范愛琴
摘 要:隨著科學(xué)技術(shù)的飛速發(fā)展,特別是信息時(shí)代的到來,要求人們具有更高的數(shù)學(xué)素養(yǎng)?,F(xiàn)代技術(shù)越來越表現(xiàn)為一種數(shù)學(xué)技術(shù)。而在所有學(xué)習(xí)過程中,與此接觸最緊密的階段——高等階段,期間的數(shù)學(xué)的學(xué)習(xí)更為重要。
關(guān)鍵詞:數(shù)學(xué)教育數(shù)學(xué)學(xué)習(xí) 應(yīng)用性 數(shù)學(xué)興趣
數(shù)學(xué)作為一門重要的基礎(chǔ)學(xué)科,有其固有的特點(diǎn),這就是高度的抽象性、嚴(yán)密的邏輯性和廣泛的應(yīng)用性。其中,抽象性是數(shù)學(xué)最基本、最顯著的特點(diǎn)。它的抽象性特點(diǎn),主要表現(xiàn)在:層次化、模型化、理想化、形式化和符號化等。數(shù)學(xué)幾乎完全周旋于抽象概念和它們的相互關(guān)系之中。如果說自然科學(xué)家為了證明自己的論斷常常求助于實(shí)驗(yàn),那么數(shù)學(xué)家證明定理只需用推理和計(jì)算。這就是說,不僅數(shù)學(xué)的概念是抽象的、思辨的,而且數(shù)學(xué)的方法也是抽象的、思辨的。而嚴(yán)密的邏輯性是指在數(shù)學(xué)理論的歸納和整理中,無論是概念,還是判斷和推理,都要運(yùn)用邏輯的規(guī)則,遵循思維的表達(dá)規(guī)律。另一面,數(shù)學(xué)的精確性則表現(xiàn)在數(shù)學(xué)定義的準(zhǔn)確性、推理的邏輯嚴(yán)密性、數(shù)學(xué)結(jié)論的準(zhǔn)確無疑和無可爭辯性。
一、為什么學(xué)習(xí)數(shù)學(xué)
中國古代數(shù)學(xué)教育的目的是為了經(jīng)世致用,古代算學(xué)以測量田畝、計(jì)算稅收等為目的,通過學(xué)習(xí),人們就可以解決生活中的問題。由此可見,古代數(shù)學(xué)是學(xué)以致用,同時(shí),也是生存、生產(chǎn)的需求。期間也體現(xiàn)出數(shù)學(xué)的重要性及學(xué)習(xí)數(shù)學(xué)的目的性。而在當(dāng)今社會(huì),數(shù)學(xué)的發(fā)展與人類的生活及社會(huì)活動(dòng)有著更為密切的關(guān)系,數(shù)學(xué)作為理工科的基礎(chǔ)。許多理工科的學(xué)習(xí)都是建立在數(shù)學(xué)基礎(chǔ)之上的。數(shù)學(xué)在現(xiàn)代社會(huì)中的應(yīng)用,在許多場合,它已經(jīng)不再單純是一種輔助性的工具,它已成為許多重大問題的關(guān)鍵性的思想與方法,由此產(chǎn)生的許多成果,改變著我們的生活方式??梢哉f,數(shù)學(xué)對現(xiàn)代社會(huì)已產(chǎn)生了深遠(yuǎn)的影響,我們生活在數(shù)學(xué)的時(shí)代。我們要想適應(yīng)這個(gè)社會(huì),更好地駕馭這個(gè)社會(huì),就應(yīng)該學(xué)好數(shù)學(xué)。
二、怎樣學(xué)習(xí)數(shù)學(xué)
要學(xué)好數(shù)學(xué),培養(yǎng)對數(shù)學(xué)的興趣是其前提。在數(shù)學(xué)學(xué)習(xí)中,應(yīng)當(dāng)注意運(yùn)用多種手段和方法,通過多種渠道,培養(yǎng)自己的學(xué)習(xí)興趣,最大限度地調(diào)動(dòng)自己的學(xué)習(xí)積極性和主動(dòng)性。心理學(xué)家研究發(fā)現(xiàn):興趣是學(xué)習(xí)的催化劑,是學(xué)生從事學(xué)習(xí)活動(dòng)的內(nèi)在動(dòng)力。它能促使學(xué)生萌發(fā)出強(qiáng)烈的求知欲,學(xué)生一旦對學(xué)習(xí)產(chǎn)生興趣,就會(huì)由被動(dòng)學(xué)習(xí)轉(zhuǎn)化為主動(dòng)學(xué)習(xí),為培養(yǎng)學(xué)生的創(chuàng)新精神,提供可靠的保證。
概念的理解則是學(xué)好數(shù)學(xué)的基礎(chǔ)。尤其是對順序要求比較嚴(yán)格的數(shù)學(xué)而言,更是如此。沒有理解基本概念,就不能掌握學(xué)習(xí)數(shù)學(xué)的前提技能。而數(shù)學(xué)中的概念往往不是孤立的,它們之間存在著一定的聯(lián)系,理清概念之間的聯(lián)系,既有助于數(shù)學(xué)結(jié)構(gòu)的建立,又助于新的概念的引入,從而有助于對數(shù)學(xué)知識的理解與掌握。如若你盲目記憶,忽略概念的理解,那等在你面前的就只有失敗了。
同時(shí),聽課是學(xué)好數(shù)學(xué)的關(guān)鍵。數(shù)學(xué)是生活中的一門基礎(chǔ)課程,它對一個(gè)人邏輯思維能力的要求相當(dāng)高。人們分析問題、解決問題的能力來自哪里呢?一個(gè)很重要的途徑就是通過上課時(shí)聽老師分析問題、解決問題時(shí)的思路和方法。老師在教學(xué)時(shí),采用發(fā)散式教學(xué)與標(biāo)新立異,目的是為了拓寬學(xué)生的知識面和思維領(lǐng)域,提高數(shù)學(xué)思維能力,并為最終培養(yǎng)學(xué)生的創(chuàng)造性思維,創(chuàng)造條件。而這正是數(shù)學(xué)所賦予我們的,它所傳授的或許很抽象,但日積月累可以增強(qiáng)我們分析問題、解決問題的能力。所以,學(xué)生一定要聽好每一節(jié)課,解題的能力才會(huì)在無形中提高。
數(shù)學(xué)作為一門抽象的學(xué)科,筆者對其學(xué)習(xí)中常見的方法總結(jié)如下:
1.歸納整理法。及時(shí)歸納整理,使知識網(wǎng)絡(luò)化。弄清知識的主干及與相關(guān)知識的聯(lián)系,使其形成清晰的網(wǎng)絡(luò),這樣以便理解記憶運(yùn)用。
2.推演法。它有利于將知識消化吸收,同時(shí)還應(yīng)想一想,從現(xiàn)有的推演過程和結(jié)果,能否推演出什么新的結(jié)論,能否采用其它的推演方法。
3.圖表法。它具有形象直觀的優(yōu)點(diǎn),能幫助思維和記憶。學(xué)習(xí)數(shù)學(xué)要盡可能地利用圖表,以便從中得到啟發(fā),歸納整理知識時(shí),盡量用表格形式把知識系統(tǒng)化,以便理解記憶運(yùn)用。
4.對比法。把相關(guān)知識進(jìn)行對比。正逆對比,正反對比,正誤對比,擴(kuò)展對比,弄清知識之間的聯(lián)系與區(qū)別,有助于正確運(yùn)用。
三、學(xué)習(xí)數(shù)學(xué)的意義及應(yīng)用
數(shù)學(xué)有其內(nèi)在的價(jià)值和意義,數(shù)學(xué)學(xué)習(xí)賦予了一個(gè)人成長意義上的本質(zhì)力量。數(shù)學(xué)表述的簡單性既具有美學(xué)價(jià)值,又具有哲學(xué)趣味;同時(shí),數(shù)學(xué)表述清晰性則造成了數(shù)學(xué)與其他科學(xué)文獻(xiàn)間的差別。數(shù)學(xué)是一種表達(dá)所有合理思想的簡潔方式,是形成所有合理思想的基礎(chǔ)。在科學(xué)時(shí)代飛速發(fā)展的今天,數(shù)學(xué)越來越深刻地體現(xiàn)著它的作用。
數(shù)學(xué)通過技術(shù)化地運(yùn)用對社會(huì)進(jìn)步產(chǎn)生了巨大的影響,發(fā)揮了重要的作用。只有基礎(chǔ)科學(xué)才是現(xiàn)代科技之母。中國的現(xiàn)代化,必須要意識到基礎(chǔ)科學(xué)的重要性。在這個(gè)世紀(jì),有幾門學(xué)科會(huì)發(fā)揮根本的作用,它們包括:信息技術(shù)、生命科學(xué)、能源科學(xué)、材料科學(xué)、環(huán)境科學(xué)、經(jīng)濟(jì)與金融、社會(huì)科學(xué)。在理論思維中,數(shù)學(xué)思維占有重要地位,它使物理等概念精密化、定量化,借助于數(shù)學(xué)的思想方法,新的物理量以及守恒定律等得以產(chǎn)生。而在實(shí)驗(yàn)觀測中,使用先進(jìn)的方法推算結(jié)果以及數(shù)據(jù)處理和揭示經(jīng)驗(yàn)規(guī)律都是數(shù)學(xué)手段,由此可見,數(shù)學(xué)推動(dòng)了近代科學(xué)的發(fā)展。在數(shù)字化高速發(fā)展的今天,數(shù)學(xué)不僅在計(jì)算機(jī)的產(chǎn)生中起了一定的作用,更主要的是數(shù)學(xué)潛力的發(fā)揮,大大地促進(jìn)了計(jì)算機(jī)的智能化發(fā)展,現(xiàn)代技術(shù)越來越表現(xiàn)為一種數(shù)學(xué)技術(shù)。高科技的發(fā)展、應(yīng)用,把現(xiàn)代數(shù)學(xué)以技術(shù)化的方式迅速輻射到人們?nèi)粘I畹母鱾€(gè)領(lǐng)域。
在日常生活中,人們通過數(shù)學(xué)模型解決了好多優(yōu)化問題。如怎樣才能達(dá)到“最近、最省時(shí)間、最短距離、最佳效益”等。尋求優(yōu)化是人類的一種本能,而且不僅是人類,整個(gè)大自然都充斥著這一現(xiàn)象。在我們周圍,優(yōu)化問題幾乎隨處可見。例如,如何有限利用水及洗衣粉來洗更多的衣服;如何在激烈的市場競爭中調(diào)整商品的價(jià)格,薄利多銷,獲得最多利潤;如何合理安排人員與任務(wù),使全員勞動(dòng)生產(chǎn)率最高;如何合理安排錢財(cái)達(dá)到理財(cái)?shù)淖罴央A段,等等。所有問題,就如上述所說,都可以抽象為一個(gè)理論問題,就是在掌握數(shù)學(xué)中的最優(yōu)化理論的基礎(chǔ)上,如何在給定的情況下,達(dá)到最理想的效果。
總之,數(shù)學(xué)的最大魅力莫過于鍛練我們的思考能力和邏輯推理能力。數(shù)學(xué)所表達(dá)出的語言擁有我們所知的任何一個(gè)國籍母語都不能表達(dá)的智慧。在數(shù)學(xué)學(xué)習(xí),早已超過了學(xué)以致用的范疇。而在高等階段中的數(shù)學(xué)學(xué)習(xí),更是將其深化,使人們在數(shù)學(xué)方面具備了應(yīng)有的素養(yǎng)和素質(zhì)。
參考文獻(xiàn):
[1]陳慧.數(shù)學(xué)實(shí)驗(yàn)課程教學(xué)改革研究.中國大學(xué)教學(xué)出版社,2007.12.
[2]俞正光.大學(xué)數(shù)學(xué)概念方法與技巧.清華大學(xué)出版社,2001.8.
[3]劉衛(wèi)鋒.大學(xué)數(shù)學(xué)教育中數(shù)學(xué)建模作用的探討出自.中國教育導(dǎo)刊,2007,(1).
[4]蘇有慧.數(shù)學(xué)建模在高師學(xué)生素質(zhì)教育中的作用.甘肅聯(lián)合大學(xué)學(xué)報(bào)(自然科學(xué)版),2000,(12).
[5]陳錫坤.生本教育——素質(zhì)教育的真諦.現(xiàn)代教育論叢出版社,2008.8.