[摘要]成纖維細(xì)胞生長(zhǎng)因子(Fibroblast growth factor,F(xiàn)GF)是一類(lèi)具有多種生物活性的多肽類(lèi)生長(zhǎng)因子,在哺乳動(dòng)物的基因組中包含成纖維細(xì)胞生長(zhǎng)因子家族的23個(gè)成員,成纖維細(xì)胞生長(zhǎng)因子可以通過(guò)結(jié)合多種FGF受體(Fibroblast growth factor receptor,F(xiàn)GFR1-4)發(fā)出信號(hào),通過(guò)旁分泌或自分泌的方式調(diào)節(jié)機(jī)體生理活動(dòng),進(jìn)而發(fā)揮廣泛的生物學(xué)功能,在機(jī)體的生長(zhǎng)發(fā)育和組織修復(fù)中具有重要作用。皮膚中的成纖維細(xì)胞生長(zhǎng)因子是皮膚細(xì)胞遷移、增殖和分化的主要調(diào)節(jié)因子。本文通過(guò)對(duì)FGF1、FGF2、FGF4、FGF5、FGF7、FGF10、FGF19、FGF21、FGF22等多種FGF與皮膚角質(zhì)形成細(xì)胞和成纖維細(xì)胞的相互作用進(jìn)行闡述,包括細(xì)胞的增殖、遷移、分化,黑色素的合成以及皮膚的氧化應(yīng)激等,顯示出成纖維細(xì)胞生長(zhǎng)因子在皮膚中具有調(diào)控細(xì)胞遷移、增殖、分化以及抗炎抗氧化等重要作用,為FGF應(yīng)用于皮膚病理生理提供了基礎(chǔ)思路和有效整合,為后續(xù)的研究發(fā)展及藥物的臨床應(yīng)用奠定了理論基礎(chǔ),為維護(hù)皮膚生理健康、促進(jìn)傷口修復(fù)帶來(lái)新的研究思路。
[關(guān)鍵詞]成纖維細(xì)胞生長(zhǎng)因子;皮膚;皮膚生理;角質(zhì)形成細(xì)胞;成纖維細(xì)胞
[中圖分類(lèi)號(hào)]R322.99" " [文獻(xiàn)標(biāo)志碼]A" " [文章編號(hào)]1008-6455(2025)01-0180-05
The Role of Fibroblast Growth Factor in the Growth and Development of Skin Cells
ZHANG Kaini1,2, XU Nuo1, GAO Shuang3, XU Ke3, YE Jiabin1, ZHAO Wengang2
( 1.College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, China; 2.Institute of Life Sciences amp; Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou 325035, Zhejiang, China; 3.School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China )
Abstract: Fibroblast growth factor (FGF) is a class of polypeptide growth factors with multiple biological activities. The mammalian genome contains 23 members of the fibroblast growth factor family. Fibroblast growth factors can signal by binding to a variety of FGF receptors (Fibroblast growth factor Receptor, FGFR1-4). It regulates the physiological activities of the body through paracrine or autocrine, and then plays a wide range of biological functions, and plays an important role in the growth and development of the body and tissue repair. Fibroblast growth factor in skin is the main regulator of skin cell migration, proliferation and differentiation. This article elaborates on the interactions between various FGFs such as FGF1, FGF2, FGF4, FGF5, FGF7, FGF10, FGF19, FGF21, FGF22, and skin keratinocytes and fibroblasts, including cell proliferation, migration, differentiation, melanin synthesis, and skin oxidative stress. It demonstrates that fibroblast growth factor plays an important role in regulating cell migration, proliferation, differentiation, anti-inflammatory and antioxidant effects in the skin, This provides a basic idea and effective integration for the application of FGF in skin pathophysiology, lays a theoretical foundation for subsequent research and clinical application of drugs, and brings new research ideas for maintaining skin physiological health and promoting wound repair.
Key words: fibroblast growth factor; skin; skin physiology; keratinocytes; fibroblasts
皮膚是由表皮、真皮和皮下組織構(gòu)成的多層結(jié)構(gòu)器官,由于他們來(lái)源不同,因此在皮膚的生長(zhǎng)過(guò)程中有著不同的發(fā)育模式。成纖維細(xì)胞生長(zhǎng)因子(FGF)作為一種具有廣泛生物學(xué)活性的肽類(lèi)物質(zhì),包括23個(gè)家族成員,能夠參與多種信號(hào)分子活動(dòng),具有廣泛的生物學(xué)功能,在皮膚的生長(zhǎng)發(fā)育中發(fā)揮重要作用。FGF家族成員雖然結(jié)構(gòu)相似,但由于其作用模式和分泌機(jī)制不同,導(dǎo)致其在調(diào)節(jié)皮膚細(xì)胞的誘導(dǎo)、分化和遷移等生理活動(dòng)中發(fā)揮著不同的作用,本文將對(duì)FGF在皮膚細(xì)胞生長(zhǎng)發(fā)育中發(fā)揮的作用進(jìn)行綜述,包括在皮膚細(xì)胞增殖,皮膚細(xì)胞遷移,皮膚細(xì)胞分化,黑色素生成以及氧化應(yīng)激中的作用。
1" FGF與皮膚細(xì)胞增殖
FGF通過(guò)與高親和力受體結(jié)合,促使胞內(nèi)受體的C端酪氨酸殘基磷酸化,并與一系列靶蛋白發(fā)生作用,引發(fā)信號(hào)級(jí)聯(lián)反應(yīng)[1-2]。通過(guò)激活磷脂酶Cγ(Phospholipase Cγ,PLCγ)、p38和JNK激酶(c-Jun N-terminal kinase,JNK),以及信號(hào)轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄激活因子(signal transducerand activator of transcription,STAT)STAT 1、STAT3和STAT5中的磷脂酶3-激酶(Phosphatidylinositol-3-kinase,PI3K)/蛋白激酶B(protein kinase B,Akt/Rac)途徑、Ras-Erk1/2信號(hào)通路來(lái)發(fā)揮其生物學(xué)功能[3]。有研究證實(shí),在G0/G1期增殖停滯的成纖維細(xì)胞必須暴露于具有增殖能力活性的生長(zhǎng)因子中,才能合成DNA并進(jìn)行增殖[4]。
FGF1是一種較強(qiáng)的細(xì)胞分裂促進(jìn)因子,其與受體結(jié)合后跨膜轉(zhuǎn)位到細(xì)胞核內(nèi),刺激DNA的合成,促進(jìn)細(xì)胞的分裂和增殖[5-6]。FGF1可參與受體內(nèi)化的過(guò)程,進(jìn)一步激活ERK1/2的活性。FGF1與FGFR結(jié)合后,F(xiàn)GFR激活受體底物-2(FGF receptor substrate,F(xiàn)RS-2),銜接蛋白(Src homolog and collagen homolog,Shc)和FRS2結(jié)合調(diào)節(jié)蛋白(Growth factor receptor-bound protein 2,Grb2),隨后通過(guò)其SH3功能域(Src homology domain,SH3)結(jié)合編碼鳥(niǎo)苷釋放蛋白的基因SOS的產(chǎn)物(Son of sevenless,SOS),磷酸化后的FRS-2與Grb2/SOS形成復(fù)合物而活化[7-8],進(jìn)而刺激成纖維細(xì)胞的生長(zhǎng),加速核蛋白體基因的轉(zhuǎn)錄,促進(jìn)角質(zhì)形成細(xì)胞分裂增殖。
FGF2是成纖維細(xì)胞和內(nèi)皮細(xì)胞的趨化、有絲分裂和促血管生成因子,廣泛分布在人體組織中,主要結(jié)合在基底膜上?;罨木奘杉?xì)胞,受損的內(nèi)皮細(xì)胞、內(nèi)皮下基底膜酶解均可釋放FGF2,其含量在受損時(shí)升高[9]。FGF2與細(xì)胞膜上相應(yīng)的受體結(jié)合后,可定位于細(xì)胞核,通過(guò)影響聚合酶,加強(qiáng)蛋白質(zhì)基因的轉(zhuǎn)錄,以加速細(xì)胞由G0~G1,G1~S期的轉(zhuǎn)換,促進(jìn)細(xì)胞分裂與增殖[10-11]。在表皮角質(zhì)形成細(xì)胞表達(dá)的FGF2通過(guò)旁分泌作用對(duì)間充質(zhì)細(xì)胞發(fā)揮促有絲分裂作用[12],并通過(guò)激活FGF受體觸發(fā)涉及磷酸肌醇3-激酶(PI3K)/蛋白激酶B(Akt)和絲裂原活化蛋白激酶(Mitogen-activated protein kinase,MAPK)/細(xì)胞外信號(hào)調(diào)節(jié)激酶(Extracellular regulated protein kinases,ERK)的信號(hào)通路,這些都有助于細(xì)胞有絲分裂[13]。FGF2主要影響纖維層,誘導(dǎo)成纖維細(xì)胞增殖,并通過(guò)調(diào)節(jié)細(xì)胞增殖和分化的旁分泌和自分泌控制機(jī)制影響血管樹(shù)的發(fā)育、重塑等功能[14]。
FGF7和FGF10氨基酸序列和組織表達(dá)高度相似,由各種類(lèi)型的間充質(zhì)細(xì)胞和活化的樹(shù)突狀細(xì)胞表達(dá),以旁分泌方式特異性促進(jìn)上皮細(xì)胞增殖、分化和遷移,參與形態(tài)發(fā)生。FGF7和FGF10可以被骨形態(tài)發(fā)生蛋白4(Bone morphogenetic protein,BMP4)激活,并通過(guò)Smad1/5/8通路共同調(diào)節(jié)基底細(xì)胞增殖[15]。FGF10缺陷小鼠由于表皮分層所需的基底細(xì)胞不足而表現(xiàn)出異常的皮膚發(fā)育,也同樣證實(shí)了FGF10在細(xì)胞增殖中的作用。最近研究發(fā)現(xiàn),rhFGF4可以通過(guò)減少Slug的泛素化來(lái)促進(jìn)p38MAPK\u2012GSK3β\u2012介導(dǎo)的Slug穩(wěn)定,從而觸發(fā)上皮到間充質(zhì)轉(zhuǎn)化并促進(jìn)角質(zhì)形成細(xì)胞的遷移和增殖[16]。
FGF19在銀屑病患者皮膚以及用細(xì)胞因子混合物M5(包括抑瘤素-M、白細(xì)胞介素-1α、白細(xì)胞介素-17A、白細(xì)胞介素-22和腫瘤壞死因子)刺激的角質(zhì)形成細(xì)胞中高度表達(dá)。功能實(shí)驗(yàn)表明FGF19增加了糖原合成酶激酶(Glycogen synthase kinase-3 beta,GSK-3β)的磷酸化,促進(jìn)了β-連環(huán)蛋白的表達(dá)和T細(xì)胞因子4(T-cell factor/lymphoid enhancer-binding factor 4,TCF4)轉(zhuǎn)錄活性的激活,表明雞尾酒療法M5治療激活角質(zhì)形成細(xì)胞中的Wnt/β-連環(huán)蛋白信號(hào)。通過(guò)沉默β-連環(huán)蛋白阻斷Wnt/β-連環(huán)蛋白信號(hào)部分逆轉(zhuǎn)了FGF19介導(dǎo)的對(duì)角質(zhì)形成細(xì)胞增殖的促進(jìn)作用。此外,抑制FGFR4顯著阻斷了FGF19對(duì)角質(zhì)形成細(xì)胞增殖和糖原合成酶激酶-3β(Glycogen synthase kinase 3β,GSK-3β)/β-連環(huán)蛋白/TCF4信號(hào)傳導(dǎo)的促進(jìn)作用。這表明FGF19通過(guò)FGFR4激活Wnt/GSK-3β/β-連環(huán)蛋白信號(hào),有助于維持角質(zhì)形成細(xì)胞的高增殖能力[17]。其次,F(xiàn)GF22與FGF7、FGF10同源,通過(guò)FGFR2-Ⅲβ以自分泌方式與FGF7、FGF10協(xié)同促進(jìn)細(xì)胞增殖,從而促進(jìn)表皮修復(fù)。
2" FGF與皮膚細(xì)胞遷移
細(xì)胞遷移在胚胎發(fā)育、組織重塑、修復(fù)等其他再生過(guò)程中發(fā)揮重大作用。研究發(fā)現(xiàn)FGF家族中,F(xiàn)GF1、FGF2、FGF7、FGF10、FGF21、FGF22在角質(zhì)形成細(xì)胞與成纖維細(xì)胞的遷移過(guò)程中發(fā)揮著重要的作用[18-20]。
有研究指出FGF1在17 ng/ml的濃度時(shí)可以促進(jìn)角質(zhì)形成細(xì)胞遷移[18]。FGF2在I型膠原作為支架存在時(shí)可以通過(guò)Rac的激活以及片狀足的形成來(lái)刺激角質(zhì)形成細(xì)胞的運(yùn)動(dòng)性,促進(jìn)角質(zhì)形成細(xì)胞遷移[19]。體外和體內(nèi)研究表明,F(xiàn)GF2通過(guò)獨(dú)立激活PI3K/Rac1/JNK通路來(lái)加速人成纖維細(xì)胞遷移,通過(guò)顯著增加Akt、Rac1和JNK活性來(lái)誘導(dǎo)成纖維細(xì)胞遷移[21-23]。同樣的,F(xiàn)GF2被發(fā)現(xiàn)可以調(diào)控Hh(Hedgehog,Hh)通路基因Smo(Smoothened,Smo)和Gli1(GLI Family Zinc Finger 1),Hh配體與跨膜蛋白(Patched1,Ptch1)的結(jié)合可以幫助FGF2活化Smo,Smo激活之后刺激PI3K-Rac1-JNK通路,促進(jìn)β-catenin轉(zhuǎn)位進(jìn)入細(xì)胞核,核β-catenin蛋白的進(jìn)一步積累可以調(diào)控Hh通路相關(guān)基因Smo、Gli1、Gli2、Gli3和Ptch1的表達(dá)來(lái)加速成纖維細(xì)胞的遷移[24]。并且高糖能夠通過(guò)抑制FGF信號(hào)轉(zhuǎn)導(dǎo)進(jìn)而抑制細(xì)胞遷移,而FGF2可能通過(guò)激活JNK磷酸化來(lái)抑制膜聯(lián)蛋白A2的硝化,進(jìn)而逆轉(zhuǎn)高糖導(dǎo)致的成纖維細(xì)胞遷移的抑制[23]。FGF4能夠刺激小鼠真皮成纖維細(xì)胞基質(zhì)金屬蛋白酶-9(MMP-9)和血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)受體-1的表達(dá),當(dāng)與VEGF-A聯(lián)合作用時(shí),可以增強(qiáng)成纖維細(xì)胞的遷移[25]。FGF7在10 ng/ml濃度時(shí)對(duì)原代角質(zhì)形成細(xì)胞(NHEK)的遷移沒(méi)有影響,但是在2 ng/ml和19 ng/ml時(shí)可以促進(jìn)HaCaT細(xì)胞的遷移[18]。另外,有研究指出FGF7可能是通過(guò)增加纖溶酶原激活物的活性和基質(zhì)金屬蛋白酶的表達(dá)從而在體外刺激角質(zhì)形成細(xì)胞的遷移[23]。在人工皮膚重建和傷口愈合中再上皮化的過(guò)程中發(fā)現(xiàn)脂肪組織來(lái)源的間充質(zhì)細(xì)胞無(wú)需細(xì)胞之間的接觸就可以誘導(dǎo)人原代角質(zhì)形成細(xì)胞增殖和遷移,這種作用主要由其分泌的FGF7和血小板衍生生長(zhǎng)因子-BB(platelet-derived growth factor-BB,PDGF-BB)介導(dǎo)[26]。FGF10在10 ng/ml濃度時(shí)不會(huì)影響NHEK細(xì)胞遷移,但FGF10與2μM可溶性硫酸皮膚素合用可以促進(jìn)NHEK細(xì)胞的遷移[18],F(xiàn)GF10在皮膚中占主導(dǎo)地位,可以加速細(xì)胞遷移[27],但遷移效果不如FGF7,皮層肌動(dòng)蛋白磷酸化及其向質(zhì)膜的轉(zhuǎn)移是FGF10和FGF7促進(jìn)角質(zhì)形成細(xì)胞遷移的關(guān)鍵,且FGF10和FGF7均以Src依賴(lài)的方式刺激皮層蛋白酪氨酸磷酸化。
FGF21可以加速小鼠成纖維細(xì)胞的遷移,主要通過(guò)與其受體FGFR1和共受體β-Klotho結(jié)合,然后激活SIRT1來(lái)增強(qiáng)遷移和分化,且負(fù)載FGF21或KGF2的泊洛沙姆407水凝膠均可促進(jìn)細(xì)胞遷移,且兩者合用遷移效果更為顯著[28]。
3" FGF與皮膚細(xì)胞分化
表皮是不斷自我更新的組織,自?xún)?nèi)向外由基底層、棘層、顆粒層和最外面的角質(zhì)層構(gòu)成[29-30]?;讓拥慕琴|(zhì)形成細(xì)胞增殖最活躍,其特征在于它們附著在下面的基底膜上。隨著角質(zhì)形成細(xì)胞開(kāi)始分化,它們與基底膜失去接觸并遷移到基底上層,即棘層的底層?;咨蠈蛹?xì)胞表達(dá)分化特異性角蛋白1(Keratin1,K1)和10(Keratin10,K10)。在顆粒層中,角質(zhì)形成細(xì)胞合成絲聚蛋白(Filaggrin,F(xiàn)LG)和兜甲蛋白(loricrin,LOR),這有助于在最外層形成角化包膜。表皮的生長(zhǎng)和分化過(guò)程似乎受到幾種具有重疊特異性和功能性的自分泌和旁分泌因子的精細(xì)調(diào)節(jié),這種調(diào)節(jié)導(dǎo)致基底細(xì)胞的增殖和終末分化的觸發(fā),而成纖維細(xì)胞生長(zhǎng)因子FGF就是其中的關(guān)鍵因素之一。
FGF1通過(guò)和受體結(jié)合實(shí)現(xiàn)對(duì)中胚層及神經(jīng)外胚層來(lái)源的多種細(xì)胞的生長(zhǎng)、分化及功能產(chǎn)生影響,可促進(jìn)組織細(xì)胞分裂、增殖,包括胚胎發(fā)育、形態(tài)發(fā)生、血管生成及組織損傷修復(fù)等[31-34]。FGF1不僅親和酸性創(chuàng)面環(huán)境,易與帶正電荷的細(xì)胞膜表面受體結(jié)合以促進(jìn)創(chuàng)面修復(fù),還因?yàn)槠浔砻媸杷?、表面改性比、?xì)胞因子激活等因素發(fā)揮作用。FGF2通過(guò)激活Notch1/Jagged1通路抑制表皮干細(xì)胞向肌成纖維細(xì)胞的分化來(lái)減少瘢痕的形成[35]。FGF7由特定的成纖維細(xì)胞或間充質(zhì)細(xì)胞分泌,并以旁分泌方式作用于角質(zhì)形成細(xì)胞,是角質(zhì)細(xì)胞生長(zhǎng)和分化的關(guān)鍵介質(zhì)。僅在上皮細(xì)胞上表達(dá)的角質(zhì)形成細(xì)胞生長(zhǎng)因子受體(KGFR/FGFR2b)是FGFR2的剪接轉(zhuǎn)錄變體FGFR-2-Ⅲβ,能夠被具有高親和力的FGF7和FGF10特異性結(jié)合并激活。因?yàn)镕GFR2b主要在基底層,所以FGF7的作用也主要在該層。在角質(zhì)形成細(xì)胞分化過(guò)程中,F(xiàn)RS2α和Akt的表達(dá)以及Akt磷酸化的增加與KGFR和K1的表達(dá)平行,PI3K/Akt信號(hào)傳導(dǎo)在角質(zhì)形成細(xì)胞分化的調(diào)節(jié)中很重要,它可能提供角質(zhì)形成細(xì)胞分層和分化所需的基本生存信號(hào)。KGFR信號(hào)通過(guò)PI3K/Akt通路參與角質(zhì)形成細(xì)胞早期分化的誘導(dǎo)。Alibardi L[35]通過(guò)研究發(fā)現(xiàn),F(xiàn)GF7在蜥蜴表皮分層和分化的過(guò)程中具有刺激作用。
此外,有文獻(xiàn)證明PI3K/Akt通路在KGFR介導(dǎo)的胰腺導(dǎo)管細(xì)胞向β細(xì)胞分化過(guò)程中可能發(fā)揮作用,基底層角質(zhì)形成細(xì)胞還通過(guò)p63和FGF7水平的平衡調(diào)節(jié)以維持其未分化狀態(tài),p63通過(guò)JNK/AP-1途徑激活啟動(dòng)角質(zhì)形成細(xì)胞分化,但抑制角質(zhì)形成細(xì)胞進(jìn)展到分化的后期階段。FGF7還能通過(guò)激活ERK通路抑制K1表達(dá)。p63雖然具有誘導(dǎo)K1表達(dá)的作用,但它也與KGF一樣激活了ERK通路。因此,基底角質(zhì)形成細(xì)胞可以通過(guò)p63和KGF信號(hào)傳導(dǎo)維持其未分化狀態(tài),而基底上角質(zhì)形成細(xì)胞由于p63的功能和FGFR2-Ⅲβ的缺失而發(fā)生分化,F(xiàn)GF7與p63協(xié)同調(diào)節(jié)角質(zhì)形成細(xì)胞穩(wěn)態(tài)[36]。
4" FGF對(duì)黑色素合成的調(diào)控作用
黑素細(xì)胞受角質(zhì)形成細(xì)胞的控制,每個(gè)黑素細(xì)胞與30多個(gè)角質(zhì)形成細(xì)胞相連,形成黑色素單元,黑色素單元是由位于表皮基底層的黑素細(xì)胞與角質(zhì)形成細(xì)胞所構(gòu)建,保護(hù)皮膚免受紫外線(xiàn)的傷害,在生理?xiàng)l件下,其受體信號(hào)通路受到嚴(yán)格控制,以維持皮膚穩(wěn)態(tài)。黑素細(xì)胞可以產(chǎn)生含色素的黑色素體,并通過(guò)樹(shù)突轉(zhuǎn)運(yùn)至角質(zhì)形成細(xì)胞,使皮膚呈現(xiàn)出生理生化改變[37]。長(zhǎng)期的紫外線(xiàn)輻射等環(huán)境因素會(huì)引起皮膚色素過(guò)度沉著,出現(xiàn)黑痣、黃褐斑甚至誘發(fā)皮膚惡性黑素瘤,盡管惡性黑素瘤發(fā)病率較低,但死亡率居于所有皮膚癌之上。在皮膚中,成纖維細(xì)胞和角質(zhì)形成細(xì)胞通過(guò)成纖維細(xì)胞生長(zhǎng)因子以旁分泌方式控制黑素細(xì)胞的增殖和存活,一項(xiàng)體外研究表明,黑素瘤細(xì)胞對(duì)外源性添加的生長(zhǎng)因子具有獨(dú)立性,這表明黑素瘤細(xì)胞以旁分泌方式接受生長(zhǎng)因子起作用[38]。FGF信號(hào)傳導(dǎo)參與黑色素小體囊泡運(yùn)輸?shù)膸追N成分的早期色素細(xì)胞類(lèi)型特異性調(diào)節(jié),其中FGF/WNT信號(hào)參與了腸桿菌色素細(xì)胞的誘導(dǎo)和分化,F(xiàn)GF/MAPK/Ets信號(hào)通過(guò)直接控制WNT下游Ci‐Tcf轉(zhuǎn)錄使色素細(xì)胞前體對(duì)WNT信號(hào)敏感[39]。
盡管FGF2并不作為誘導(dǎo)黑色素合成的主要因素,但其與黑素瘤等惡性腫瘤的發(fā)展密切相關(guān)[38],在正常皮膚中,F(xiàn)GF2由真皮層的成纖維細(xì)胞和表皮中的角質(zhì)形成細(xì)胞分泌,但過(guò)量表達(dá)的FGF2會(huì)促進(jìn)黑素細(xì)胞增殖和色素沉著,在與UVB共同作用下,皮膚出現(xiàn)類(lèi)似于惡性黑素瘤的雀斑樣病變,提示FGF2具有一定的協(xié)同致癌作用,在紫外輻射下會(huì)促進(jìn)黑素細(xì)胞異常增殖并惡性轉(zhuǎn)化而誘發(fā)皮膚黑素瘤[40-41]。另一方面,F(xiàn)GF2也可應(yīng)用于白癜風(fēng)的治療。FGF信號(hào)傳導(dǎo)能夠通過(guò)上調(diào)黑素細(xì)胞增殖來(lái)促進(jìn)黑色素合成,F(xiàn)GF2與cAMP刺激劑共同誘導(dǎo)黑素細(xì)胞增殖,通過(guò)促進(jìn)黑素細(xì)胞有絲分裂,增加皮膚中黑素細(xì)胞含量,能夠起到有效治療白癜風(fēng)的作用。
FGF5在許多黑痣和黑素瘤組織上高度表達(dá)。在免疫功能缺陷小鼠的體內(nèi),對(duì)移植的人黑素瘤給予過(guò)表達(dá)FGF5,能夠促進(jìn)黑素瘤的生長(zhǎng),并減少細(xì)胞凋亡促進(jìn)血管再生成。在FGF5過(guò)表達(dá)的細(xì)胞中,由FGF5受體FGFR1介導(dǎo)的PLCγ活化能夠激活NFAT信號(hào)通路,F(xiàn)GF5的過(guò)表達(dá)進(jìn)一步增強(qiáng)了MAPK信號(hào)通路的活性,兩者協(xié)同提高了黑素瘤的發(fā)生、侵襲和轉(zhuǎn)移的概率[40]。
FGF7是角質(zhì)形成細(xì)胞生長(zhǎng)分化的旁分泌因子。FGF7結(jié)合受體FGFR作用于角質(zhì)形成細(xì)胞而促進(jìn)其對(duì)黑素小體的吞噬作用,進(jìn)而介導(dǎo)紫外輻射下的皮膚光保護(hù)作用。有研究發(fā)現(xiàn)在色素沉著樣疾病患者的真皮皮損部位的成纖維細(xì)胞中,F(xiàn)GF7的含量明顯高于正常皮膚,提示FGF7參與并誘導(dǎo)了皮膚的色素沉著過(guò)程,且FGF7刺激淺色角質(zhì)形成細(xì)胞吞噬作用的能力較深色角質(zhì)形成細(xì)胞更為突出??梢?jiàn)FGF7通過(guò)增加不同色澤的皮膚中角質(zhì)形成細(xì)胞黑色素的含量,在光保護(hù)和黑素小體轉(zhuǎn)運(yùn)過(guò)程中發(fā)揮了重要作用。Purpura V等[42]通過(guò)在正常皮膚中黑素小體轉(zhuǎn)移的研究發(fā)現(xiàn),真皮成纖維細(xì)胞釋放的KGF/FGF7及其受體KGFR/FGFR2b在表皮角質(zhì)形成細(xì)胞上表達(dá)和激活在正常皮膚中的黑素小體轉(zhuǎn)移中起到了關(guān)鍵作用。
FGF18在黑素瘤細(xì)胞中也具有較高的表達(dá)水平[42]。FGF18在多達(dá)1/3的黑素瘤患者體內(nèi),Wnt信號(hào)被過(guò)度活化。除此之外,F(xiàn)GF18的高親和力受體FGFR3ⅢC和FGFR4在黑素瘤中高度表達(dá),以上結(jié)果提示FGF18可能參與了皮膚黑素瘤發(fā)生和轉(zhuǎn)移的過(guò)程[43]。
FGF21由于缺乏肝素結(jié)合域而作為內(nèi)分泌因子發(fā)揮其生物學(xué)作用。MITF是黑色素合成相關(guān)最重要的轉(zhuǎn)錄因子[44],可以經(jīng)ERK激活后被降解[45]。FGF21在與受體結(jié)合后激活ERK信號(hào)通路,將FGF21-siRNA轉(zhuǎn)染至羊駝的黑素細(xì)胞后發(fā)現(xiàn)轉(zhuǎn)染后的黑素細(xì)胞中ERK信號(hào)通路轉(zhuǎn)導(dǎo)受抑制,且黑色素含量明顯升高,證明FGF21能夠通過(guò)激活ERK信號(hào)通路調(diào)控羊駝黑素細(xì)胞中黑色素的合成[46],并且Fonseca M等[47]發(fā)現(xiàn)FGF21可以降低由LPS刺激的巨噬細(xì)胞中黑素瘤的生存能力,進(jìn)一步提示了FGF21在皮膚領(lǐng)域的應(yīng)用上可能具有相同的黑色素合成調(diào)控作用,但這仍需進(jìn)一步研究。
5" FGF與皮膚氧化應(yīng)激
當(dāng)皮膚長(zhǎng)期暴露在不利的環(huán)境中,諸如紫外線(xiàn)或是空氣污染物PM 2.5時(shí)[48-49],細(xì)胞內(nèi)會(huì)產(chǎn)生過(guò)量的ROS,引起氧化應(yīng)激反應(yīng),導(dǎo)致DNA損傷、脂質(zhì)過(guò)氧化、誘發(fā)炎癥及細(xì)胞凋亡等,使皮膚呈現(xiàn)出紅斑、瘙癢、老化等明顯的皮膚損傷,重癥患者的皮膚往往會(huì)因炎性、變性、增厚和纖維化進(jìn)而硬化和萎縮為硬皮病,并進(jìn)一步引起消化道、肺、心臟等多器官的損害。此外,過(guò)量的活性氧(Reactive oxygen species,ROS)不僅可以直接損傷DNA而激活原癌基因并抑制抑癌基因的表達(dá),還可以通過(guò)激活氧化應(yīng)激相關(guān)信號(hào)通路而對(duì)DNA產(chǎn)生間接影響,最終誘發(fā)皮膚癌變,如黑素瘤和鱗狀細(xì)胞癌等[50]。FGF1能有效抑制糖尿病大鼠中DNA、蛋白質(zhì)和脂質(zhì)的氧化應(yīng)激標(biāo)志物8-羥色胺、硝基酪氨酸和丙烯醛的表達(dá),起到抗氧化作用[51-52],提示其在皮膚上也可能具有抗氧化應(yīng)激的作用,且NADPH氧化酶(NADPH Oxidases,NOX)是ROS的重要來(lái)源之一。Takabayashi Y等[53]研究發(fā)現(xiàn),添加了FGF-2的達(dá)肝素/魚(yú)精蛋白納米顆粒可有效改善UVB照射無(wú)毛小鼠由紫外線(xiàn)UVB誘導(dǎo)的皮膚光老化。
FGF7能對(duì)環(huán)境誘導(dǎo)的皮膚氧化損傷起到保護(hù)作用,并且FGF7/Nrf2在抗氧化系統(tǒng)中發(fā)揮了重要的調(diào)控功能[54]。在角質(zhì)形成細(xì)胞內(nèi),F(xiàn)GF7能夠明顯抑制UVB誘導(dǎo)的ROS水平升高,減少細(xì)胞凋亡[55-56]。FGF10通過(guò)激活芳香烴受體(Aryl hydrocarbon receptor,AhR)信號(hào)通路介導(dǎo)的Nrf2信號(hào),進(jìn)而減輕UVB誘導(dǎo)的角質(zhì)形成細(xì)胞氧化應(yīng)激、調(diào)節(jié)細(xì)胞內(nèi)SOD酶的合成,起到了光保護(hù)作用[56]。一種負(fù)載了FGF-21/FGF-2的微針貼片在修復(fù)皮膚由于光老化造成的損傷時(shí),顯示出良好的修復(fù)效果[57]。
綜上,F(xiàn)GF在皮膚細(xì)胞增殖、皮膚細(xì)胞遷移、皮膚細(xì)胞分化、調(diào)控黑色素合成、改善氧化應(yīng)激中起到關(guān)鍵的調(diào)控作用,對(duì)于維護(hù)皮膚健康具有重要作用。
[參考文獻(xiàn)]
[1]田海山.重組人角質(zhì)細(xì)胞生長(zhǎng)因子-2(rhKGF-2)高密度發(fā)酵、純化及其工程化研究[D].吉林:吉林農(nóng)業(yè)大學(xué),2011.
[2]楊志偉.角質(zhì)細(xì)胞生長(zhǎng)因子-2(KGF-2)研究進(jìn)展[J].海峽藥學(xué),2016,28(7):7-10.
[3]Ornitz D M, Itoh N. The fibroblast growth factor signaling pathway[J]. Wiley Interdiscip Rev Dev Biol, 2015,4(3):215-266.
[4]K?hler C M, Herold M, Reinisch N, et al. Interaction of substance P with epidermal growth factor and fibroblast growth factor in cyclooxygenase-dependent proliferation of human skin fibroblasts[J]. J Cell Physiol, 1996,166(3):601-608.
[5]Wied?ocha A, Falnes P O, Rapak A, et al. Stimulation of proliferation of a human osteosarcoma cell line by exogenous acidic fibroblast growth factor requires both activation of receptor tyrosine kinase and growth factor internalization[J]. Mol Cell Biol, 1996,16(1):270-280.
[6]Mehta V B, Connors L, Wang H C, et al. Fibroblast variants nonresponsive to fibroblast growth factor 1 are defective in its nuclear translocation[J]. J Biol Chem, 1998,273(7):4197-4205.
[7]Kostas M, Haugsten E M, Zhen Y,et al. Protein tyrosine phosphatase receptor type G (PTPRG) controls fibroblast growth factor receptor (FGFR) 1 Activity and influences sensitivity to FGFR kinase inhibitors[J]. Mol Cell Proteomics, 2018,17(5):850-870.
[8]鄭青,汪小鳳,吳曉萍,等.haFGF突變體促細(xì)胞增殖活性降低及其機(jī)制[J].中國(guó)病理生理雜志,2005,21(3):33-35.
[9]Vlodavsky I, Folkman J, Sullivan R, et al. Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix[J]. Proc Natl Acad Sci USA, 1987,84(8):2292-2296.
[10]許燕,許冰,馬綱要.堿性成纖維細(xì)胞生長(zhǎng)因子對(duì)兔皮膚成纖維細(xì)胞增殖的作用[J].鄭州大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2002,37(3):334-335.
[11]Qin Y, Liu T, Zhang Z, et al. Scleral remodeling in early adulthood: the role of FGF-2[J]. Sci Rep, 2023,13(1):20779.
[12]Du Cros D L. Fibroblast growth factor and epidermal growth factor in hair development[J]. J Invest Dermatol, 1993,101(1 Suppl):106s-113s.
[13]Werner S. Keratinocyte growth factor: a unique player in epithelial repair processes[J]. Cytokine Growth Factor Rev, 1998,9(2):153-165.
[14]Lou Z, Lou Z, Jiang Y, et al. FGF2 and EGF for the regeneration of tympanic membrane: a systematic review[J]. Stem Cells Int, 2021,2021:2366291.
[15]Li X, Xie R, Luo Y,et al. Cooperation of TGF-β and FGF signalling pathways in skin development[J]. Cell Prolif, 2023,56(11):e13489.
[16]Sun J, Zhou J, Zhou J, et al. FGF4 promotes skin wound repair through p38 MAPK and GSK3β-mediated stabilization of slug[J]. J Invest Dermatol, 2023,143(6):1073-1084.e8.
[17]Yu X, Yan N, Li Z, et al. FGF19 sustains the high proliferative ability of keratinocytes in psoriasis through the regulation of Wnt/GSK-3β/β-catenin signalling via FGFR4[J]. Clin Exp Pharmacol Physiol, 2019,46(8):761-769.
[18]Peplow P V, Chatterjee M P. A review of the influence of growth factors and cytokines in in vitro human keratinocyte migration[J]. Cytokine, 2013,62(1):1-21.
[19]Seeger M A, Paller A S. The roles of growth factors in keratinocyte migration[J]. Adv Wound Care (New Rochelle), 2015,4(4):213-224.
[20]Song Y H, Zhu Y T, Ding J, et al. Distribution of fibroblast growth factors and their roles in skin fibroblast cell migration[J]. Mol Med Rep, 2016,14(4):3336-3342.
[21]Shirakata Y. Regulation of epidermal keratinocytes by growth factors[J]. J Dermatol Sci, 2010,59(2):73-80.
[22]Abdelhakim M, Lin X, Ogawa R. The Japanese experience with basic fibroblast growth factor in cutaneous wound management and scar prevention: a systematic review of clinical and biological aspects[J]. Dermatol Ther (Heidelb), 2020,10(4):569-587.
[23]Wang X, Zhu Y, Sun C, et al. Feedback activation of basic fibroblast growth factor signaling via the Wnt/β-Catenin pathway in skin fibroblasts[J]. Front Pharmacol, 2017,8:32.
[24]Zhu Z X, Sun C C, Ting zhu Y, et al. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration[J]. Exp Cell Res, 2017,355(2):83-94.
[25]Jazwa A, Kucharzewska P, Leja J, et al. Combined vascular endothelial growth factor-A and fibroblast growth factor 4 gene transfer improves wound healing in diabetic mice[J]. Genet Vaccines Ther, 2010,8:6.
[26]Alexaki V I, Simantiraki D, Panayiotopoulou M, et al. Adipose tissue-derived mesenchymal cells support skin reepithelialization through secretion of KGF-1 and PDGF-BB: comparison with dermal fibroblasts[J]. Cell Transplant, 2012,21(11):2441-2454.
[27]Chen X, Tong G, Fan J, et al. FGF21 promotes migration and differentiation of epidermal cells during wound healing via SIRT1-dependent autophagy[J]. Br J Pharmacol, 2022,179(5):1102-1121.
[28]Yang X, Yang R, Chen M, et al. KGF-2 and FGF-21 poloxamer 407 hydrogel coordinates inflammation and proliferation homeostasis to enhance wound repair of scalded skin in diabetic rats[J]. BMJ Open Diabetes Res Care, 2020,8(1):e001009.
[29]Agrawal R, Hu A, Bollag W B. The skin and inflamm-aging[J]. Biology (Basel), 2023,12(11):1396.
[30]Nguyen A V, Soulika A M. The dynamics of the skin’s immune system[J]. Int J Mol Sci, 2019,20:1811.
[31]譚亞清,劉德虎.人酸性成纖維細(xì)胞生長(zhǎng)因子的研究進(jìn)展[J].生物技術(shù)通報(bào),2013,29(5):22-27.
[32]王慧杰,黃巨恩.酸性成纖維細(xì)胞生長(zhǎng)因子的基礎(chǔ)與應(yīng)用研究[J].解剖學(xué)研究,2005,27(4):308-311.
[33]Wang P, Shu B, Xu Y, et al. Basic fibroblast growth factor reduces scar by inhibiting the differentiation of epidermal stem cells to myofibroblasts via the Notch1/Jagged1 pathway[J]. Stem Cell Res Ther, 2017,8(1):114.
[34]Tran-Nguyen T M, Le K T, Nguyen L T, et al.Third-degree burn mouse treatment using recombinant human fibroblast growth factor 2[J]. Growth Factors, 2020,38(5-6):282-290.
[35]Alibardi L. Immunolocalization of FGF7 (KGF) in the regenerating tail of lizard suggests it is involved in the differentiation of the epidermis[J]. Acta Histochem, 2015,117(8):718-724.
[36]殷珊.梔子黃色素對(duì)小鼠B16黑素瘤細(xì)胞增殖、酪氨酸酶活性及黑素生成影響的實(shí)驗(yàn)研究[D].長(zhǎng)沙:湖南中醫(yī)藥大學(xué),2016.
[37]Czyz M. Fibroblast growth factor receptor signaling in skin cancers[J]. Cells, 2019,8(6):540.
[38]Zalesna I, Osrodek M, Hartman M L, el al. Exogenous growth factors bFGF, EGF and HGF do not influence viability and phenotype of V600EBRAF melanoma cells and their response to vemurafenib and trametinib in vitro[J]. PLoS One, 2017,12:e0183498.
[39]Racioppi C, Kamal A K, Razy-Krajka F, et al. Fibroblast growth factor signalling controls nervous system patterning and pigment cell formation in Ciona intestinalis[J]. Nat Commun, 2014,5:4830.
[40]Ghassemi S, Vejdovszky K, Sahin E, et al. FGF5 is expressed in melanoma and enhances malignancy in vitro and in vivo[J]. Oncotarget, 2017,8(50):87750-87762.
[41]Han X, Xiao Z, Quarles L D. Membrane and integrative nuclear fibroblastic growth factor receptor (FGFR) regulation of FGF-23[J]. J Biol Chem, 2015,290(16):10447-10459.
[42]Purpura V, Persechino F, Belleudi F, et al. Decreased expression of KGF/FGF7 and its receptor in pathological hypopigmentation[J]. J Cell Mol Med, 2014,18(12):2553-2557.
[43]王磊,劉軍.黑色素形成分子機(jī)制研究進(jìn)展[J].新疆大學(xué)學(xué)報(bào)(自然科學(xué)版),2019,36(4):468-474,499.
[44]Hemesath T J, Price E R, Takemoto C, et al. MAP kinase links the transcription factor microphthalmia to c-Kit signalling in melanocytes[J]. Nature, 1998,391(6664):298-301.
[45]王瑞瑋.miR-100-5p與FGF21對(duì)羊駝黑素細(xì)胞色素生成的調(diào)控[D].太原:山西農(nóng)業(yè)大學(xué),2018.
[46]Romanhole R C, Ataide J A, Moriel P, et al. Update on ultraviolet A and B radiation generated by the sun and artificial lamps and their effects on skin[J]. Int J Cosmet Sci, 2015,37(4):366-370.
[47]Fonseca M, Soares R, Coelho P. Lower melanoma pulmonary metastatic burden in obese mice: role of FGF-21[J]. Melanoma Res, 2021,31(6):515-525.
[48]Lin Z C, Lee C W, Tsai M H, et al. Eupafolin nanoparticles protect HaCaT keratinocytes from particulate matter-induced inflammation and oxidative stress[J]. Int J Nanomedicine, 2016,11:3907-3926.
[49]Xian D, Lai R, Song J,et al.Emerging perspective: role of increased ros and redox imbalance in skin carcinogenesis[J]. Oxid Med Cell Longev, 2019,2019:8127362.
[50]Huang H W, Yang C M, Yang C H. Fibroblast growth factor type 1 ameliorates high-glucose-induced oxidative stress and neuroinflammation in retinal pigment epithelial cells and a streptozotocin-induced diabetic rat model[J]. Int J Mol Sci, 2021,22(13):7233.
[51]劉存志,石廣霞,黃玉蘭,等.針刺對(duì)血管性癡呆患者尿中氧化應(yīng)激標(biāo)志物的影響[J].中國(guó)中醫(yī)藥信息雜志,2011,18(7):18-20.
[52]Shi H, Cheng Y, YE J, et al. bFGF promotes the migration of human dermal fibroblasts under diabetic conditions through reactive oxygen species production via the PI3K/Akt-Rac1- JNK pathways[J]. Int J Biol Sci, 2015,11(7):845-859.
[53]Takabayashi Y, Kuwabara M, Sato Y, et al.FGF-2-containing dalteparin/protamine nanoparticles (FGF-2amp;D/P NPs) ameliorate UV-induced skin photoaging in hairless mice[J]. J Plast Surg Hand Surg, 2018, 52(6):375-381.
[54]Braun S, Krampert M, Bodó E, et al. Keratinocyte growth factor protects epidermis and hair follicles from cell death induced by UV irradiation, chemotherapeutic or cytotoxic agents[J]. J Cell Sci, 2006,119(Pt 23):4841-4849.
[55]Kovacs D, Raffa S, Flori E, et al. Keratinocyte growth factor down-regulates intracellular ROS production induced by UVB[J]. J Dermatol Sci, 2009,54(2):106-113.
[56]Gao S, Guo K, Chen Y, et al. Keratinocyte growth factor 2 ameliorates UVB-induced skin damage via activating the AhR/Nrf2 signaling pathway[J]. Front Pharmacol, 2021,12:655281.
[57]Yang G, Hu S, Jiang H, et al. Peelable microneedle patches deliver fibroblast growth factors to repair skin photoaging damage[J]. Nanotheranostics, 2023,7(4):380-392.
[收稿日期]2023-10-21
本文引用格式:張凱妮,許諾,高爽,等.成纖維細(xì)胞生長(zhǎng)因子在皮膚細(xì)胞生長(zhǎng)發(fā)育中的作用[J].中國(guó)美容醫(yī)學(xué),2025,34(1):180-185.