。金絲桃苷(Hyperin),又名槲皮素-3-O-β-D-吡喃半乳糖苷,是多種草藥中的一種黃酮醇糖苷,如山楂、貝母和穿心蓮[8],具有抗炎、保肝、抗氧化等作用[9-10]。據(jù)報道,魚腥草中富含金絲桃苷的部分通過減弱人真皮成纖維細(xì)胞中JNK/ERK/c-Jun的激活來調(diào)節(jié)MAPK信號通路,從而抑制UVB照射的皮膚衰老[11]。因此,金絲桃苷可以用作治療發(fā)炎皮膚問題的藥物。

Wnt/β-catenin信號傳導(dǎo)整合了包括TGF-β和FGF在內(nèi)的多種信號通路的信號,以介導(dǎo)包括細(xì)胞增殖和分化在內(nèi)的多種細(xì)胞活動[12-13]。據(jù)報道,Wnt/β-catenin信號傳導(dǎo)參與調(diào)節(jié)皮膚疾病[14-15]。如Icaritin通過調(diào)節(jié)AMPK和Wnt/β-catenin信號傳導(dǎo)抑制皮膚纖維化[16]。因此,本研究探討了金絲桃苷和Wnt/β-catenin信號通路在燒傷后皮膚成纖維細(xì)胞中的關(guān)系,并探討了它們可能的生物學(xué)功能和分子機(jī)制。

1" 材料和方法

1.1 實驗材料及試劑:金絲桃苷(Hyperin,純度>98%)購于默克生命科學(xué)(中國),1%胎牛血清(Sigma-Aldrich,美國),1%青霉素/鏈霉素(Sigma-Aldrich美國),磷酸鹽緩沖液(PBS)購自默克生命科學(xué)(中國),Wnt3a/β-catenin通路抑制劑(ICG-001)購自默克生命科學(xué)(中國),兔抗CollagenⅠ(Thermo Fisher Scientific,美國),兔抗Collagen Ⅲ(Thermo Fisher Scientific,美國)、兔抗Wnt3a(Thermo Fisher Scientific,美國),兔抗β-catenin(Thermo Fisher Scientific,美國)、兔抗β-actin(Thermo Fisher Scientific,美國),山羊抗兔IgG(Thermo Fisher Scientific,美國),Trizol試劑(Sigma-Aldrich,美國),PrimeScript RT Reagent Kit(Takara,日本),SYBR Green PCR Kit(Takara,日本),alexa fluor? 488偶聯(lián)抗體(Invitrogen,美國),DAPI(Sigma-Aldrich,美國),Collagen Ⅰ抗體(Thermo Fisher Scientific,美國),a-SMA抗體(Thermo Fisher Scientific,美國),Triton X-100(Thermo Fisher Scientific,美國)。數(shù)字溫度計(Testo 735-1,Testo GmbH amp; Co,Lanzkirch,德國)。

1.2 細(xì)胞培養(yǎng):從長沙艾碧維生物科技有限公司購買人皮膚成纖維細(xì)胞HSF。將細(xì)胞培養(yǎng)補(bǔ)充10%胎牛血清和1%青霉素/鏈霉素的DMEM培養(yǎng)基中,在37℃和5%CO2的條件下培養(yǎng),培養(yǎng)3~4代后用于后續(xù)實驗。

1.3 皮膚成纖維細(xì)胞處理:對皮膚成纖維細(xì)胞進(jìn)行了熱療。將培養(yǎng)板放置在加熱水浴循環(huán)器中70 min,以保證所需溫度(42℃)的高溫治療60 min。加熱水浴循環(huán)器的溫度由數(shù)字溫度計控制,細(xì)胞在37℃孵育48 h恢復(fù)。

1.4 細(xì)胞活力測定:為了評估細(xì)胞活力,將5×103/孔密度的HSF細(xì)胞接種于96孔板中。細(xì)胞活力測定采用10μl CCK-8試劑,培養(yǎng)1 h,然后在450 nm 處用微孔板讀取器(SpectraMax M5e,USA)測定光密度。Hyperin(0、0.5、1.0、1.5、2.0 mg/ml)處理HSF細(xì)胞24、48、72 h,對照組只加2.0 mg/ml PBS。3μM PBS(對照組)或3μM ICG-001 處理HSF細(xì)胞,處理時間為0、24、48、72、96 h。

1.5 Western blot檢測:蛋白質(zhì)提取以及Western Blot檢驗的相關(guān)步驟參考前述文章的步驟進(jìn)行[17]。一抗主要有兔抗Collagen Ⅰ、Collagen Ⅲ、Wnt3a、β-catenin、β-actin(1∶1 000)。二抗山羊抗兔IgG(1∶2 000)。

1.6 qRT-PCR:通過Trizol法進(jìn)行總RNA提取,PrimeScript RT Reagent Kit用于cDNA合成,隨后,使用SYBR Green PCR Kit進(jìn)行qRT-PCR分析檢測基因表達(dá),β-actin分別作為檢測目的基因表達(dá)量的內(nèi)參。使用2-ΔΔCt法計算目的基因的相對表達(dá)量(引物參考表1)。

1.7 免疫熒光染色:在PBS中預(yù)孵育細(xì)胞,并在室溫下用4%甲醛固定30 min,用PBS中的0.1%Triton X-100使其透化,然后用5%BSA封閉。將細(xì)胞與一抗Collagen Ⅰ或a-SMA在4℃下孵育過夜。用PBS洗滌后,在1%BSA中加入alexa fluor? 488 偶聯(lián)抗體,然后在室溫下避光孵育1 h。用DAPI對細(xì)胞核進(jìn)行復(fù)染。

1.8 統(tǒng)計學(xué)分析:所有定量實驗均做三次重復(fù),數(shù)據(jù)以平均值±標(biāo)準(zhǔn)差表示,并通過GraphPad Prism 6軟件(GraphPad Software,美國)軟件進(jìn)行統(tǒng)計分析。通過t檢驗或單因素方差分析進(jìn)行組間差異比較,P<0.05表示具有統(tǒng)計學(xué)意義。

2" 結(jié)果

2.1 金絲桃苷對皮膚成纖維細(xì)胞功能和表型的影響:與對照組相比,金絲桃苷以劑量依賴性促進(jìn)高溫處理后皮膚成纖維細(xì)胞的細(xì)胞活力(見圖1A)。后續(xù)使用1.5 mg/ml的金絲桃苷處理高溫刺激的皮膚成纖維細(xì)胞。金絲桃苷處理的皮膚成纖維細(xì)胞中的膠原合酶表達(dá)(COL1A1和COL3A1)與對照細(xì)胞相比顯著提高(見圖1B)。相應(yīng)的,與對照細(xì)胞相比,金絲桃苷處理的皮膚成纖維細(xì)胞中的CollagenⅠ和Collagen Ⅲ蛋白表達(dá)顯著提高(見圖1C)。此外,免疫熒光染色顯示,與對照細(xì)胞相比,金絲桃苷處理的皮膚成纖維細(xì)胞中Collagen Ⅰ的細(xì)胞內(nèi)染色顯著提高(見圖1D)。此外,金絲桃苷處理的皮膚成纖維細(xì)胞中表現(xiàn)出肌成纖維細(xì)胞特征的能力提高,與對照細(xì)胞相比,a-SMA表達(dá)顯著提高(見圖1E)??傊?,這些數(shù)據(jù)表明,金絲桃苷可以提高皮膚成纖維細(xì)胞增殖、膠原合成和肌成纖維細(xì)胞分化能力。

2.2 金絲桃苷抑制Wnt3a/β-catenin通路:為了進(jìn)一步探究金絲桃苷在皮膚成纖維細(xì)胞的功能和表型改變方面作用的分子機(jī)制。結(jié)果顯示,金絲桃苷處理可以降低皮膚成纖維細(xì)胞中Wnt3a和β-catenin的表達(dá)(見圖2)。綜上,這些結(jié)果表明金絲桃苷抑制Wnt3a/β-catenin通路的活性。

2.3 抑制Wnt3a/β-catenin通路促進(jìn)皮膚成纖維細(xì)胞的增殖和膠原合成:為進(jìn)一步探究金絲桃苷是否通過調(diào)節(jié)Wnt3a/β-catenin通路促進(jìn)皮膚成纖維細(xì)胞的增殖和膠原合成。使用Wnt3a/β-catenin通路抑制劑(ICG-001)探究在皮膚成纖維細(xì)胞的功能和表型改變方面的作用。結(jié)果顯示,與對照組相比,ICG-001處理以劑量依賴性抑制皮膚成纖維細(xì)胞的細(xì)胞活力(見圖3A)。qRT-PCR結(jié)果表明,與對照細(xì)胞相比,ICG-001處理的皮膚成纖維細(xì)胞中的膠原合酶表達(dá)(COL1A1和COL3A1)顯著提高(見圖3B)。相應(yīng)的,Western blot數(shù)據(jù)顯示,與對照細(xì)胞相比,ICG-001處理的皮膚成纖維細(xì)胞中的Collagen Ⅰ和Collagen Ⅲ蛋白表達(dá)顯著提高(見圖3C)。此外,與對照細(xì)胞相比,ICG-001處理的皮膚成纖維細(xì)胞中Collagen Ⅰ的細(xì)胞內(nèi)染色顯著提高(見圖3D)。此外,ICG-001處理的皮膚成纖維細(xì)胞中表現(xiàn)出肌成纖維細(xì)胞特征的能力下降,與對照組細(xì)胞相比,a-SMA表達(dá)顯著提高(見圖3E)??傊?,這些數(shù)據(jù)表明,金絲桃苷可能通過抑制Wnt3a/β-catenin通路提高皮膚成纖維細(xì)胞增殖、膠原合成和肌成纖維細(xì)胞分化能力。

3" 討論

皮膚是人體最大的器官,其功能是保護(hù)內(nèi)臟器官免受周圍環(huán)境的影響,如燒傷、感染、損傷、脫水和電解質(zhì)。燒傷已成為最常見的皮膚創(chuàng)傷形式之一,嚴(yán)重?zé)齻匀粫颊弋a(chǎn)生嚴(yán)重影響,例如影響皮膚的外觀和功能,從而導(dǎo)致患者的心理健康。燒傷后傷口愈合是一個復(fù)雜的過程,有許多潛在的因素可以延遲愈合,如瘢痕、局部攣縮和功能障礙。角質(zhì)形成細(xì)胞-成纖維細(xì)胞的相互作用通過各種細(xì)胞因子和生長因子的分泌發(fā)生,這對損傷后皮膚修復(fù)至關(guān)重要[18-20]。近年來,越來越多的證據(jù)表明,miRNA的異常表達(dá)與皮膚病在內(nèi)的其他人類疾病有關(guān)[21-22]。高溫刺激后,MiR-200家族、MiR-199家族和MiR-19/-20家族在皮膚成纖維細(xì)胞中異常表達(dá)[23]。同樣,本研究結(jié)果表明,miR-506-3p在燒傷皮膚組織和熱刺激的真皮成纖維細(xì)胞中顯著下調(diào)。環(huán)境刺激破壞了成纖維細(xì)胞的正常行為,如異常的代謝和增殖/更新率以及過量的細(xì)胞外基質(zhì)分泌[24-25],這可能導(dǎo)致愈合后瘢痕的形成。

真皮成纖維細(xì)胞是維持皮膚結(jié)構(gòu)和完整性的主要間充質(zhì)細(xì)胞。它們產(chǎn)生細(xì)胞外基質(zhì)(ECM),促進(jìn)傷口收縮和I型膠原蛋白的合成,從而表現(xiàn)出可塑性。這些特征使它們成為基于細(xì)胞的傷口愈合療法的一個有前途的候選人。此外,成纖維細(xì)胞產(chǎn)生蛋白質(zhì)降解酶和各種生長因子,包括血管內(nèi)皮生長因子(VEGF)、肝細(xì)胞生長因子(HGF)、堿性成纖維細(xì)胞生長因子(bFGF)和調(diào)節(jié)皮膚傷口愈合的轉(zhuǎn)化生長因子-β1(TGF-β1)[26-28]。這些生長因子反過來誘導(dǎo)角化細(xì)胞和成纖維細(xì)胞增殖,導(dǎo)致肉芽組織內(nèi)新的毛細(xì)血管形成,并調(diào)節(jié)ECM的沉積和受損區(qū)域的重建[29-32]。局部應(yīng)用生長因子可有效促進(jìn)正常小鼠全層真皮傷口的愈合[33-34]。本研究的結(jié)果表明金絲桃苷以劑量依賴性提高高溫處理后皮膚成纖維細(xì)胞的細(xì)胞活力。此外,金絲桃苷處理可以提高皮膚成纖維細(xì)胞中的膠原合酶表達(dá)(COL1A1和COL3A1),相應(yīng)的,金絲桃苷處理的皮膚成纖維細(xì)胞中的Collagen Ⅰ和Collagen Ⅲ蛋白表達(dá)顯著提高。先前研究報道金絲桃苷具有抗炎、保肝、抗氧化等作用[35-36]。此外,金絲桃苷被報道可以用作治療發(fā)炎皮膚問題的藥物。如從Eriobotrya deflexa葉中分離的化合物金絲桃苷對紫外線B誘導(dǎo)的人成纖維細(xì)胞光老化的保護(hù)作用[37]。金絲桃苷可以恢復(fù)DNA損傷并防止UVB誘導(dǎo)的人真皮成纖維細(xì)胞衰老[38]。

Wnt/β-catenin通路的激活通常是纖維化疾病的一個普遍特征。來自患有纖維化疾病(如系統(tǒng)性硬化癥、特發(fā)性肺纖維化和肝硬化)的人類組織樣品顯示W(wǎng)nt蛋白的表達(dá)增強(qiáng),Wnt/β-catenin信號傳導(dǎo)的分泌拮抗劑Dickkopf-1的表達(dá)降低[39]。在硬皮病患者和硬皮病動物模型中也觀察到β-catenin在真皮成纖維細(xì)胞中的核積累,包括博來霉素誘導(dǎo)的皮膚纖維化和人類纖維化疾病硬皮病的小鼠模型[39-40]。一項研究報道脂肪間充質(zhì)干細(xì)胞來源的外泌體通過皮膚成纖維細(xì)胞中的Wnt/β-catenin信號通路促進(jìn)傷口愈合[41]。本研究結(jié)果顯示金絲桃苷處理可以抑制真皮成纖維細(xì)胞中Wnt/β-catenin通路的活性。葡萄糖酸鈣通過Wnt/β-catenin途徑減輕氫氟酸對人真皮成纖維細(xì)胞的毒性作用[42]。本研究目前的結(jié)果表明Wnt/β-catenin通路抑制劑ICG-001處理可以提高高溫處理后的皮膚成纖維細(xì)胞增殖、膠原合成和肌成纖維細(xì)胞分化能力。

綜上,本研究發(fā)現(xiàn)金絲桃苷在皮膚成纖維細(xì)胞增殖和膠原合成的功能機(jī)制。此外,本研究還發(fā)現(xiàn)金絲桃苷對皮膚成纖維細(xì)胞增殖和膠原合成的促進(jìn)作用可能是通過抑制Wnt4a/β-catenin 通路所致,金絲桃苷可能可以作為皮膚燒傷治療的有效藥物。

[參考文獻(xiàn)]

[1]Patil N K, Bohannon J K, Luan L, et al. Flt3 ligand treatment attenuates T Cell dysfunction and improves survival in a murine model of burn wound sepsis[J]. Shock, 2017,47(1):40-51.

[2]Matsuura Y, Noda K, Suzuki S, et al. Glucocorticoids suppress fibroblast apoptosis in an in vitro thermal injury model[J]. Burns, 2019,45(1):173-179.

[3]Chigurupati S, Mughal M R, Okun E, et al. Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing[J]. Biomaterials, 2013,34(9):2194-2201.

[4]Jiang B, Li Y, Liang P, et al. Nucleolin enhances the proliferation and migration of heat-denatured human dermal fibroblasts[J]. Wound Repair Regen, 2015,23(6):807-818.

[5]Moon J, Lee S Y, Choi J W, et al. Metformin ameliorates scleroderma via inhibiting Th17 cells and reducing mTOR-STAT3 signaling in skin fibroblasts[J]. J Transl Med, 2021,19(1):192.

[6]Si L, Zhang M, Guan E, et al. Resveratrol inhibits proliferation and promotes apoptosis of keloid fibroblasts by targeting HIF-1alpha[J]. J Plast Surg Hand Surg, 2020,54(5):290-296.

[7]Yan Y, Furumura M, Gouya T, et al. Shikonin promotes skin cell proliferation and inhibits nuclear factor-kappaB translocation via proteasome inhibition in vitro[J]. Chin Med J (Engl), 2015,128(16):2228-2233.

[8]Yang J, Qian D, Guo J, et al. Identification of the major metabolites of hyperoside produced by the human intestinal bacteria using the ultra performance liquid chromatography/quadrupole-time-of-flight mass spectrometry[J]. J Ethnopharmacol, 2013,147(1):174-179.

[9]Liu J, Zhang Y, Sheng H, et al. Hyperoside suppresses renal inflammation by regulating macrophage polarization in mice with type 2 diabetes mellitus[J]. Front Immunol, 2021,12:733808.

[10]Wang S, Sheng F, Zou L, et al. Hyperoside attenuates non-alcoholic fatty liver disease in rats via cholesterol metabolism and bile acid metabolism[J]. J Adv Res, 2021,34:109-122.

[11]Mapoung S, Umsumarng S, Semmarath W, et al. Photoprotective effects of a hyperoside-enriched fraction prepared from houttuynia cordata thunb. on ultraviolet b-induced skin aging in human fibroblasts through the MAPK signaling pathway[J]. Plants (Basel), 2021,10(12):2628.

[12]Xu S, Gotlieb A I. Wnt3a/beta-catenin increases proliferation in heart valve interstitial cells[J]. Cardiovasc Pathol, 2013,22(2):156-166.

[13]Yang W, Zhao Q, Yao M, et al. The transformation of atrial fibroblasts into myofibroblasts is promoted by trimethylamine N-oxide via the Wnt3a/beta-catenin signaling pathway[J]. J Thorac Dis, 2022,14(5):1526-36.

[14]Liu J Q, Pan Q, Wang Y C, et al. [Effects of Wnt/beta-catenin signaling on the phenotype change of human dermal fibroblasts and its mechanism][J]. Zhonghua Shaoshang Zazhi, 2012,28(4):282-287.

[15]Liu J, Liu T. [Role of Wnt 2, Wnt 3a and beta-catenin in skin lesions of patients with scleroderma][J]. Nanfang Yike Daxue Xuebao, 2012,32(12):1781-1786.

[16]Li M, Liu Q, He S, et al. Icaritin inhibits skin fibrosis through regulating AMPK and Wnt/beta-catenin signaling[J]. Cell Biochem Biophys, 2021,79(2):231-238.

[17]Yang M, Yang Z, Pan X, et al. miR-506-3p regulates TGF- 1 and affects dermal fibroblast proliferation, migration and collagen formation after thermal injury[J]. Tissue Cell, 2021,72:101548.

[18]Lateef Z, Stuart G, Jones N, et al. The cutaneous inflammatory response to thermal burn injury in a murine model[J]. Int J Mol Sci, 2019;20(3):538.

[19]Seo G Y, Lim Y, Koh D, et al. TMF and glycitin act synergistically on keratinocytes and fibroblasts to promote wound healing and anti-scarring activity[J]. Exp Mol Med, 2017,49(3):e302.

[20]Ter Horst B, Chouhan G, Moiemen NS, et al. Advances in keratinocyte delivery in burn wound care[J]. Adv Drug Deliv Rev, 2018,123:18-32.

[21]Li D, Landen N X. MicroRNAs in skin wound healing[J]. Eur J Dermatol, 2017,27(S1):12-14.

[22]Kan C W, Howell V M, Hahn M A, et al. Genomic alterations as mediators of miRNA dysregulation in ovarian cancer[J]. Genes Chromosomes Cancer, 2015,54(1):1-19.

[23]Wilmink G J, Roth C L, Ibey B L, et al. Identification of microRNAs associated with hyperthermia-induced cellular stress response[J]. Cell Stress Chaperones, 2010,15(6):1027-38.

[24]Li D, Li X I, Wang A, et al. MicroRNA-31 promotes skin wound healing by enhancing keratinocyte proliferation and migration[J]. J Invest Dermatol, 2015,135(6):1676-1685.

[25]Liu F W, Liu F C, Wang Y R, et al. Aloin protects skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system[J]. PLoS One, 2015,10(12):e0143528.

[26]Kendall R T, Feghali-Bostwick C A. Fibroblasts in fibrosis: novel roles and mediators[J]. Front Pharmacol, 2014,5:123.

[27]Kern A, Liu K, Mansbridge J. Modification of fibroblast gamma-interferon responses by extracellular matrix[J]. J Invest Dermatol, 2001,117(1):112-118.

[28]Thangapazham RL, Darling T N, Meyerle J. Alteration of skin properties with autologous dermal fibroblasts[J]. Int J Mol Sci, 2014,15(5):8407-8427.

[29]Plichta J K, Radek K A. Sugar-coating wound repair: a review of FGF-10 and dermatan sulfate in wound healing and their potential application in burn wounds[J]. J Burn Care Res, 2012,33(3):299-310.

[30]Wang L, Wu X, Shi T, et al. Epidermal growth factor (EGF)-induced corneal epithelial wound healing through nuclear factor kappaB subtype-regulated CCCTC binding factor (CTCF) activation[J]. J Biol Chem, 2013,288(34):24363-24371.

[31]Rolfe K J, Richardson J, Vigor C, et al. A role for TGF-beta1-induced cellular responses during wound healing of the non-scarring early human fetus[J]? J Invest Dermatol, 2007,127(11):2656-2667.

[32]Steed D L. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity ulcers[J]. Plast Reconstr Surg, 2006,117(7 Suppl):143S-151S.

[33]Kim Y S, Lew D H, Tark K C, et al. Effect of recombinant human epidermal growth factor against cutaneous scar formation in murine full-thickness wound healing[J]. J Korean Med Sci, 2010,25(4):589-596.

[34]Wang X J, Han G, Owens P, et al. Role of TGF beta-mediated inflammation in cutaneous wound healing[J]. J Investig Dermatol Symp Proc, 2006,11(1):112-117.

[35]Chunzhi G, Zunfeng L, Chengwei Q, et al. Hyperin protects against LPS-induced acute kidney injury by inhibiting TLR4 and NLRP3 signaling pathways[J]. Oncotarget, 2016,7(50):82602-82608.

[36]Chao C S, Tsai C S, Chang Y P, et al. Hyperin inhibits nuclear factor kappa B and activates nuclear factor E2-related factor-2 signaling pathways in cisplatin-induced acute kidney injury in mice[J]. Int Immunopharmacol, 2016,40:517-523.

[37]Huang C Y, Lin Y T, Kuo H C, et al. Compounds isolated from Eriobotrya deflexa leaves protect against ultraviolet radiation B-induced photoaging in human fibroblasts[J]. J Photochem Photobiol B, 2017,175:244-253.

[38]Kurt-Celep I, Celep E, Akyuz S, et al. Hypericum olympicum L. recovers DNA damage and prevents MMP-9 activation induced by UVB in human dermal fibroblasts[J]. J Ethnopharmacol, 2020,246:112202.

[39]Akhmetshina A, Palumbo K, Dees C, et al. Activation of canonical Wnt signalling is required for TGF-beta-mediated fibrosis[J]. Nat Commun, 2012,3:735.

[40]Beyer C, Schramm A, Akhmetshina A, et al. beta-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis[J]. Ann Rheum Dis, 2012,71(5):761-767.

[41]Li C, An Y, Sun Y, et al. Adipose mesenchymal stem cell-derived exosomes promote wound healing through the WNT/beta-catenin signaling pathway in dermal fibroblasts[J]. Stem Cell Rev Rep, 2022,18(6):2059-2073.

[42]Peng J, Liu R, Peng L, et al. Calcium gluconate alleviates the toxic effect of hydrofluoric acid on human dermal fibroblasts through the Wnt/β-catenin pathway[J]. Oncol Lett, 2018,16(3):2921-2928.

[收稿日期]2023-06-13

本文引用格式:范煒,李燁.金絲桃苷通過調(diào)控Wnt3a/β-catenin通路對促進(jìn)皮膚成纖維細(xì)胞增殖和膠原合成的作用研究[J].中國美容醫(yī)學(xué),2025,34(1):15-19.

猜你喜歡
增殖
普伐他汀對人胰腺癌細(xì)胞SW1990的影響及其聯(lián)合順鉑的抗瘤作用
知母的植物組織培養(yǎng)
香水百合組織培養(yǎng)和快速繁殖條件的優(yōu)化
香水百合組織培養(yǎng)和快速繁殖條件的優(yōu)化
勿忘我組培快繁技術(shù)的優(yōu)化
勿忘我組培快繁技術(shù)的優(yōu)化
‘金凱特’杏的組織培養(yǎng)與快繁
普伐他汀對人胰腺癌細(xì)胞SW1990的影響及其協(xié)同吉西他濱的抑瘤作用
細(xì)胞自噬與人卵巢癌細(xì)胞對順鉑耐藥的關(guān)系
雷帕霉素對K562細(xì)胞增殖和凋亡作用的影響
科技視界(2016年5期)2016-02-22 19:03:28
镇沅| 莆田市| 翼城县| 黄浦区| 彭泽县| 界首市| 岫岩| 蓝田县| 威海市| 柳河县| 元氏县| 三原县| 杭州市| 平凉市| 湖口县| 蓬溪县| 通化县| 阳谷县| 云阳县| 南涧| 连云港市| 高州市| 庄浪县| 吴忠市| 特克斯县| 涡阳县| 砀山县| 无锡市| 陈巴尔虎旗| 永安市| 开原市| 合肥市| 锦州市| 桐城市| 疏勒县| 渝中区| 新野县| 牟定县| 平遥县| 鱼台县| 哈巴河县|